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ELLIPTIC EQUATIONS INVOLVING THE 1–LAPLACIAN AND

A TOTAL VARIATION TERM WITH LN,∞–DATA

MARTA LATORRE AND SERGIO SEGURA DE LEÓN

Abstract. In this paper we study, in an open bounded set Ω ⊂ RN with
Lipschitz boundary ∂Ω, the Dirichlet problem for a nonlinear singular elliptic
equation involving the 1–Laplacian and a total variation term, that is, the
inhomogeneous case of the equation appearing in the level set formulation of
the inverse mean curvature flow. Our aim is twofold. On the one hand, we
consider data belonging to the Marcinkiewicz space LN,∞(Ω), which leads to
unbounded solutions. So, we have to begin introducing the suitable notion of
unbounded solution to this problem. Moreover, examples of explicit solutions
are shown. On the other hand, this equation allows us to deal with many
related problems having a different gradient term (see (1) below). It is known
that the total variation term induces a regularizing effect on existence, unique-
ness and regularity. We focus on analyzing whether those features remain true
when general gradient terms are taken. Roughly speaking, the bigger g, the
better the properties of the solution.

1. Introduction

In the present paper we deal with the Dirichlet problem for equations involving
the 1–Laplacian and a total variation term:

(1)







−div
( Du

|Du|
)

+ g(u)|Du| = f(x) in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ R
N is a bounded open set with Lipschitz boundary ∂Ω, g stands

for a continuous real function and f is a nonnegative function belonging to the
Marcinkiewicz space LN,∞(Ω).

A related class of elliptic problems involving the p–Laplacian operator (defined
inW 1,p(Ω) by ∆pu = div

(

|∇u|p−2∇u
)

, where p > 1) with a gradient term has been
widely studied. We recall the seminal paper [27] for a gradient term of exponent p−1
and the systematic study of equations having a gradient term with natural growth
initiated by Boccardo, Murat and Puel (see [12, 13, 14]). The variational approach

searches for solutions in the Sobolev space W 1,p
0 (Ω) and considers data belonging

to its dual W−1,p′(Ω). (In the setting of Lebesgue spaces, data are naturally taken

in L
Np

Np−N+p (Ω) as a consequence of the Sobolev embedding.)
We point out that the natural space to look for a solution to problem (1) should

be the Sobolev space W 1,1
0 (Ω) and the space of data, from a variational point of

view, should be its dual W−1,∞(Ω). The Sobolev embedding Theorem and duality
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arguments lead to consider as the right function space of data the space LN (Ω)
(among the Lebesgue spaces) and LN,∞(Ω) (among the Lorentz spaces). Evidences
that the norm of LN,∞(Ω) is suitable enough to deal with this kind of problems can
be found in [16, 29]. As far as the energy space is concerned, we cannot search for

solutions in W 1,1
0 (Ω), which is not reflexive, and we have to extend our setting to

the larger space BV (Ω), the space of all functions of bounded variation. Therefore,
our framework is the following: given a nonnegative f ∈ LN,∞(Ω), find u ∈ BV (Ω)
that solves problem (1) in an appropriate sense which will be introduced below (see
Definition 4.1).

Two important cases of problem (1) have already been studied. When g(s) ≡ 0

we obtain just the 1–Laplacian operator: −div
( Du

|Du|
)

. There is a big amount of

literature on this equation in recent years, starting in [25]. Other papers dealing
with this equation are [7, 10, 16, 19, 26, 29]. The interest in studying such a case
came from an optimal design problem in the theory of torsion and related geometri-
cal problems (see [25]) and from the variational approach to image restoration (see
[7] and also [8] for a review on the development of variational models in image pro-
cessing). The suitable concept of solution to handle the Dirichlet problem for this
kind of equations was introduced in [7]. In this paper, a meaning for the quotient
Du

|Du| (involving Radon measures) is given through a vector field z ∈ L∞(Ω;RN )

satisfying ‖z‖∞ ≤ 1 and (z, Du) = |Du| as measures. This vector field also gives
sense to the boundary condition in a weak sense. The meaning of all expressions
in which appear vector fields relies on the theory of L∞–divergence–measure fields
(see [9] and [17]).

On the other hand, when g(s) ≡ 1, we get −div
( Du

|Du|
)

+ |Du|, which occurs

in the level set formulation of the inverse mean curvature flow (see [22], related
developments can be found in [23, 31, 32]). The framework of these papers, however,
is different since Ω is unbounded. Furthermore, the concept of solution is based on
the minimization of certain functional and does not coincide with which has been
considered in the previous case. This operator has also been studied in a bounded
domain in [28], where it is proved the existence and uniqueness of a bounded solution
for a datum regular enough.

It is worth noting that, contrary to what happens in the p–Laplacian setting
with p > 1, features of solutions to problem (1) with g(s) ≡ 0 are very different
to those with g(s) ≡ 1. Indeed, the presence of the gradient term has a strong
regularizing effect because in the first case the following facts hold:

(i) Existence of BV –solutions is only guaranteed for data small enough, for
large data solutions become infinity in a set of positive measure.

(ii) There is no uniqueness at all: given a solution u, we also obtain that h(u)
is a solution, for every smooth increasing function h.

Whereas, in the second case, the properties are:

(i) There is always a solution, even in the case where the datum is large.
(ii) An uniqueness result holds.

Regarding regularity of solutions, even an equation related to the case g(s) ≡ 0 like

u−div
(

Du
|Du|

)

= f(x) (for which existence and uniqueness hold) has solutions with
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jump part. On the contrary, solutions to problem (1) with g(s) ≡ 1 have no jump

part. Moreover, solutions to u− div
(

Du
|Du|

)

= f(x) satisfy the boundary condition

only in a weak sense (and in general, u|∂Ω 6= 0), while if g(s) ≡ 1, then the boundary
condition holds in the trace sense, that is, the value is attained pointwise on the
boundary.

We point out that the situation concerning existence is rather similar to that
shown in studying problem

(2)







−∆u+ |∇u|2 = λ
u

|x|2 in Ω ,

u = 0 on ∂Ω ,

in domains satisfying 0 ∈ Ω, since the presence of the quadratic gradient term
induces a regularizing effect (see [3] and [1], see also Remark 5.4 below). Indeed,
existence of a positive solution to (2) can be proved for all λ > 0, while if the
gradient term does not appear, solutions can be expected only for λ small enough,
due to Hardy’s inequality.

Our purpose is to study the role of the function g on the above features satisfied
by the solutions. Roughly speaking, we see that the bigger g, the better the prop-
erties of the solution. The standard case occurs when g(s) ≥ m > 0 for all s ≥ 0
and the situation degenerates as soon as g(s) touch the s–axis.

We begin by considering the case g(s) = 1 for all s ≥ 0. To get an idea of the
difficulties one finds, let us recall previous works on this subject. As mentioned,
this problem was already handled in [28] for data f ∈ Lq(Ω), with q > N . This
condition is somewhat artificial and was taken in this way due to the necessity of
obtaining bounded solutions. This necessity derives from the use of the theory of
L∞–divergence–measure fields. It was initiated in [9], where a sense is provided
with the dot product (z, Du), where z ∈ L∞(Ω;RN ) satisfies that div z is a Radon
measure and u ∈ BV (Ω)∩L∞(Ω) is a continuous function. In a different way, it was
later developed in [17] for a -possibly discontinuous- function u ∈ BV (Ω) ∩L∞(Ω)
(see also [15, 30] for a point of view closest to that of [9]). Since we must expect
unbounded solutions starting from the most natural space of data LN,∞(Ω), the
first result we need is to give sense to the dot product (z, Du) when u ∈ BV (Ω)
can be unbounded. This was achieved in [2], but we include it for the sake of
completeness.

Endowed with this tool, in the first part of this paper, we prove an existence
and uniqueness result for problem (1) in the particular case g(s) ≡ 1. The second
part is fully devoted to our main concern, that is, to search for the properties that
solutions to problem (1) satisfy for different functions g. For better understanding,
we summarize the results we will see in the table below.
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Function g(s) Existence Uniqueness Regularity

0 < m ≤ g(s) For every datum
(1)

Yes
(1) No jump part

(1)

Better summability
(2)

g vanishes at some points
For every datum

(3)
Yes

(3)
No jump part

(3)

g /∈ L1([0,∞[)

g vanishes at infinity For every datum
(4)

, with
Yes

(4)
No jump part

(4)

g /∈ L1([0,∞[) another concept of solution
(5)

g ∈ L1([0,∞[) For data small enough
(6,7)

Yes
(7)

No jump part
(7)

g vanishes on an interval For data small enough
(8)

No
(9) With jump part

(10)

No boundary condition
(11)

(1) Theorem 6.4 and Theorem 6.5 (2) Proposition 6.6 (3) Theorem 7.1 (4) Theorem 7.3

(5) Definition 7.2 and Example 7.4 (6) Example 8.4 (7) Theorem 8.1 (8) Remark 8.5

(9) Remark 8.5 and Remark 8.7 (10) Example 8.8 (11) Example 8.6

The plan of this paper is the following. Section 2 is dedicated to preliminaries, we
introduce our notation and some properties of the spaces BV (Ω) and LN,∞(Ω). In
Section 3 we generalize the theory of L∞–divergence–measure fields to take pairings
(z, Du) of a certain vector field z and any u ∈ BV (Ω). This theory is applied in
Section 4 to extend the result of existence and uniqueness of [28] to LN,∞(Ω)–data.
In Section 5 we show explicit radial examples of solutions. Section 6 is devoted to
study the standard cases of problem (1), those where g(s) is bounded from below by
a positive constant. A non standard case is shown in Section 7 with g(s) touching
the s–axis; in this case we need to change our definition of solution since solutions
no longer belong to BV (Ω). Finally, in Section 8 we deal with really odd cases for
which the considered properties are not necessarily satisfied.
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2. Preliminaries

In this Section we will introduce some notation and auxiliary results which will
be used throughout this paper. In what follows, we will consider N ≥ 2, and
HN−1(E) will denote the (N − 1)–dimensional Hausdorff measure of a set E and
|E| its Lebesgue measure.
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In this paper, Ω will always denote an open subset of RN with Lipschitz bound-
ary. Thus, an outward normal unit vector ν(x) is defined for HN−1–almost every
x ∈ ∂Ω. We will make use of the usual Lebesgue and Sobolev spaces, denoted by
Lq(Ω) and W 1,p

0 (Ω), respectively.
We recall that for a Radon measure µ in Ω and a Borel set A ⊆ Ω the measure

µ A is defined by (µ A)(B) = µ(A ∩ B) for any Borel set B ⊆ Ω. If a measure
µ is such that µ = µ A for a certain Borel set A, the measure µ is said to be
concentrated on A.

