
ar
X

iv
:2

20
3.

12
57

1v
2 

 [
m

at
h.

A
P]

  4
 S

ep
 2

02
2

EXISTENCE AND UNIQUENESS FOR THE INHOMOGENEOUS

1-LAPLACE EVOLUTION EQUATION REVISITED

MARTA LATORRE AND SERGIO SEGURA DE LEÓN

Abstract. In this paper we deal with an inhomogeneous parabolic Dirichlet problem
involving the 1-Laplacian operator. We show the existence of a unique solution when
data belong to L1(0, T ;L2(Ω)) for every T > 0. As a consequence, global existence and
uniqueness for data in L1

loc
(0,+∞;L2(Ω)) is obtained. Our analysis retrieves previous

results in a correct and complete way.

1. Introduction

The aim of this paper is to prove the existence of a unique solution to the following
evolution problem:

(1)











u′ −∆1u = f(t, x) in (0, T )× Ω ,

u = 0 on (0, T )× ∂Ω ,

u(0, x) = u0(x) in Ω ,

where Ω is a bounded open set in R
N (N ≥ 2) with Lipschitz boundary and T > 0.

Henceforth, the sign ′ stands for the derivative with respect to time variable t while

∆1 = div
(

Du
|Du|

)

is the so–called 1–Laplacian operator. As far as data are concerned, we

will take an initial datum u0 ∈ L2(Ω) and a source f ∈ L1(0, T ;L2(Ω)).
The homogeneous problem, f ≡ 0, was solved in [2] (see also [3, 4]). Using nonlinear

semigroup theory, authors were able to introduce a concept of solution and to prove
existence and uniqueness. Since the natural space to analyze the stationary problem is
the space BV (Ω) of functions of bounded variation, one of their crucial tasks was to make
clear the quotient Du

|Du|
, for u ∈ BV (Ω), even if Du vanishes. The successful method was

to consider a bounded vector field z ∈ L∞(Ω;RN ) which plays the role of that quotient in
the sense that it satisfies ‖z‖∞ ≤ 1 and (z, Du) = |Du| as measures. We stress that the
definition of (z, Du) relies on the Anzellotti pairing theory. Actually, (z, Du) is a Radon
measure which becomes the dot product z · ∇u when u ∈ W 1,1(Ω). The inhomogeneous
case was addressed using the techniques of nonlinear semigroup theory in [17] for data
f ∈ L2((0, T )× Ω).
In recent years, a new approach to problem (1) has been developed. Following [6], it

was applied to parabolic problems involving the 1–Laplacian in [7] (see also [9, 8]). Its
main feature is that it uses a purely variational approach to deal with time dependent
problems, yielding the existence of global parabolic minimizers. The Anzellotti pairings
are not used and only the total variation operator is required. A comparison between the
two methods and a proof that both approaches lead to the same solutions (under natural
assumptions) can be found in [13].
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In addition to [17], the inhomogeneous problem is studied in [15] in a different way.
The proof does not lie on nonlinear semigroup theory, although Anzellotti’s theory is also
involved. Instead of applying the Crandall-Liggett generation theorem, the solution is
obtained by approximation in two stages. Firstly one gets a solution for every source
belonging to L2((0, T ) × Ω) (the same setting of [17]) and then goes beyond studying
sources in L1(0, T ;L2(Ω)). Nevertheless, we consider that some steps of the proof need
further explanation. Let us briefly explain why.
In [15, Proposition 2.9] is stated that existence of a time derivative ξ of u satisfying

ξ = div z + f and Green’s formula imply that t 7→
∫

Ω
u(t)2 dx defines an absolutely

continuous function. In its proof it is assumed that if η ∈ C∞
0 (0, T ) is nonnegative, then

(2) lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

(

η(s)

∫

Ω

(z(t, x), Du(s, x))

)

ds dt

exists and is equal to
∫ T

0

η(t)

∫

Ω

(z(t, x), Du(t, x)) dt .

This fact is valid when u ∈ L1(0, T ;W 1,1(Ω)), as shown in Remark A.5, but it is not
justified for a general Radon measure (z(t), Du(s)). The reason is that this device is not
a real dot product and we cannot split it into factors. Moreover, both this product and
the total variation |Du(s)| are just Radon measures and not L1–functions. Thus, the
proof is flawed and we are not able to correct it. Instead, we must polish the argument
to guarantee similar results.
Our aim in the present paper is to improve [15], correcting mistakes and providing more

details in order to regain the same results. We take as a starting point solutions to (1)
having sources in L2((0, T ) × Ω)). This is so because, in this setting, solutions satisfy
u′(t) ∈ L2(Ω) for almost all t ∈ (0, T ) and consequently [15, Proposition 2.9] does hold.
Hence, we begin by writing this proposition in a way suitable to be extended and so handle
more general data (see Proposition 3.7 below). Next, we use solutions having L2–sources
as approximate solutions and translate their main features to any limit solution.
Regarding the proof of existence, we follow the structure of [15, Theorem 5.1], but

being more accurate. Several arguments are also taken from [15] (actually some of them
go back to [2]) since we have to deal with similar difficulties. Indeed, it is easy to check the
existence of the vector field z ∈ L∞((0, T )×Ω;RN) but it is not obvious that div z is in a
suitable space to apply Anzellotti’s theory since we are just able to see that div z belongs
to L1(0, T ;BV (Ω) ∩ L2(Ω))∗. Following [2], we have to rewrite this theory in our setting
to define the Anzellotti pairings and the trace on the boundary of the normal component
of z as well as to see that a Green’s formula holds. In addition, we also need that the
limit of approximate solutions can be taken as a test function in problem (1) in order
to show that it is, in fact, a solution. Furthermore, the identity (z(t), Du(t)) = |Du(t)|
which holds as measures for almost all t ∈ (0, T ) is not longer as easy to check and we
must analyze a limit similar to (2) studying the Lebesgue points of a related function (see
Remark 3.6 below).
A remark on uniqueness is also in order. The fact that function given by t 7→

∫

Ω
u(t)2 dx

is absolutely continuous for every solution u is essential in the uniqueness proof. Now we
cannot infer this property from the identity ξ = div z+ f satisfied by the time derivative
of the solution. Hence, to get uniqueness we have to consider condition (8) in our concept
of solution.
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Summarizing, the proof of [15, Proposition 2.9] is not correct but the main results of
[15] hold true with slight modifications in the statements. Nevertheless, more cumbersome
arguments are needed to get them.

The plan of this paper is the following. Section 2 is devoted to introduce the notation
used through this paper and some preliminary results. In Section 3, we introduce the
suitable notion of solution to problem (1) and state our starting point. In Section 4 we
prove the main result on existence of this paper while in the next section we show the
uniqueness of solution. Finally, in an Appendix, we have collected some results from real
analysis that are essential over the paper.

2. Preliminaries

We use this Section to introduce the notation and some preliminary results that will
be used over the course of this paper.

2.1. Notation. Henceforth, T will always be a fixed positive number. We denote by Ω
a bounded open subset in R

N , with N ≥ 2. We also requiere that Ω has a Lipschitz
boundary and ν will be the outer unit normal vector on ∂Ω a.e. in HN−1(∂Ω), where
HN−1 stands for the (N − 1)-dimensional Hausdorff measure.
As usual, Lq(Ω) and W 1,q(Ω) express the Lebesgue and Sobolev spaces respectively

(see, for instance, [10] or [12]). Given a Banach space X , the symbol Lq(0, T ;X) denotes
the space of vector valued functions which are strongly measurable and q–summable. For
instance, we say that v ∈ Lq(0, T ;Lp(Ω)) if v : (0, T ) × Ω → R is Lebesgue measurable
and

∫ T

0

(
∫

Ω

|v(t, x)|p dx

)
q

p

dt < +∞ .

To simplify the notation, in this case we often write v(t) instead of v(t, x).

Throughout this paper, notation ′ =
d

dt
will be used with the meaning u′ = ut, the

derivative of u with respect to t. For this derivative we mean both the derivative in the
sense of distributions and one of its extensions (see Definition 2.3 below). On the other
hand, the symbol div denotes the divergence taken in the spatial variables.
We also make use of the truncation function defined as follows:

Tk(s) = min{|s|, k} sign(s) for all s ∈ R .

2.2. Functions of bounded variation. In what follows, BV (Ω) will be the set of all
integrable functions in Ω whose distributional gradient is a Radon measure with finite
total variation. For v ∈ BV (Ω) the total variation of its gradient will be denoted as
∫

Ω
|Dv|. In general, we denote by

∫

Ω

ϕ|Dv| the integral of ϕ with respect to the measure

|Dv|. We recall that BV (Ω) is a Banach space with the norm

‖v‖ =

∫

Ω

|Dv|+

∫

Ω

|v| dx .

On the other hand, the notion of a trace on the boundary can be extended to functions
v ∈ BV (Ω), so that we may write v

∣

∣

∂Ω
, by means of a surjective bounded operator

BV (Ω) → L1(∂Ω). As a consequence, an equivalent norm on BV (Ω) can be defined:

‖v‖BV (Ω) =

∫

Ω

|Dv|+

∫

∂Ω

|v| dHN−1 .
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When taking limits, we also make use of the lower semicontinuity of the total variation
with respect to the convergence in L1(Ω).
We refer to [1] for further information on BV-functions.