The truncation function will be use throughout this paper. Given k > 0, it is
defined by

(3) Tk(s) = min{|s|, k} sign (s) ,

for all s ∈ R. Moreover, we define another auxiliary real function by

(4) Gk(s) =
(

s− Tk(s)
)

sign (s) .

2.1. The energy space. The space of all functions of finite variation, that is the
space of those u ∈ L1(Ω) whose distributional gradient is a Radon measure with
finite total variation, is denoted by BV (Ω). This is the natural energy space to
study the problems we are interested in. It is endowed with the norm defined by

‖u‖ =

∫

Ω

|u| dx+

∫

Ω

|Du| ,

for any u ∈ BV (Ω). An equivalent norm, which we will use in the sequel, is given
by

‖u‖BV (Ω) =

∫

∂Ω

|u| dHN−1 +

∫

Ω

|Du| .

For every u ∈ BV (Ω), the Radon measure Du is decomposed into its absolutely
continuous and singular parts with respect to the Lebesgue measure: Du = Dau+
Dsu. We denote by Su the set of all x ∈ Ω such that x is not a Lebesgue point of
u, that is, x ∈ Ω\Su if there exists ũ(x) such that

lim
ρ↓0

1

|Bρ(x)|

∫

Bρ(x)

|u(y)− ũ(x)| dy = 0 .

We say that x ∈ Ω is an approximate jump point of u if there exist two real numbers
u+(x) > u−(x) and νu(x) ∈ SN−1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫

B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0 ,

lim
ρ↓0

1

|B−
ρ (x, νu(x))|

∫

B−

ρ (x,νu(x))

|u(y)− u−(x)| dy = 0 ,

where

B+
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}

and

B−
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 < 0} .

We denote by Ju the set of all approximate jump points of u. By the Federer–
Vol’pert Theorem [6, Theorem 3.78], we know that Su is countablyHN−1–rectifiable
and HN−1(Su\Ju) = 0. Moreover, Du Ju = (u+ − u−)νuHN−1 Ju. Using Su
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and Ju, we may split Dsu in two parts: the jump part Dju and the Cantor part
Dcu defined by

Dju = Dsu Ju and Dcu = Dsu (Ω\Su) .
Then, we have

Dju = (u+ − u−)νuHN−1 Ju .

Moreover, if x ∈ Ju, then νu(x) =
Du
|Du| (x) and

Du
|Du| is the Radon–Nikodým deriva-

tive of Du with respect to its total variation |Du|.
The precise representative u∗ : Ω\(Su\Ju) → R of u is defined as equal to ũ on

Ω\Su and equal to u−+u+

2 on Ju. It is well known (see for instance [6, Corollary
3.80]) that if ρ is a symmetric mollifier, then the mollified functions u⋆ρǫ pointwise
converges to u∗ in its domain.

A compactness result in BV (Ω) will be used several times in what follows. It
states that every sequence that is bounded in BV (Ω) has a subsequence which
strongly converges in L1(Ω) to a certain u ∈ BV (Ω) and the subsequence of gradi-
ents ∗–weakly converges to Du in the sense of measures.

To pass to the limit we will often apply that some functionals defined on BV (Ω)
are lower semicontinuous with respect to the convergence in L1(Ω). The most
important are the functionals defined by

(5) u 7→
∫

Ω

|Du|

and

(6) u 7→
∫

Ω

|Du|+
∫

∂Ω

|u| dHN−1 .

In the same way, it yields that each ϕ ∈ C1
0 (Ω) with ϕ ≥ 0 defines a functional

u 7→
∫

Ω

ϕ |Du| ,

which is lower semicontinuous in L1(Ω).
Finally, we recall that the notion of trace can be extended to any u ∈ BV (Ω)

and this fact allows us to interpret it as the boundary values of u and to write u
∣

∣

∂Ω
.

Moreover, it holds that the trace is a linear bounded operator BV (Ω) → L1(∂Ω)
which is onto.

For further information on functions of bounded variation, we refer to [6, 20, 34].

2.2. The data space. Given a measurable function u : Ω → R, we denote by µu
the distribution function of u: the function µu : [0,+∞[→ [0,+∞[ defined by

µu(t) = |{x ∈ Ω : |u(x)| > t}| , t ≥ 0 .

For 1 < q < ∞, the space Lq,∞(Ω), known as Marcinkiewicz or weak-Lebesgue
space, is the space of Lebesgue measurable functions u : Ω → R such that

(7) [u]q = sup
t>0

t µu(t)
1/q < +∞ .

The relationship with Lebesgue spaces is given by the following inclusions

Lq(Ω) →֒ Lq,∞(Ω) →֒ Lq−ε(Ω) ,
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for suitable ε > 0. We point out that expression (7) defines a quasi–norm which is
not a norm in Lq,∞(Ω). (For a suitable norm in this space see (10), (11) and (12)
below).

Some properties of Lorentz spaces Lq,1(Ω) (with 1 < q < ∞) must be applied
throughout this paper. To begin with, we define the decreasing rearrangement of
u as the function u⋆ : ]0, |Ω|] → R

+ given by

u⋆(s) = sup{t > 0 : µu(t) > s} , s ∈ ]0, |Ω|] ,
(the main properties of rearrangements can be found in [11, 24, 34]). In terms of
u⋆, the quasi-norm (7) becomes

(8) [u]q = sup
s>0

{s1/qu⋆(s)} .

We say that a measurable function u : Ω → R belongs to Lq,1(Ω) if

(9) ‖u‖Lq,1(Ω) =
1

q

∫ ∞

0

s1/qu⋆(s)
ds

s

is finite. This expression defines a norm (see [11, Theorem 5.13]). The classical
paper where these spaces are systematically studied is [24] (see also [11, 34]). Some
important properties of Lorentz spaces are:

(1) Lq,1(Ω) is a Banach space endowed with the norm defined by (9).
(2) Simple functions are dense in Lq,1(Ω).
(3) The norm (9) is absolutely continuous.

Concerning duality, the Marcinkiewicz space Lq
′,∞(Ω) is the dual space of Lq,1(Ω).

Indeed, it follows from a Hardy–Littlewood inequality that if f ∈ Lq
′,∞(Ω) and

u ∈ Lq,1(Ω), then fu ∈ L1(Ω) and a Hölder type inequality holds:

∣

∣

∣

∫

Ω

fu dx
∣

∣

∣
≤

∫ ∞

0

f⋆(s)u⋆(s) ds =

∫ ∞

0

s1/q
′

f⋆(s)s1/qu⋆(s)
ds

s

≤ q[f ]q′‖u‖Lq,1(Ω) .

Thus,

(10) ‖f‖Lq′,∞(Ω) = sup







∣

∣

∣

∫

Ω
fu dx

∣

∣

∣

‖u‖Lq,1(Ω)
: u ∈ Lq,1(Ω)\{0}







defines a norm in the Marcinkiewicz space and ‖f‖Lq′,∞(Ω) ≤ q [f ]q′ holds. Taking

into account that if E ⊂ Ω is a measurable set of positive measure and u = |E|− 1
q χE ,

then ‖u‖Lq,1(Ω) = 1 and also applying the density of simple functions, we deduce
that

(11) ‖f‖Lq′,∞(Ω) = sup

{

∣

∣

∣

∫

Ω

fu dx
∣

∣

∣
: u = |E|− 1

q χE , with |E| > 0

}

= sup

{

|E|−1/q

∫

E

|f | dx : |E| > 0

}

.

This implies [f ]q′ ≤ ‖f‖Lq′,∞(Ω), so that, the quasi–norm [ · ]q′ is equivalent to the

norm ‖ · ‖Lq′,∞(Ω). It also yields

(12) ‖f‖Lq′,∞(Ω) = sup
s>0

{s1/q′f⋆⋆(s)} ,
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where f⋆⋆(s) =
1

s

∫ s

0

f⋆(σ) dσ .

On the other hand, we recall that Sobolev’s inequality can be improved in the
context of Lorentz spaces (see [4]): the continuous embedding

(13) W 1,1
0 (Ω) →֒ L

N
N−1

,1(Ω)

holds. The best constant in this embedding will be denoted as

(14) SN = sup

{‖u‖
L

N
N−1

,1
(Ω)

∫

Ω |∇u| dx : u ∈W 1,1
0 (Ω)\{0}

}

.

Its value is known:

(15) SN =
Γ
(

N
2 + 1

)1/N

N
√
π

=
1

NC
1/N
N

,

where CN denotes the measure of the unit ball in R
N . (We explicitly point out that

this is the value for the best constant having in mind the norm in the Lorentz space
as defined in (9).) Furthermore, by an approximation argument, this inclusion may
be extended to BV–functions with the same best constant SN (see, for instance,
[34]):

(16) BV (Ω) →֒ L
N

N−1
,1(Ω) .

It is worth remarking that the supremum in (14) is attained in BV (Ω).
As a consequence of this embedding, given f ∈ LN,∞(Ω) and u ∈ BV (Ω), it

yields fu ∈ L1(Ω). This fact will be essential in what follows.
Another fact concerning Lorentz spaces and duality is in order. We will denote

by W−1,q′(Ω) the dual space of W 1,q
0 (Ω), 1 ≤ q < ∞. Here we recall just that the

norm in W−1,∞(Ω) is given by

(17) ‖µ‖W−1,∞(Ω) = sup

{

∣

∣ < µ, u >W−1,∞(Ω),W 1,1
0

(Ω)

∣

∣ :

∫

Ω

|∇u| dx ≤ 1

}

.

Since the norm in L
N

N−1
,1(Ω) is absolutely continuous, it follows that C∞

0 (Ω) is

dense in L
N

N−1
,1(Ω). A duality argument shows that LN,∞(Ω) →֒ W−1,∞(Ω) and,

having in mind (10) and (14), we obtain: if f ∈ LN,∞(Ω), then

‖f‖LN,∞(Ω) = sup







∣

∣

∣

∫

Ω
fu dx

∣

∣

∣

‖u‖
L

N
N−1

,1
(Ω)

: u ∈ W 1,1
0 (Ω)\{0}







= sup







∣

∣

∣

∫

Ω fu dx
∣

∣

∣

∫

Ω
|∇u| dx ·

∫

Ω
|∇u| dx

‖u‖
L

N
N−1

,1
(Ω)

: u ∈W 1,1
0 (Ω)\{0}







≥ S−1
N ‖f‖W−1,∞(Ω) .

Therefore,

(18) ‖f‖W−1,∞(Ω) ≤
1

NC
1/N
N

‖f‖LN,∞(Ω) ,

for every f ∈ LN,∞(Ω). (For a related equality in a ball, see [29, Remark 3.3]).
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3. Extending Anzellotti’s theory

In this section we will study some properties involving divergence–measure vector
fields and functions of bounded variation. Our aim is to extend the Anzellotti
theory.

Following [17] we define DM∞(Ω) as the space of all vector fields z ∈ L∞(Ω;RN )
whose divergence in the sense of distributions is a Radon measure with finite total
variation, i.e., z ∈ DM∞(Ω) if and only if div z is a Radon measure belonging to
W−1,∞(Ω).

The theory of L∞–divergence–measure vector fields is due to G. Anzellotti [9]
and, independently, to G.–Q. Chen and H. Frid [17]. In spite of their different points
of view, both approaches introduce the normal trace of a vector field through the
boundary and establish the same generalized Gauss–Green formula. Both two also
define the pairing (z, Du) as a Radon measure where z ∈ DM∞(Ω) and u is a
certain BV –function. However, they differ in handling this concept. While in [9]
it is only considered continuous functions belonging to BV (Ω) ∩ L∞(Ω) and the
inequality

(19) |(z, Du)| ≤ ‖z‖∞|Du|

is proved for those functions; in [17], general u ∈ BV (Ω) ∩ L∞(Ω) are considered
but it is only shown that the Radon measure (z, Du) is absolutely continuous with
respect to |Du|. In the present paper we need that the inequality (19) holds for every
u ∈ BV (Ω) and every z ∈ DM∞(Ω) satisfying a certain condition (see Corollary
3.5 below). That is why the way by which the pairings (z, Du) are obtained will
be essential in our work. This is the reason for extending the Anzellotti approach
in this Section.

We finally point out that the theory of divergence–measure fields has been ex-
tended later (see [18] and [35]).

We begin by recalling a result proved in [17].

Proposition 3.1. For every z ∈ DM∞(Ω), the measure µ = div z is absolutely
continuous with respect to HN−1, that is, |µ| ≪ HN−1.

Consider now µ = div z with z ∈ DM∞(Ω) and let u ∈ BV (Ω); then the
precise representative u∗ of u is equal HN−1–a.e. to a Borel function; that is,
to limε→0 ρε ⋆ u, where (ρε) is a symmetric mollifier. Then, it is deduced from
the previous Proposition that u∗ is equal µ–a.e. to a Borel function. So, given
u ∈ BV (Ω), its precise representative u∗ is always µ–measurable. Moreover, u ∈
BV (Ω) ∩ L∞(Ω) implies u ∈ L∞(Ω, µ) ⊂ L1(Ω, µ).

3.1. Preservation of the norm. We point out that every div z, with z ∈ DM∞(Ω),

defines a functional on W 1,1
0 (Ω) by

(20) 〈div z, u〉W−1,∞(Ω),W 1,1
0

(Ω) = −
∫

Ω

z · ∇u dx .

To express this functional in terms of an integral with respect to the measure
µ = div z, we need the following Meyers–Serrin type theorem (see [6, Theorem 3.9]
for its extension to BV –functions).
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Proposition 3.2. Let µ = div z, with z ∈ DM∞(Ω). For every u ∈ BV (Ω) ∩
L∞(Ω) there exists a sequence (un)n in W 1,1(Ω) ∩ C∞(Ω) ∩ L∞(Ω) such that

(1) un → u∗ in L1(Ω, µ) .

(2)
∫

Ω |∇un| dx→ |Du|(Ω) .

(3) un|∂Ω = u|∂Ω for all n ∈ N .

(4) |un(x)| ≤ ‖u‖∞ |µ|–a.e. for all n ∈ N .

Moreover, if u ∈W 1,1(Ω)∩L∞(Ω), then one may find un satisfying, instead of (2),
the condition

(2’) un → u in W 1,1(Ω) .

Since

−
∫

Ω

z · ∇ϕdx =

∫

Ω

ϕdµ

holds for every ϕ ∈ C∞
0 (Ω), it is easy to obtain this equality for every W 1,1

0 (Ω) ∩
C∞(Ω). Given u ∈W 1,1

0 (Ω) ∩ L∞(Ω) and applying Proposition 3.2, we may find a

sequence (un)n inW 1,1
0 (Ω)∩C∞(Ω) satisfying (1) and (2’). Letting n go to infinity,

it follows from

−
∫

Ω

z · ∇un dx =

∫

Ω

un dµ

for every n ∈ N, that

−
∫

Ω

z · ∇u dx =

∫

Ω

u∗ dµ

and so

〈div z, u〉W−1,∞(Ω),W 1,1
0

(Ω) =

∫

Ω

u∗ dµ

holds for every u ∈ W 1,1
0 (Ω)∩L∞(Ω). Then the norm of this functional is given by

‖µ‖W−1,∞(Ω) = sup

{

∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
: u ∈ W 1,1

0 (Ω) ∩ L∞(Ω), with ‖u‖W 1,1
0

(Ω) ≤ 1

}

.

where ‖u‖W 1,1
0

=
∫

Ω
|∇u| dx. We have seen that µ = div z can be extended from

W 1,1
0 (Ω) to BV (Ω)∩L∞(Ω). Next, we will prove that this extension can be given as

an integral with respect to µ and it preserves the norm. To this end, the following
Lemma, stated in [9], will be applied.
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Lemma 3.3. For every u ∈ BV (Ω) –so that u
∣

∣

∂Ω
∈ L1(∂Ω)–, there exists a

sequence (wn)n in W 1,1(Ω) ∩ C(Ω) such that

(1) wn|∂Ω = u|∂Ω .

(2)

∫

Ω

|∇wn| dx ≤
∫

∂Ω

|u| dHN−1 +
1

n
.

(3)

∫

Ω

|wn| dx ≤ 1

n
.

(4) wn(x) = 0 if dist(x, ∂Ω) > 1
n .

(5) wn(x) → 0 for all x ∈ Ω .

Moreover, if u ∈ BV (Ω) ∩ L∞(Ω), then wn ∈ L∞(Ω) and ‖wn‖∞ ≤ ‖u
∣

∣

∂Ω
‖∞

for all n ∈ N.

Theorem 3.4. Let z ∈ DM∞(Ω) and denote µ = div z. Then, the functional
given by (20) can be extended to BV (Ω) ∩ L∞(Ω) as an integral with respect to µ
and its norm satisfies

‖µ‖W−1,∞(Ω) = sup

{

∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
: u ∈ BV (Ω) ∩ L∞(Ω), with ‖u‖BV (Ω) ≤ 1

}

,

where ‖u‖BV (Ω) =

∫

∂Ω

|u| dHN−1 +

∫

Ω

|Du|.

Proof. Since we already know that BV (Ω) ∩ L∞(Ω) is a subset of L1(Ω, µ), all
we have to prove is

(21)
∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
≤ ‖µ‖W−1,∞(Ω)

(

|Du|(Ω) +
∫

∂Ω

|u| dHN−1
)

.

for all u ∈ BV (Ω) ∩ L∞(Ω). This inequality will be proved in two steps.
Step 1: Assume first that u ∈ W 1,1(Ω)∩L∞(Ω). Consider the sequence (wn)n in

W 1,1(Ω)∩C(Ω) of the above Lemma. Hence, wn ∈ L∞(Ω) and ‖wn‖∞ ≤ ‖u
∣

∣

∂Ω
‖∞

for all n ∈ N. Then it yields

∣

∣

∣

∫

Ω

(u∗−w∗
n) dµ

∣

∣

∣
=

∣

∣〈µ, (u−wn)〉W−1,∞(Ω),W 1,1
0

(Ω)

∣

∣ ≤ ‖µ‖W−1,∞(Ω)

∫

Ω

|∇u−∇wn| dx

≤ ‖µ‖W−1,∞(Ω)

(

∫

Ω

|∇u| dx+

∫

∂Ω

|u| dHN−1 +
1

n

)

.

It follows that

(22)
∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
≤

∣

∣

∣

∫

Ω

(u∗ − w∗
n) dµ

∣

∣

∣
+
∣

∣

∣

∫

Ω

w∗
n dµ

∣

∣

∣

≤ ‖µ‖W−1,∞(Ω)

(

∫

Ω

|∇u| dx+

∫

∂Ω

|u| dHN−1 +
1

n

)

+
∣

∣

∣

∫

Ω

w∗
n dµ

∣

∣

∣
.
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Since the sequence (wn)n tends pointwise to 0 and it is uniformly bounded in
L∞(Ω), by Lebesgue’s Theorem,

lim
n→∞

∫

Ω

w∗
n dµ = 0 .

Now, taking the limit in (22) we obtain (21).
Step 2: In the general case, we apply Proposition 3.2 and find a sequence un in

W 1,1(Ω) ∩C∞(Ω) ∩ L∞(Ω) such that

(1) u∗n → u∗ in L1(Ω, µ) .

(2)
∫

Ω |∇un| dx→ |Du|(Ω) .

(3) un|∂Ω = u|∂Ω for all n ∈ N .

(4) |un(x)| ≤ ‖u‖∞ |µ|–a.e. for all n ∈ N .

Then, it follows from
∣

∣

∣

∫

Ω

u∗n dµ
∣

∣

∣
≤ ‖µ‖W−1,∞(Ω)

(

∫

Ω

|∇un| dx+

∫

∂Ω

|u| dHN−1
)

for all n ∈ N

that (21) holds.

Corollary 3.5. Let z ∈ DM∞(Ω) satisfy div z = ν+f for a certain Radon measure
ν and a certain f ∈ LN,∞(Ω). If either ν ≥ 0 or ν ≤ 0, then µ = div z can be
extended to BV (Ω) and

‖µ‖W−1,∞(Ω) = sup

{

∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
: u ∈ BV (Ω), |Du|(Ω) +

∫

∂Ω

|u| dHN−1 ≤ 1

}

.

Moreover, BV (Ω) →֒ L1(Ω, µ).

Proof. Consider u ∈ BV (Ω), denote u+ = max{u, 0} and, for every k > 0, apply
the previous result to Tk(u+) (recall (3)). Then

(23)
∣

∣

∣

∫

Ω

Tk(u+)
∗ dµ

∣

∣

∣
≤ ‖µ‖W−1,∞(Ω)

(

|DTk(u+)|(Ω) +
∫

∂Ω

Tk(u+) dHN−1
)

≤ ‖µ‖W−1,∞(Ω)

(

|Du+|(Ω) +
∫

∂Ω

u+ dHN−1
)

.

On the other hand, observe that u∗ is a ν–measurable function, so that we obtain
∫

Ω

Tk(u+)
∗ dµ =

∫

Ω

Tk(u+)
∗ dν +

∫

Ω

Tk(u+(x))f(x) dx

for every k > 0. We may apply Levi’s Theorem and Lebesgue’s Theorem to deduce

lim
k→+∞

∫

Ω

Tk(u+)
∗ dν =

∫

Ω

(u+)
∗ dν

and

lim
k→+∞

∫

Ω

Tk(u+(x))f(x) dx =

∫

Ω

u+(x)f(x) dx .
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Thus,

lim
k→+∞

∫

Ω

Tk(u+)
∗ dµ =

∫

Ω

(u+)
∗ dµ .