In the present paper, we will widely use the space BV (Ω) ∩ L2(Ω), which is a Banach
space with the norm defined by

‖v‖ = max{‖v‖BV (Ω), ‖v‖L2(Ω)} .

The dual pairing of BV (Ω) ∩ L2(Ω) and its dual will be denoted as

〈 ζ, v 〉Ω with ζ ∈ (BV (Ω) ∩ L2(Ω))∗, v ∈ BV (Ω) ∩ L2(Ω) .

In the case ξ = ζ + f , for ζ ∈ (BV (Ω) ∩ L2(Ω))∗ and f ∈ L2(Ω), we will write

〈〈 ξ, v 〉〉Ω = 〈 ζ, v 〉Ω +

∫

Ω

fv dx ∀v ∈ BV (Ω) ∩ L2(Ω) .

2.3. Anzellotti’s theory. Following [2], we will use a vector field z ∈ L∞(Ω;RN) sat-
isfying ‖z‖∞ ≤ 1 to play the role of the quotient Du

|Du|
, even if |Du| vanishes in a zone

of positive measure. If z ∈ L∞(Ω;RN) with div z ∈ L2(Ω) and v ∈ BV (Ω) ∩ L2(Ω),
Anzellotti (see [5]) defined the pairing

〈 (z, Dv), ω〉 = −

∫

Ω

v ω div z dx−

∫

Ω

v z · ∇ω dx

for all ω ∈ C∞
0 (Ω). Under these conditions, the pairing (z, Dv) is actually a Radon

measure and it also holds

|(z, Dv)| ≤ ‖z‖∞|Dv| as measures in Ω .

We will write the integration of ϕ with respect to this measure as

∫

Ω

ϕ(z, Dv).

Anzellotti also defined a weak trace on the boundary ∂Ω of the normal component of
the vector field z (denoted by [z, ν] ∈ L∞(∂Ω)) and proved that the following Gauss-Green
formula holds

∫

Ω

v div z dx+

∫

Ω

(z, Dv) =

∫

∂Ω

v[z, ν] dHN−1 for all v ∈ BV (Ω) ∩ L2(Ω) .

Remark 2.1. For solutions to problem (1) having sources in L2((0, T )×Ω) the associated
vector field satisfies div z(t) ∈ L2(Ω) for almost all t ∈ (0, T ), so that the Anzellotti theory
applies. Nevertheless, for a general source f ∈ L1(0, T ;L2(Ω)), we cannot expect that
solutions satisfy this property. Hence, we will consider both the pairing (z(t), Dv) for
every v ∈ BV (Ω) ∩ L2(Ω) and the weak trace on the boundary [z(t), ν] throughout the
existence proof and then check that Green’s formula holds. Hereafter, the symbol (z, Dv),
where div z ∈ (BV (Ω) ∩ L2(Ω))∗ and v ∈ BV (Ω) ∩ L2(Ω), stands for the distribution
defined as

(3) 〈(z, Dv), ω〉 = −〈 div z, vω 〉Ω −

∫

Ω

vz · ∇ω dx ,

for all ω ∈ C∞
0 (Ω).
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2.4. Integration of vector–valued functions. In this subsection we collect the theory
of vector integration needed to our purposes. For more information, we refer to [11].
Let X be a Banach space. A function f : (0, T ) → X is said to be weakly measurable

if for each x∗ ∈ X∗ the real function 〈x∗, f〉 : (0, T ) → R is Lebesgue measurable.
We denote by L1

w(0, T ;BV (Ω)) the space of all weakly measurable maps

v : [0, T ] −→ BV (Ω)

such that
∫ T

0
‖v(t)‖BV (Ω) dt < ∞. Obviously, L1(0, T ;BV (Ω)) ⊂ L1

w(0, T ;BV (Ω)).
If f : [0, T ] → X is weakly measurable such that 〈x∗, f〉 ∈ L1(0, T ) for all x∗ ∈ X∗,

then f is called Dunford integrable. The Dunford integral of f over a measurable set
E ⊂ (0, T ) is written

∫

E
f(t) dt ∈ X∗∗ and given by
(
∫

E

f(t) dt

)

(x∗) =

∫

E

〈x∗, f(t)〉 dt .