Now, taking the limit when k goes to ∞ in (23), it yields

(24)
∣

∣

∣

∫

Ω

(u+)
∗ dµ

∣

∣

∣
≤ ‖µ‖W−1,∞(Ω)

(

|Du+|(Ω) +
∫

∂Ω

u+ dHN−1
)

.

Assume, in order to be concrete, that ν ≥ 0. Since
∫

Ω
(u+)

∗ dµ− =
∫

Ω
u+(x)f−(x) dx,

we already have that (u+)
∗ is µ−–integrable. Hence, as a consequence of (24), we

deduce that (u+)
∗ is µ+–integrable as well and then, (u+)

∗ µ–integrable too.
Since we may prove a similar inequality to u− = max{−u, 0}, adding both

inequalities we deduce that u∗ is µ–integrable and that
∣

∣

∣

∫

Ω

u∗ dµ
∣

∣

∣
≤ ‖µ‖W−1,∞(Ω)

(

|Du|(Ω) +
∫

∂Ω

|u| dHN−1
)

holds true.

3.2. A Green’s formula. Let z ∈ DM∞(Ω) and let u ∈ BV (Ω). Assume that
div z = ν + f , with ν a Radon measure satisfying either ν ≥ 0 or ν ≤ 0, and
f ∈ LN,∞(Ω). In the spirit of [9], we define the following distribution on Ω. For
every ϕ ∈ C∞

0 (Ω), we write

(25) 〈(z, Du), ϕ〉 = −
∫

Ω

u∗ ϕdµ−
∫

Ω

u z · ∇ϕdx ,

where µ = div z. Note that the previous subsection implies that every term in the
above definition has sense. We next prove that this distribution is actually a Radon
measure having finite total variation.

Proposition 3.6. Let z and u be as above. The distribution (z, Du) defined pre-
viously satisfies

(26) |〈(z, Du), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫

U

|Du|

for all open set U ⊂ Ω and for all ϕ ∈ C∞
0 (U).

Proof. If U ⊂ Ω is an open set and ϕ ∈ C∞
0 (U), then it was proved in [30] that

(27) |〈(z, DTk(u)), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫

U

|DTk(u)| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫

U

|Du|

holds for every k > 0. On the other hand,

〈(z, DTk(u)), ϕ〉 = −
∫

Ω

Tk(u)
∗ϕdµ−

∫

Ω

Tk(u)z · ∇ϕdx .

We may let k → ∞ in each term on the right hand side, due to u∗ ∈ L1(Ω, µ) and
u ∈ L1(Ω). Therefore,

lim
k→∞

〈(z, DTk(u)), ϕ〉 = 〈(z, Du), ϕ〉 ,

and so (27) implies (26).
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Corollary 3.7. The distribution (z, Du) is a Radon measure. It and its total
variation |(z, Du)| are absolutely continuous with respect to the measure |Du| and

∣

∣

∣

∣

∫

B

(z, Du)

∣

∣

∣

∣

≤
∫

B

|(z, Du)| ≤ ‖z‖L∞(U)

∫

B

|Du|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.

On the other hand, for every z ∈ DM∞(Ω), a weak trace on ∂Ω of the normal
component of z is defined in [9] and denoted by [z, ν].

Proposition 3.8. Let z and u be as above. With the above definitions, the following
Green formula holds

(28)

∫

Ω

u∗ dµ+

∫

Ω

(z, Du) =

∫

∂Ω

[z, ν]u dHN−1 ,

where µ = div z.

Proof. Applying the Green formula proved in [30], we obtain

(29)

∫

Ω

Tk(u)
∗ dµ+

∫

Ω

(z, DTk(u)) =

∫

∂Ω

[z, ν]Tk(u) dHN−1 ,

for every k > 0. Note that the same argument appearing in the proof of the previous
Proposition leads to

lim
k→∞

∫

Ω

(z, DTk(u)) =

∫

Ω

(z, Du) .

We may take limits in the other terms since u∗ ∈ L1(Ω, µ) and u ∈ L1(∂Ω). Hence,
letting k go to ∞ in (29), we get (28).

Proposition 3.9. Let z ∈ DM∞(Ω) with ‖z‖∞ ≤ 1 and let u ∈ BV (Ω). Then
(z, Du) = |Du| as measures if and only if (z, DTk(u)) = |DTk(u)| as measures for
all k > 0.

Proof. We first assume (z, Du) = |Du| and so (recall (4))

|Du| = (z, Du) = (z, DTk(u)) + (z, DGk(u))

≤ |DTk(u)|+ |DGk(u)| = |Du| .

Then, the inequality becomes equality and so (z, DTk(u)) = |DTk(u)| as measures.
Conversely, we assume (z, DTk(u)) = |DTk(u)| for all k > 0. For each ϕ ∈ C∞

0 (Ω),
we use the same argument which appears in Proposition 3.6 to obtain:

lim
k→∞

〈(z, DTk(u)), ϕ〉 = 〈(z, Du), ϕ〉

and

lim
k→∞

∫

Ω

ϕ |DTk(u)| =
∫

Ω

ϕ |Du| .

So, using the hypothesis, we conclude 〈(z, Du), ϕ〉 =
∫

Ω
ϕ |Du| for every ϕ ∈

C∞
0 (Ω), that is, (z, Du) = |Du| as measures.
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3.3. The chain rule. We point out that there is a chain rule for BV –functions,
the more general formula is due to L. Ambrosio and G. Dal Maso (see [6, Theorem
3.101], see also [6, Theorem 3.96]). In our framework, it states that if v ∈ BV (Ω)
satisfies Djv = 0 and u = G(v), where G is a Lipschitz–continuous real function,
then u ∈ BV (Ω) and

Du = G′(v)|Dv| .
We cannot directly apply this result in our context since G′ need not be bounded.
Hence, the following slight generalization is needed.

Theorem 3.10. Let v ∈ BV (Ω) such that Djv = 0 and let g be a continuous and
unbounded real function with g(s) > m > 0 for all s ∈ R. We define

G(s) =

∫ s

0

g(σ) dσ .

Assuming that u = G(v) ∈ L1(Ω), it holds that u ∈ BV (Ω) if and only if g(v)∗|Dv|
is a finite measure and in that case |Du| = g(v)∗|Dv| as measures.

Proof. Let ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. We apply the chain rule to get the next

equality:
∫

{v<k}

ϕ |Du| =
∫

{v<k}

ϕg(Tk(v))
∗ |Dv| =

∫

{v<k}

ϕg(v)∗ |Dv| .

Now, using the monotone convergence theorem, we take limits when k → ∞ and it
holds

∫

Ω

ϕ |Du| =
∫

Ω

ϕg(v)∗ |Dv| ,

and if one integral is finite, the other is finite too. Finally, we generalize this equality
to every ϕ ∈ C∞

0 (Ω) and the result is proved.

4. Solutions for LN,∞–data

This section is devoted to solve problem

(30)







−div

(

Du

|Du|

)

+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω ,

for nonnegative data f ∈ LN,∞(Ω). We begin by introducing the notion of solution
to this problem.

Definition 4.1. Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u ∈ BV (Ω) satisfying
Dju = 0 is a weak solution of problem (30) if there exists z ∈ DM∞(Ω) with
‖z‖∞ ≤ 1 such that

−div z+ |Du| = f in D′(Ω) ,

(z, Du) = |Du| as measures in Ω ,

and

u
∣

∣

∂Ω
= 0 .

Remark 4.2. We explicitly remark that any solution to problem (30) satisfies

−div
(

e−uz
)

= e−uf

in the sense of distributions (see [28, Remark 3.4]).
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Theorem 4.3. There is a unique weak solution of problem (30).

Proof. The proof will be divided in several steps.

Step 1: Approximating problems.

The function f is in LN,∞(Ω) so, there exists a sequence {fn}∞n=1 in L∞(Ω) such
that fn converges to f in L1(Ω).
In [28] it is proved that there exists un ∈ BV (Ω) ∩ L∞(Ω), with Djun = 0 and
un ≥ 0, which is a solution to problem

(31)







−div

(

Dun
|Dun|

)

+ |Dun| = fn(x) in Ω ,

un = 0 on ∂Ω .

That is, there exists a vector field zn in DM∞(Ω) such that

(32) − div zn + |Dun| = fn in D′(Ω) ,

(33) (zn, Dun) = |Dun| as measures in Ω ,

and

(34) un
∣

∣

∂Ω
= 0 .

On account of Remark 4.2, it also holds

(35) − div (e−unzn) = e−unfn in D′(Ω) .

Step 2: BV –estimate.

Taking the function test Tk(un)
k in problem (31), we get

1

k

∫

Ω

(zn, DTk(un)) +
1

k

∫

Ω

Tk(un)
∗|Dun| =

∫

Ω

fn
Tk(un)

k
dx ≤

∫

Ω

fn dx ≤ C ,

where C does not depend on n. Since (zn, Dun) = |Dun|, it follows from Proposi-
tion 3.9 that (zn, DTk(un)) = |DTk(un)|, which is nonnegative. Thus

1

k

∫

Ω

Tk(un)
∗|Dun| ≤ C .

Then, letting k → 0 in the inequality above we arrive at
∫

Ω

|Dun| ≤ C .

Therefore, un is bounded in BV (Ω) and, up to a subsequence, un → u in L1(Ω)
and Dun converges to Du ∗–weakly as measures when n→ ∞.

Step 3: Vector field.

Now, we want to find a vector field z ∈ DM∞(Ω) with ‖z‖∞ ≤ 1 such that

−div z+ |Du| ≤ f in D′(Ω) .

The sequence {zn}∞n=1 is bounded in L∞(Ω;RN ) then, there exists z ∈ L∞(Ω;RN )
such that zn ⇀ z ∗–weakly in L∞(Ω;RN ). In addition, since ‖zn‖∞ ≤ 1 we get
‖z‖∞ ≤ 1.
Using ϕ ∈ C∞

0 (Ω) with ϕ ≥ 0 as a function test in (31), we arrive at
∫

Ω

zn · ∇ϕdx +

∫

Ω

ϕ |Dun| =
∫

Ω

fn ϕdx ,



THE 1–LAPLACIAN EQUATION WITH A TOTAL VARIATION TERM 17

and when we take n→ ∞, using (5) it becomes
∫

Ω

z · ∇ϕdx +

∫

Ω

ϕ |Du| ≤
∫

Ω

f ϕ dx .

Therefore,

−div z+ |Du| ≤ f in D′(Ω)

and −div z is a Radon measure. In addition, since −div zn = fn − |Dun| holds for
every n ∈ N, the sequence −div zn is bounded in the space of measures and, due to
−div zn converges to −div z, we deduce that −div z is a Radon measure with finite
total variation.
On the other hand, multiply (35) by e−unϕ, with ϕ ∈ C∞

0 (Ω), then Green’s formula
provides us

∫

Ω

e−unzn · ∇ϕdx =

∫

Ω

fne
−unϕdx ,

and letting n go to ∞ we get
∫

Ω

e−uz · ∇ϕdx =

∫

Ω

fe−uϕdx .

Namely,

(36) − div (e−uz) = fe−u , in D′(Ω) .

Step 4: Dju = 0.
In this step, we are adapting an argument used in [21], which relies on [5, Propo-

sition 3.4] and [15, Lemma 5.6] (see also [2, Proposition 2]). A previous result is
needed, namely, inequality (39) bellow. To prove (39), we begin by recalling

−div (e−unzn) = e−unfn in D′(Ω) ,

since un is the solution to problem (31). Using that un = Gk(un) +Tk(un), we can
write

−div (e−unzn) = −e−Gk(un)div (e−Tk(un)zn) + (e−un)∗|DGk(un)| ,
and so

(37)
e−Tk(un)fn = −div (e−Tk(un)zn) + (e−Tk(un))∗|DGk(un)|

= −div (e−Tk(un)zn) + e−k|DGk(un)| .
Applying first the chain rule and then [28, Proposition 2.3], we have

(38) |De−Tk(un)| = (e−Tk(un))∗|DTk(un)|
= (e−Tk(un))∗(zn, DTk(un)) = (e−Tk(un)zn, DTk(un)) .

Let ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0, due to (38) and (37), we get

∫

Ω

ϕ |De−Tk(un)| = 〈(e−Tk(un)zn, DTk(un)), ϕ〉

= −
∫

Ω

Tk(un)ϕdiv (e−Tk(un)zn)−
∫

Ω

Tk(un) e
−Tk(un) zn · ∇ϕdx

=

∫

Ω

Tk(un)ϕe
−Tk(un)fn dx−

∫

Ω

k e−kϕ |DGk(un)|−
∫

Ω

Tk(un) e
−Tk(un) zn·∇ϕdx .
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That is,
∫

Ω

ϕ |De−Tk(un)|+ k

ek

∫

Ω

ϕ |DGk(un)|

=

∫

Ω

Tk(un)ϕe
−Tk(un) fn dx−

∫

Ω

Tk(un) e
−Tk(un) zn · ∇ϕdx .

Now, we can take limits when n goes to ∞, and applying the lower semicontinuity
of the total variation, we arrive to the next inequality:

∫

Ω

ϕ |De−Tk(u)|+ k

ek

∫

Ω

ϕ |DGk(u)|

≤
∫

Ω

Tk(u)ϕe
−Tk(u) f dx−

∫

Ω

Tk(u) e
−Tk(u) z · ∇ϕdx .

Finally, letting k → ∞ it holds that
∫

Ω

ϕ |De−u| ≤
∫

Ω

uϕ e−u f dx−
∫

Ω

u e−u z · ∇ϕdx = 〈(e−uz, Du), ϕ〉 .

Therefore,

(39) |De−u| ≤ (e−uz, Du)

as measures in Ω.
On the other hand, we already know that

div (u e−uz) = (e−uz, Du) + u div (e−uz) ,

as measures and now we are considering the restriction on the set Ju. Since, by
(36) we have

u div (e−uz) = −u e−uf ∈ L1(Ω)

and |Ju| = 0, it follows that the measure u div (e−uz) vanishes on Ju, so that

div (u e−uz) Ju = (e−uz, Du) Ju ≥ |De−u| Ju .

Applying [21, Lemma 2.3 and Lemma 2.4], the following manipulations can be
performed on Ju:

(40)
div (u e−uz) = [ue−uz, νu]

+ − [ue−uz, νu]
−

= u+[e−uz, νu]
+ − u−[e−uz, νu]

− .

Moreover, we also deduce that, on Ju,

div
(

e−uz
)

= [e−uz, νu]
+ − [e−uz, νu]

−

and, due to
div

(

e−uz
)

∈ L1(Ω) and |Ju| = 0,

it follows that [e−uz, νu]
+ = [e−uz, νu]

−. We will write this common value as
[e−uz, νu]. With this notation, (40) becomes

div (u e−uz) = (u+ − u−)[e−uz, νu]

= (u+ − u−)e−u
+

[z, νu]

≤ (u+ − u−)e−u
+

Thus, we have seen that

(u+ − u−)e−u
+HN−1 Ju ≥ |De−u| Ju =

(

e−u
− − e−u

+)HN−1 Ju .
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Hence, for HN−1–almost all x ∈ Ju, we may use the Mean Value Theorem to get

(u(x)+ − u(x)−)e−u(x)
+ ≥ e−u(x)

− − e−u(x)
+

= (u(x)+ − u(x)−)e−w(x)

with u(x)− < w(x) < u(x)+. Therefore, it yields u(x)+ = u(x)−. Since this
argument holds for HN−1–almost every point x ∈ Ju, we get

Dju = 0 .

Step 5: u is a solution to problem (30).
To finish the proof, it remains to check that u satisfies the three conditions of the

definition of solution. The previous step will be essential in this checking. Indeed,
it allows us to perform the following calculations:

fe−u = −div (e−uz) = −(z, D(e−u)∗)− (e−u)∗div z

≤ |De−u|+ fe−u − (e−u)∗|Du|
= fe−u .

Therefore, the inequality becomes equality and so

(41) − div z+ |Du| = f in D′(Ω) .

To prove that (z, Du) = |Du| as measures in Ω, we just take into account (39), [28,
Proposition 2.3] and the chain rule to get

|D(e−u)| ≤ (e−uz, Du) = (e−u)∗(z, Du) ≤ (e−u)∗|Du| = |D(e−u)| ,
from where the equality (e−u)∗(z, Du) = (e−u)∗|Du| as measures follows. We
conclude that (z, Du) = |Du| as measures.
Now, we will prove that u(x) = 0 for HN−1–almost all x ∈ ∂Ω. To do that, we use
the test function Tk(un) in problem (31), so that

∫

Ω

(zn, DTk(un)) +

∫

Ω

(Tk(un))
∗|Dun| =

∫

Ω

f Tk(un) dx .

Defining the auxiliary function Jk by

Jk(s) =

∫ s

0

Tk(σ) dσ =

{

s2

2 if 0 ≤ s ≤ k ,

ks− k2

2 if k > s ,

we obtain
∫

Ω

|DTk(un)|+
∫

∂Ω

|Tk(un)| dHN−1 +

∫

Ω

|DJk(un)|+
∫

∂Ω

|Jk(un)| dHN−1

=

∫

Ω

f Tk(un) dx .

Taking into account that Jk(un) → Jk(u) in L1(Ω), we let n → ∞ and applying
the lower semicontinuity of functional (6) we arrive at

∫

Ω

|DTk(u)|+
∫

∂Ω

|Tk(u)| dHN−1 +

∫

Ω

|DJk(u)|+
∫

∂Ω

|Jk(u)| dHN−1

≤
∫

Ω

f Tk(u) dx ≤
∫

Ω

fu dx .
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Letting now k → ∞ we obtain
∫

Ω

|Du|+
∫

∂Ω

|u| dHN−1 +

∫

Ω

∣

∣

∣
D
(u2

2

)
∣

∣

∣
+

∫

∂Ω

u2

2
dHN−1 ≤

∫

Ω

fu dx .

On the other hand, Green’s formula implies
∫

Ω

fu dx = −
∫

Ω

u∗div z+

∫

Ω

u∗|Du| =
∫

Ω

|Du| −
∫

∂Ω

u [z, ν] dHN−1 +

∫

Ω

u∗|Du| .

Then
∫

∂Ω

(|u|+ u[z, ν]) dHN−1 +

∫

∂Ω

u2

2
dHN−1 ≤ 0

and for that, u = 0 in ∂Ω.
Now, using the same argument which is used in [28] we prove that there is a unique
solution to our problem.

Proposition 4.4. The solution u to problem (30) is trivial if and only if the func-
tion f is such that ‖f‖W−1,∞(Ω) ≤ 1.

Proof. Assume first that ‖f‖W−1,∞(Ω) ≤ 1 and let u ∈ BV (Ω) be the solution
to problem (30). Using the test function Tk(u) in that problem we obtain

(42)

∫

Ω

(z, DTk(u)) +

∫

Ω

Tk(u)
∗|Du| =

∫

Ω

f Tk(u) dx ≤
∫

Ω

fu dx .

Now, taking into account that
∫

Ω
Tk(u)

∗|Du| ≥ 0, it yields
∫

Ω

(z, DTk(u)) =

∫

Ω

|DTk(u)| ≤
∫

Ω

fu dx .

Finally, letting k → ∞ in (42) and using Hölder and Sobolev’s inequalities we arrive
at

∫

Ω

|Du|+
∫

Ω

u∗|Du| ≤
∫

Ω

fu dx ≤ ‖f‖W−1,∞

∫

Ω

|Du| ≤
∫

Ω

|Du| .

Then,
∫

Ω
u∗|Du| = 0 and thus, u∗ = 0 in Ω and we conclude u(x) = 0 for almost

every x ∈ Ω.
Now, we suppose that

‖f‖W−1,∞(Ω) = sup

{
∫

Ω

ϕf dx :

∫

Ω

|∇ϕ| dx = 1, ϕ ∈W 1,1
0 (Ω)

}

> 1 ,

that is, there exists ψ ∈W 1,1
0 (Ω) such that

∫

Ω

|∇ψ| dx = 1 and

∫

Ω

ψf dx > 1 .

Finally, we use ψ as a test function in (30), so we get
∫

Ω

ψ |Du| =
∫

Ω

ψ f dx−
∫

Ω

z · ∇ψ dx >
∫

Ω

|∇ψ| dx −
∫

Ω

z · ∇ψ dx ≥ 0 .

Therefore, |Du| 6= 0 and so u 6= 0 in Ω.
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Remark 4.5. This phenomenon of trivial solutions for non–trivial data is usual
in problems involving the 1–Laplacian. It is worth comparing the above result
with [29, Theorem 4.1] (see also [30, Theorem 4.2]), where the Dirichlet problem

for the equation −div
(

Du
|Du|

)

= f(x) is studied. Indeed, for such a problem it is

seen that a datum satisfying ‖f‖W−1,∞(Ω) < 1 implies a trivial solution, while no
BV –solution can exist for ‖f‖W−1,∞(Ω) > 1. Obviously, the most interesting case
is when ‖f‖W−1,∞(Ω) = 1; then non–trivial solutions can be found for some data
but the trivial solution always exists. In our case, this dichotomy does not hold:
for ‖f‖W−1,∞(Ω) = 1, only trivial solutions exist.

To study the summability of the solution to problem (30), we need the following
technical result which will also be useful in Sections 6 and 7.

Lemma 4.6. Let u ∈ BV (Ω) with Dju = 0 and let z be a vector field with ‖z‖∞ ≤ 1
and div z = µ + f , where µ is a positive measure. If G is an increasing and C1

function and lim
s→∞

G(s) = ∞, then, (z, Du) = |Du| implies (z, DG(u)) = |DG(u)|.

Proof. Since (z, Du) = |Du|, we have (z, DTk(u)) = |DTk(u)| for all positive
k. Using [28, Proposition 2.2] we get (z, DG(Tk(u))) = |DG(Tk(u))| for all k > 0.
Now, since G(Tk(u)) = TG(k)G(u) and lim

s→∞
G(s) = ∞ we apply Proposition 3.9 to

arrive at (z, DG(u)) = |DG(u)|.

Proposition 4.7. If u is the solution to problem (30), then un ∈ BV (Ω) for all
n ∈ N. Consequently, u ∈ Lq(Ω) for all 1 ≤ q <∞.

Proof. We will prove the result by induction. If u is the solution of problem
(30), then choosing the solution itself as test function in problem (30), we get

∫

Ω

|Du|+
∫

Ω

u∗ |Du| =
∫

Ω

f u dx .

Since the first integral is positive, we have that u∗ |Du| is a finite measure. Thus,
by Theorem 3.10 we know that u2 ∈ BV (Ω) and 2 u∗ |Du| = |Du2|.
Now, set n ∈ N and assume that un ∈ BV (Ω). Taking the test function un in (30),
it yields

∫

Ω

(z, Dun) +

∫

Ω

(

un
)∗|Du| =

∫

Ω

fun dx .

By Lemma 4.6 we have (z, Dun) = |Dun| ≥ 0, then the integral
∫

Ω

(

un
)∗|Du| is

bounded and consequently un+1 ∈ BV (Ω) by Theorem (3.10).

Remark 4.8. If f ∈ Lm(Ω) for m > N , then the solution to problem (30) belongs
to L∞(Ω) (see [28]).

5. Radial solutions

In this section we will show some radial solutions in Ω = BR(0) with R > 0
for particular data in LN,∞(Ω). In [28, Section 4], some examples of bounded
solutions for data f ∈ Lq(Ω), with q > N , can be found. In Example 5.1 we
show bounded solutions for f ∈ LN,∞(Ω)\LN(Ω), while in Example 5.3 we show
unbounded solutions. Therefore, unbounded solutions really occur.

Throughout this section, we will take u(x) = h(|x|) with h(r) ≥ 0, h(R) = 0
and h′(r) ≤ 0. To deal with the examples, we will consider two zones. If h′(r) < 0,
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we know that z(x) = Du
|Du| = − x

|x| , so that −div z(x) = N−1
|x| . In the other case,

h′(r) = 0 and then, the solution is constant and we only have to determine the
radial vector field z(x) = ξ(|x|)x, so that div z(x) = ξ′(|x|)|x| + Nξ(|x|). The
continuity of the vector field is always searched, otherwise it would has a jump and
as a consequence, the measure div z would have a singular part concentrated on a
surface of the form |x| = ̺, and measure |Du| would also have that singular part.
Hence, it would induce jumps on the solution.

Example 5.1.






−div

(

Du

|Du|

)

+ |Du| = N − 1

|x| +
λ

|x|q in BR(0) ,

u = 0 on ∂BR(0) ,

with 0 < q < 1 and λ > 0.

First, we assume that u is constant in a ring: h′(r) = 0 for all ρ1 < r < ρ2, and
we consider the vector field z(x) = x ξ(|x|). Then, denoting r = |x|, the equation
yields

−(rξ′(r) +Nξ(r)) =
N − 1

r
+
λ

rq
,

which is equivalent to

−(rN ξ(r))′ = (N − 1) rN−2 + λ rN−1−q .

Therefore, solving the equation we get the vector field

(43) z(x) = −x |x|−1 − λ

N − q
x |x|−q + Cx |x|−N , ρ1 < |x| < ρ2 ,

for some constant C. We next see under what conditions we can find a value for
this constant satisfying ‖z‖∞ ≤ 1. To this end, we will distinguished three cases.

(1) Assuming that 0 < ρ1 < ρ2 < R (and that z is continuous), if |x| = ρ1,
then

−x |x|−1 = −x |x|−1 − λ

N − q
x |x|−q + Cx |x|−N ,

and it implies λ
N−qx |x|−q = Cx |x|−N . Thus, we deduce that C = λ

N−qρ
N−q
1 .

The same argument leads to C = λ
N−qρ

N−q
2 when |x| = ρ2. Therefore,

ρ1 = ρ2 and we have got a contradiction.
(2) If we assume 0 < ρ1 < ρ2 = R, then we may argue as above and find

C = λ
N−qρ

N−q
1 . Substituting in (43), we get

z(x) = −x |x|−1 − λ

N − q
x |x|−q + λ

N − q
ρN−q
1 x |x|−N .

Thus, condition ‖z‖∞ ≤ 1 yields

∣

∣

∣
1 +

λ

N − q
|x|1−q − λ

N − q
ρN−q
1 |x|1−N

∣

∣

∣
≤ 1 .

Nevertheless, this fact does not hold since 1+ λ
N−q r

1−q− λ
N−qρ

N−q
1 r1−N >

1 for r > ρ1.
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(3) If we assume 0 = ρ1 < ρ2 < R, then z ∈ L∞(Ω;RN ) implies C = 0. So
(43) becomes

z(x) = −x |x|−1 − λ

N − q
x |x|−q

and it follows from ‖z‖∞ ≤ 1 that λ
N−qx |x|−q vanishes. Hence, λ = 0 and

a contradiction is obtained.

In any case we get a contradiction, so that h′(r) = 0 cannot hold on ]ρ1, ρ2[. Hence,
we take z(x) = − x

|x| . Then, the equation becomes

−h′(r) = λ

rq
,

and the solution satisfying the boundary condition is given by

u(x) =
λ

1− q
(R1−q − |x|1−q) .

Remark 5.2. We may perform similar computations to those of the previous ex-
ample to study problem







−div

(

Du

|Du|

)

+ |Du| = N − 1

|x| + λ in BR(0) ,

u = 0 on ∂BR(0) ,

with λ > 0. Then the solution is given by u(x) = λ(R − r), with associated vector
field z(x) = − x

|x| .

Example 5.3. Consider 0 < ρ ≤ R.






−div

(

Du

|Du|

)

+ |Du| = λ

|x|
χ
Bρ(0)(x) in BR(0) ,

u = 0 on ∂BR(0) ,

with λ > 0.

Two cases according to the value of λ will be distinguished:

• Case 0 < λ ≤ N − 1.

Assuming h′(r) < 0 for any 0 ≤ r < R, the vector field is given by z(x) = − x
|x| and

the equation becomes
N − 1

r
− h′(r) =

λ

r
χ
]0,ρ[(r) .

When ρ < R, we have to distinguish two zones: where ρ ≤ r ≤ R in which
we get h′(r) = (N − 1)/r, and where 0 ≤ r < ρ in which we arrive at h′(r) =
(N − 1 − λ)/r. Both expressions are nonnegative and so they are in contradiction
with our hypothesis. We arrive at the same contradiction when ρ = R. Therefore,
h′(r) = 0 holds for all 0 ≤ r < R and it follows h(r) = 0 for all 0 ≤ r < R due to
the boundary condition. To obtain the field z(x) = ξ(|x|)x we have to consider the
equation

−(rNξ(r))′ = λ rN−2χ
]0,ρ[(r) .

If 0 ≤ r < ρ we get the field ξ(r) = −λ/(N − 1) r−1 + Cr−N but since we ask
‖z‖∞ ≤ 1, then C = 0. On the other hand, if ρ ≤ r < R we arrive at ξ(r) = −Cr−N .
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In order to determine the value of C, we demand the continuity of ξ and then the
field becomes

z(x) =















− λ

N − 1

x

|x| if 0 ≤ r < ρ ,

−λρ
N−1

N − 1

x

|x|N if ρ ≤ r < R .

• Case λ > N − 1.

In the region 0 ≤ r < ρ, we may argue as in the above example and have a
contradiction when h′(r) = 0. So h′(r) < 0 and the solution is given, up to
constants, by

u(x) = (N − 1− λ) log
( |x|
ρ

)

with the vector field z(x) = −x/|x|. On the other hand, if ρ < r < R, we have a
contradiction when h′(r) < 0, wherewith the solution is u(x) = 0 and the vector
field is given by ξ(r) = −Cr−N . Since we have ‖z‖∞ = 1 when 0 ≤ r < ρ, in order
to preserve the continuity we require

1 = |z (ρ)| = Cρ−Nρ .

Therefore, the vector field becomes z(x) = −ρN−1 x
|x|N and the solution is given by

u(x) =

{

(N − 1− λ) log
( |x|
ρ

)

if 0 ≤ r ≤ ρ ,

0 if ρ < r < R .

Remark 5.4. An important particular case of the previous example is the problem

(44)







−div

(

Du

|Du|

)

+ |Du| = λ
1

|x| in BR(0) ,

u = 0 on ∂BR(0) ,

with λ > 0. We have seen that the solution is given by

u(x) =

{

0 when 0 < λ ≤ N − 1 ,

(N − 1− λ) log
( |x|
R

)

when λ > N − 1 .

Problem (44) can be seen as the limit case of problems with a Hardy–type
potential, namely,







−div
(

|∇u|p−2∇u
)

+ |∇u|p = λ
up−1

|x|p in BR(0) ,

u = 0 on ∂BR(0) ,

Problems with Hardy–type potential received much attention in recent years. We
point out that in [3] has been studied problem (44) with p = 2 showing the regu-
larizing effect produced by the gradient term as absorption.

6. Changing the unknown: More general gradient terms

From now on, we will generalize problem (30) adding a continuous function
g : [0,∞[→ R in the gradient term:

(45)







−div

(

Dv

|Dv|

)

+ g(v) |Dv| = f(x) in Ω ,

v = 0 on ∂Ω .
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In this section, this problem will be studied for a function g that will result in
standard cases.

The existence and uniqueness of solutions to problem (45) depend on the prop-
erties of the function g, and the definition of solution to a problem may depend of
the case we are studying. In any case, we have to give a sense to g(v)|Dv|, since
the meaning of that term depends on the representative of g(v) we are actually
considering. First of all, we will assume that a solution satisfies Djv = 0 and then
we will take g(v) as the precise representative g(v)∗ = g(v∗), which is integrable
with respect to the measure |Dv|.

6.1. Bounded g. In this subsection, let g be a continuous and bounded function
such that there exists m > 0 with g(s) ≥ m for all s ≥ 0. We define the function

G(s) =

∫ s

0

g(σ) dσ .

With this notation, the term g(v)|Dv| in the equation means |DG(v)|.

Definition 6.1. We say that a function v is a weak solution to problem (45) with
g defined as above, if v ∈ BV (Ω) with Djv = 0 and there exists a field z ∈ DM∞(Ω)
with ‖z‖∞ ≤ 1 such that

−div z+ g(v)∗|Dv| = f in D′(Ω) ,

(z, Dv) = |Dv| as measures in Ω ,

and

v
∣

∣

∂Ω
= 0 .

Theorem 6.2. Let u be the solution to problem (30). Assume that g is a continuous
real function such that 0 < m ≤ g(s) for all s ≥ 0 and let u = G(v). Then, v is a
solution to problem (45).

Proof. Since the function u is the solution of problem (30), there exists a vector
field z ∈ DM∞(Ω) such that

(46) − div z+ |Du| = f in D′(Ω) ,

(z, Du) = |Du| as measures in Ω ,

and

u
∣

∣

∂Ω
= 0 .

By the properties of g, the function G is increasing and the derivative of G−1 is
bounded. Then, we apply the chain rule to get v = G−1(u) ∈ BV (Ω). We also
deduce Djv = 0 and

v
∣

∣

∂Ω
= G−1(u)

∣

∣

∂Ω
= 0 .

Moreover, it holds by Lemma 4.6:

(z, Dv) = |Dv| as measures in Ω .

Finally, making the substitution u = G(v) in (46) and applying the chain rule we
get

−div z+ g(v)∗|Dv| = f in D′(Ω) .



26 M. LATORRE AND S. SEGURA DE LEÓN

Corollary 6.3. If v is a solution to problem (45) with g continuous, bounded and
such that g(s) ≥ m > 0 for all s ≥ 0, then, u = G(v) is the solution to problem
(30).

Proof. Applying the same argument which is used in Theorem 6.2 and keeping
it in mind that g is bounded and G is increasing, the result is proved.

Theorem 6.4. There exists a unique solution to problem (45) with g continuous,
bounded and such that g(s) ≥ m > 0 for all s ≥ 0.

Proof. Assuming there are two solutions v1 and v2 of problem (45), by the
Corollary 6.3, G(v1) and G(v2) are solutions to problem (30). Thus, G(v1) = G(v2)
and since G is injective we get v1 = v2.

6.2. Unbounded g. In this subsection we will prove an existence and uniqueness
result to problem (45) assuming g(s) ≥ m > 0 be an unbounded function.

Theorem 6.5. There is a unique solution to problem (45) with g continuous and
such that g(s) ≥ m > 0 for all s ≥ 0.

Proof. First of all, we consider the approximate problem

(47)







−div

(

Dvk
|Dvk|

)

+ Tk(g(vk))|Dvk| = f(x) in Ω ,

vk = 0 on ∂Ω .

By Theorem 6.4, it has a unique solution. Then, there exists vk ∈ BV (Ω) with
Djvk = 0 and also a vector field zk ∈ DM∞(Ω) such that ‖zk‖∞ ≤ 1 and

−div zk + Tk(g(vk))
∗|Dvk| = f in D′(Ω) ,

(zk, Dvk) = |Dvk| as measures ,

and
vk
∣

∣ = 0 HN−1–a.e. in ∂Ω .

First, we take the test function Th(vk)
h in problem (47) and we get

1

h

∫

Ω

(zk, DTh(vk)) +

∫

Ω

Tk(g(vk))
∗ Th(vk)

∗

h
|Dvk| =

∫

Ω

f
Th(vk)

h
dx ≤

∫

Ω

f dx .

Keeping in mind that the first integral is positive (by Lemma 4.6), we can take
limits in the second integral when h→ 0 and so we obtain

(48)

∫

Ω

Tk(g(vk))
∗|Dvk| ≤

∫

Ω

f dx .

Since Tk(g(vk)) is bigger than m, it yields

m

∫

Ω

|Dvk| ≤
∫

Ω

f dx .

Therefore, vk is bounded in BV (Ω) and there exists v ∈ BV (Ω) such that, up to
subsequences, vk → v in L1(Ω) and a.e.. Moreover, Dvk → Dv ∗–weak as measures
when k → ∞.
To prove Djv = 0 we use the same argument which appears in Theorem 4.3, so we
get DjG(v) = 0 and then we deduce that Djv = 0. On the other hand, we define
the function

Fk(s) :=

∫ s

0

Tk(g(σ)) dσ .
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Using (48) and the chain rule we have the next inequality:
∫

Ω

|DFk(vk)| ≤
∫

Ω

f dx .

which implies that the sequence Fk(vk) is bounded in BV (Ω) and converges in
L1(Ω) to G(v). Now, denoting uk = Fk(vk) and u = G(v) we get that uk converges
to u in L1(Ω) and

∫

Ω

|Duk| ≤
∫

Ω

f dx .

Therefore, it is true that u ∈ BV (Ω). Moreover, keeping in mind Theorem 3.10,
we get |Du| = g(v)∗|Dv| as well.
By Corollary 6.3, uk is the solution to







−div

(

Duk
|Duk|

)

+ |Duk| = f(x) in Ω ,

uk = 0 on ∂Ω .

The same argument used in the proof of Theorem 4.3 works for determining that
u is the solution to







−div

(

Du

|Du|

)

+ |Du| = f(x) in Ω ,

u = 0 on ∂Ω .

Finally, since g(s) ≥ m > 0 for all s ≥ 0 and applying Theorem 6.2, we deduce that
v is the solution to problem (45).

Proposition 6.6. The solution v to problem (45) satisfies v ∈ Lq(Ω) for all 1 ≤
q <∞.

Proof. The proof follows the argument of the proof of Proposition 4.7, on account
of g(s) ≥ m > 0 for all s ≥ 0.

7. A non standard case: g touches the axis

In this section we assume that g is a continuous, bounded and non integrable
function with g(s) > 0 for almost every s ≥ 0. In this case, G is increasing but
(G−1)′ may be unbounded.

First, we analyze the case when there exist m, σ > 0 such that g(s) ≥ m > 0 for
all s ≥ σ. Observe that this condition resembles Condition (1.7) in [1].

Theorem 7.1. Let g be as above. Then, there exists a solution to problem (45).

Proof. Let vn be the solution to the approximating problem






−div

(

Dvn
|Dvn|

)

+

(

g(vn) +
1

n

)

|Dvn| = f in Ω ,

vn = 0 on ∂Ω ,

with the associated vector field zn. Using the test function Tk(vn−Tσ(vn))
k in that

problem we get
∫

{vn>σ}

g(vn)
∗Tk(vn − Tσ(vn))

∗

k
|Dvn| ≤

∫

{vn>σ}

f dx ;
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and taking limits when k → 0+ it yields
∫

{vn>σ}

g(vn)
∗|Dvn| ≤

∫

{vn>σ}

f dx .

Since there exist m > 0 such that g(s) ≥ m for all s ≥ σ, then, the previous
inequality becomes:

(49)

∫

{vn>σ}

|Dvn| ≤
1

m

∫

Ω

f dx .

Now, we use the test function Tσ(vn) in the same problem, so we get

(50)

∫

{vn≤σ}

|Dvn| ≤
∫

Ω

f Tσ(un) dx ≤ σ

∫

Ω

f dx .

Finally, with (49) and (50) we have
∫

Ω

|Dvn| ≤
(

σ +
1

m

)
∫

Ω

f dx for all n ∈ N ,

that is, the sequence (vn)n is bounded in BV (Ω) and this implies that, up to
subsequences, there exists v ∈ BV (Ω) with vn → v in L1(Ω) and a.e. as well
as Dvn → Dv ∗–weak in the sense of measures. We conclude the proof using
arguments of Theorem 4.3.

For a general function g we have to change the definition of solution. We will
show in Example 7.4 that Definition 6.1 does not really work.

Definition 7.2. Let g be a continuous, bounded and non integrable function with
g(s) > 0 for almost every s ≥ 0. We say that a function v is a weak solution to
problem (45) if v(x) < ∞ a.e. in Ω, G(v) ∈ BV (Ω) with DjG(v) = 0 and there
exists a field z ∈ DM∞(Ω) with ‖z‖∞ ≤ 1 such that

−div z+ g(v)∗|Dv| = f in D′(Ω) ,

(z, DG(v)) = |DG(v)| as measures in Ω ,

and
v
∣

∣

∂Ω
= 0 ,

where the function G is defined by

G(s) =

∫ s

0

g(σ) dσ .

Theorem 7.3. Assume that the function g is continuous, bounded and non inte-
grable with g(s) > 0 for almost every s ∈ R. Then, there exists a unique solution
to problem (45) in the sense of Definition 7.2.

Proof. The approximating problem

(51)







−div

(

Dvn
|Dvn|

)

+

(

g(vn) +
1

n

)

|Dvn| = f(x) in Ω ,

vn = 0 on ∂Ω ,

has a unique solution for every n ∈ N because of Theorem 6.4. That is, there exists
a vector field zn ∈ DM∞(Ω) with ‖zn‖∞ ≤ 1 and a function vn ∈ BV (Ω) with
Djvn = 0 and such that

(52) − div zn +

(

g(vn) +
1

n

)∗

|Dvn| = f in D′(Ω) ,
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(zn, DGn(vn)) = |DGn(vn)| as measures in Ω ,

and

vn
∣

∣

∂Ω
= 0 ,

where we denote

Gn(s) =

∫ s

0

(

g(σ) +
1

n

)

dσ .

We will show that the limit of the sequence (vn)n is the solution to problem (45).

First of all, we take the test function Tk(vn)
k in problem (51) and we arrive at

1

k

∫

Ω

Tk(vn)
∗|DGn(vn)| ≤

∫

Ω

f dx

for every k. Now, letting k → 0 and using Fatou’s Theorem we get
∫

{vn 6=0}

|DGn(vn)| ≤
∫

Ω

f dx .

In addition, since Djvn = 0 it follows that Dvn = 0 almost everywhere in {vn = 0}.
Thus,

∫

Ω

|DGn(vn)| ≤
∫

Ω

f dx ,

and so Gn(vn) is bounded in BV (Ω). This implies that, up to subsequences, there
exist w such that Gn(vn) → w in L1(Ω) and a.e., and also DGn(vn) → Dw ∗–weak
in the sense of measures. We denote v = G−1(w), which is finite a.e..
In what follows, we apply the same argument used in Theorem 4.3 with minor
modifications, hence we just sketch it. We get zn ⇀ z ∗–weakly in L∞(Ω) with
‖z‖∞ ≤ 1 and −div z is a Radon measure with finite total variation. Moreover,
using the test function e−Gn(vn)ϕ with ϕ ∈ C∞

0 (Ω) in problem (51) and letting n
go to ∞, it leads −div (e−G(v)z) = e−G(v)f in the sense of distributions. The next
step is to show, with the same argument used in Theorem 4.3, that DjG(v) = 0
and deduce Djv = 0. Then is easy to obtain

−div z+ |DG(v)| = f in D′(Ω)

in the sense of distributions and

(z, DG(v)) = |DG(v)|
as measures. Moreover, we take Tk(Gn(vn)) in (51) to arrive at G(v)

∣

∣

∂Ω
= 0 and

then, we also get

v
∣

∣

∂Ω
= 0 .

The uniqueness can be proved as in [28].

To remark the necessity to have a new definition to the concept of solution, we
show in the next example that the solution to (45) when g is such that lim

s→∞
g(s) = 0

is not in BV (Ω).

Example 7.4. The solution to problem

(53)







−div

(

Dv

|Dv|

)

+
1

1 + v
|Dv| = λ

|x| in Ω ,

v = 0 on ∂Ω ,

is not in BV (Ω) for λ big enough.
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First, we will solve the related problem

(54)







−div

(

Du

|Du|

)

+ |Du| = λ

|x| in Ω ,

u = 0 on ∂Ω ,

and then, using the inverse function of

G(s) =

∫ s

0

1

1 + σ
dσ = log(1 + s)

we will get the solution v.
Due to Example 5.3 we know that, for λ > N − 1, the solution to problem (54) is
given by u(x) = (N − 1 − λ) log(|x|/R) with the associated field z(x) = −x/|x|.
Moreover, the inverse of function G is given by G−1(s) = es − 1. Therefore, the
solution to (53) is given by

v(x) = G−1(u(x)) =

( |x|
R

)N−1−λ

− 1

when λ > N − 1. Nevertheless, v is not in BV (Ω) when N < λ/2 + 1 because in

that case, |Du| = λ−N + 1

RN−1−λ
|x|N−2−λ is not integrable.

8. Odd cases

In this last section we will show some cases where the properties of the function
g does not provide uniqueness, existence or regularity of solutions to problem (45).

8.1. First case. First of all, we suppose the function g is integrable. With that
condition about g, it is the function f who determines the existence or absence of
solution.

Theorem 8.1. Let f ∈ LN,∞(Ω) with f ≥ 0 and we consider problem (45) with
g ∈ L1([0,∞[). Then,

(i) if ‖f‖W 1,−∞(Ω) ≤ 1, the trivial solution holds;

(ii) if ‖f‖W 1,−∞(Ω) > eG(∞), does not exist any solution;

with G(∞) = sup {G(t) : s ∈]0,∞[}.

Proof. The first point is deduced following the proof of Proposition 4.4.
On the other hand, let ϕ ∈W 1,1

0 (Ω), we use −div (e−G(v)z) = e−G(v)f to get

e−G(∞)

∫

Ω

f |ϕ| dx ≤
∫

Ω

e−G(u)f |ϕ| dx =

∫

Ω

e−G(u)z · ∇|ϕ| dx ≤
∫

Ω

|∇ϕ| dx .

Then, if ‖f‖W−1,∞(Ω) > eG(∞), cannot exist any solution to problem (45).

Remark 8.2. Since we have shown in (18) that

‖f‖W−1,∞(Ω) ≤ SN‖f‖LN,∞(Ω) ,

Theorem 8.1 implies the following fact:

(i) If ‖f‖LN,∞(Ω) ≤ S−1
N , the trivial solution holds.
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Remark 8.3. One may wonder what happens when 1 < ‖f‖W−1,∞(Ω) ≤ eG(∞).
Consider the approximate solutions vn to problem (51) and let w satisfyG(vn) → w.
Then w ∈ [0, G(∞)]. In particular, if w ∈ [0, G(∞)[, the function v = G−1(w) is
finite a.e. in Ω and is the solution to problem (45). However, w can be equal to
G(∞) in a set of positive measure and so v is infinite in the same set. We conclude
that v, in this case, is not solution.

Example 8.4. Problem

(55)







−div

(

Dv

|Dv|

)

+
1

1 + v2
|Dv| = N − 1

|x| + λ in BR(0) ,

v = 0 on ∂BR(0) ,

has not radial solutions when λ is large enough.

Assuming there exists a radial solution u(x) = h(|x|) with h : [0, R] → R is
such that h(r) ≥ 0, h(R) = 0 and h′(r) ≤ 0, we will get a contradiction. First,
we suppose that h′(r) = 0 for ρ1 < r < ρ2 and, reasoning as in Example 5.1, we
get a contradiction. Therefore, we only can have h′(r) < 0 for all 0 ≤ r < R. In
this case, we know that the vector field is given by z(x) = −x/|x| and the equation
becomes

−g(h(r))h′(r) = λ ,

which is equivalent to (G(h(r))′ = −λ. Then, the solution is given by G(h(r)) =
λ(R− r).
On the other hand, we know that G(s) ∈ [0, π2 [ because

G(s) =

∫ s

0

g(σ) dσ =

∫ s

0

1

1 + σ2
dσ = arctan s .

Thus, we have a radial solution if λ <
π

2R
. When λ =

π

2R
, we also obtain a radial

solution, which is given by

u(x) = tan
(

λ(R− r)
)

.

8.2. Second case. Now, we will take the function g : [0,∞[→ R such that g(s) = 0
when s ∈ [0, ℓ] and g(s) > 0 for all s > ℓ. We assume g 6∈ L1([0,∞[) as well.

Remark 8.5. With g defined as above, there is not uniqueness of solutions.
On the one hand, if ‖f‖LN,∞(Ω) ≤ S−1

N and u ∈ BV (Ω) satisfies u
∣

∣

∂Ω
= 0, then

the function Tℓ(u) is a solution to problem (45). Thus, there is not uniqueness in
any way.

On the other hand, if ‖f‖LN,∞(Ω) > S−1
N we define

h(s) = g(s+ ℓ)

and let w be a solution to problem

(56)







−div

(

Dw

|Dw|

)

+ h(w) |Dw| = f in Ω ,

w = 0 on ∂Ω ,

with associated field z. Therefore, v(x) = w(x) + ℓ is a solution to problem (45)
with the same vector field z.
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Moreover, let ψ : [0, ℓ+1] → [ℓ, ℓ+1] be an increasing and bijective C1–function
such that ψ′(ℓ+ 1) = 1. Then we consider

h(s) =

{

ψ′(s)g(ψ(s)) if 0 ≤ s ≤ ℓ+ 1 ,
g(s) if ℓ+ 1 < s ,

and let w be a solution to problem (56) with h defined as above. Therefore, the
function

v(x) =

{

ψ(w(x)) if 0 ≤ w(x) ≤ ℓ+ 1 ,
w(x) if ℓ + 1 < w(x) ,

is a solution to (45), as we can see as follows. It is straightforward that the equation
holds in D′(Ω) and v

∣

∣

∂Ω
= 0. We only have to see that (z, DG(v)) = |DG(v)| as

measures in Ω. If 0 ≤ s ≤ ℓ+ 1 we get

H(s) =

∫ s

0

h(σ) dσ =

∫ s

0

ψ′(σ)g(ψ(σ)) dσ =

∫ ψ(s)

0

g(σ) dσ = G(ψ(s)) ,

H(ℓ+ 1) = G(ψ(ℓ + 1)) = G(ℓ + 1) ,

and for s > ℓ+ 1 we have

H(s) = H(ℓ+ 1) +

∫ s

ℓ+1

h(σ) dσ = G(ℓ + 1) +

∫ s

ℓ+1

g(σ) dσ = G(s) .

Therefore, DG(v(x)) = DH(w(x)) and we conclude (z, DG(v)) = |DG(v)| as mea-
sures in Ω.

Example 8.6. The solution to problem

(57)







−div

(

Du

|Du|

)

+ g(u)|Du| = N

|x| in Ω ,

u = 0 on ∂Ω ,

with

g(s) =

{

0 if s ≤ a ,
s− a if a < s ,

for a > 0 does not vanish on ∂Ω.

We define

G(s) =

∫ s

0

g(σ) dσ =







0 if 0 ≤ s ≤ a ,
a

2
+
s2

2
− a s if a < s .

It is easy to prove that

u(x) = h(|x|) = h(r) = G−1
(

− log
( r

R

))

with z = x
|x| is such that (z, Du) = |Du| as measures in Ω and −div z+g(u)∗|Du| =

N
r in D′(Ω). However,

h(R) = G−1(0) = 1 .

Although the boundary condition is not true, the solution achieves the boundary
weakly (see [7]), that is

[z, ν] = − x

|x|
x

|x| = −1 = − sign (u) .
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8.3. Third case. Finally, let 0 < a < b, we will take g a function with g(s) = 0
when s ∈ [a, b] and g(s) > 0 for all s < a and s > b. Moreover we assume that
g 6∈ L1([0,∞[).

Remark 8.7. We will use a similar argument to the previous one to show that
there is not uniqueness of solution to problem (45) with function g defined as above.

Let ψ : [0, b] → [0, a] be an increasing and bijective C1–function. Now, we define

h(s) =

{

ψ′(s)g(ψ(s)) if 0 ≤ s ≤ b ,
g(s) if b < s .

If w is a solution to problem (56), then, we have that

v(x) =

{

ψ(w(x)) if 0 ≤ w(x) ≤ b ,
w(x) if b < w(x) ,

is a solution to the original problem (45) because the equation holds in D′(Ω) and
also w

∣

∣

∂Ω
= 0. In addition, for 0 ≤ s ≤ b we have

H(s) =

∫ s

0

h(σ) dσ =

∫ s

0

ψ′(σ)g(ψ(σ)) dσ =

∫ ψ(s)

0

g(σ) dσ = G(ψ(s)) ,

H(b) = G(ψ(b)) = G(a) = G(b)

and for s > b we get

H(s) = H(b) +

∫ s

b

h(σ) dσ = G(b) +

∫ s

b

g(σ) dσ = G(s) .

Therefore, we have proved the remaining condition: (z, DG(v)) = |DG(v)| as mea-
sures in Ω.

Example 8.8. Problem

(58)







−div

(

Du

|Du|

)

+ g(u)|Du| = N

|x| in Ω ,

u = 0 on ∂Ω ,

with

g(s) =







a− s if s < a ,
0 if a ≤ s ≤ b ,
s− b if b < s ,

where 0 < a < b, has a discontinuous solution.

We define

G(s) =

∫ s

0

g(σ) dσ =



























−s2
2

+ a s if 0 ≤ s ≤ a ,

a2

2
if a ≤ s ≤ b ,

a2 + b2

2
+
s2

2
− b s if b < s .

We will prove that the radial function

u(x) = h(|x|) = G−1

(

− log

( |x|
R

))
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is a solution to problem (58) pointing out that, since G−1 is discontinuous, the
solution u is discontinuous too.
We get the radial solution

h′(r) =
−1

g
(

G−1
(

− log
(

r
R

))

r
) ,

and since we take

z(x) =
−x
|x| ,

it is easy to prove

(z, Du) = |Du| in D′(Ω) ,

−div z+ g(u)∗|Du| = N

|x| as measures in Ω ,

and also

h(R) = G−1(0) = 0 .
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