In the case
∫

E
f(t) dt ∈ X for every measurable set E ⊂ (0, T ), f is called Pettis

integrable.
Obviously, both concepts coincide when X is reflexive. Since BV (Ω) is not reflexive,

these concepts may be different in our framework.
In [2, Lemmas 3-4], given u ∈ L1

w(0, T ;BV (Ω)∩L2(Ω)) and η ∈ C∞
0 (0, T ), the function

s 7→ η(s)u(s) is proven to be weakly measurable. Then, for every t ∈ (0, T ) and every
0 < ε < t, the integral

(4) Ψε(t) =
1

ε

∫ t

t−ε

η(s)u(s) ds

is defined as a Dunford integral; it satisfies the following features:

(1) it is actually Pettis integrable,
(2) Ψε ∈ C([0, T ];BV (Ω)),
(3) Ψε(t) ∈ BV (Ω) ∩ L2(Ω) for every t ∈ [0, T ].

Furthermore, if u ∈ L∞(0, T ;L2(Ω)), it is easy to see that ‖Ψε‖L∞(0,T ;L2(Ω)) ≤ ‖η‖∞‖u‖L∞(0,T ;L2(Ω))

and so

(5) Ψε ∈ L∞(0, T ;BV (Ω) ∩ L2(Ω)) .

2.5. The time derivative. In our equation, both u′ and div z refer to derivatives in the
sense of distributions. Since we need to take test functions related with the solution,
extensions of these derivatives will be used. This subsection is devoted to clarifying what
our definition of time derivative is.

Definition 2.2. Let Ψ ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω)).
We say that Ψ admits a weak derivative in L1

w(0, T ;BV (Ω)) ∩ L1(0, T ;L2(Ω)) if there

exists Θ ∈ L1
w(0, T ;BV (Ω)) ∩ L1(0, T ;L2(Ω)) such that Ψ(t) =

∫ t

0
Θ(s)ds, where the

integral is taken as a Pettis integral.

Having in mind the previous subsection, we have that the function Ψε defined in (4)
admits a weak derivative in L1

w(0, T ;BV (Ω)) ∩ L1(0, T ;L2(Ω)). Its weak derivative is

given by Θ(t) =
1

ε
[η(t)u(t)− η(t− ε)u(t− ε)].

Definition 2.3. Let u ∈ C([0, T ];L2(Ω)) ∩ L1
w(0, T ;BV (Ω)).
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We say that ξ ∈ L1(0, T ;BV (Ω)∩L2(Ω))∗ +L1(0, T ;L2(Ω)) is the time derivative of u
if

(6)

∫ T

0

〈〈ξ(t),Ψ(t)〉〉Ωdt = −

∫ T

0

∫

Ω

u(t)Θ(t) dx dt ,

for every function with compact support in time

Ψ ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω))

which admits a weak derivative Θ ∈ L1
w(0, T ;BV (Ω)) ∩ L1(0, T ;L2(Ω)).

Remark 2.4. We explicitly remark that the dual L1(0, T ;BV (Ω)∩L2(Ω))∗ can be iden-
tified with L∞

w∗(0, T ; (BV (Ω) ∩ L2(Ω))∗), the space of all ζ : [0, T ] → (BV (Ω) ∩ L2(Ω))∗

which are *-weakly measurable (that is, the function t 7→ 〈ζ(t), v〉 is measurable for every
v ∈ BV (Ω)∩L2(Ω)) and satisfy ‖ζ(t)‖(BV (Ω)∩L2(Ω))∗ ∈ L∞(0, T ) (see [14]). Two functions
ζ1 and ζ2 are identified if 〈ζ1(t), v〉Ω = 〈ζ2(t), v〉Ω a.e. for all v ∈ BV (Ω) ∩ L2(Ω). The
duality is given by

〈ζ, v〉 =

∫ T

0

〈ζ(t), v(t)〉Ω dt ,

for all ζ ∈ L∞
w∗(0, T ; (BV (Ω)∩L2(Ω))∗) and all v ∈ L1(0, T ;BV (Ω)∩L2(Ω)). Consequently

the left hand side in (6) makes sense.

It is worth specifying how this time derivative works. Consider the function Ψε defined
in (4). Then Ψε ∈ L∞(0, T ;BV (Ω) ∩ L2(Ω)) and

∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt = −

∫ T

0

∫

Ω

u(t, x)
[

η(t)u(t, x)− η(t− ε)u(t− ε, x)
]

dx dt .

3. Our starting point

In this Section, we introduce the definition we will use of solution to our problem and
state auxiliary results that hold when the source belongs to L2((0, T )× Ω).

Definition 3.1. Let f ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2(Ω). We say that u is a solution to
problem











u′ −∆1u = f(t, x) in (0, T )× Ω ,

u = 0 on (0, T )× ∂Ω ,

u(0, x) = u0(x) in Ω ,

if u ∈ L1
w(0, T ;BV (Ω)) ∩ C([0, T ];L2(Ω)) and there exist

(i) z ∈ L∞((0, T ) × Ω) such that ‖z‖∞ ≤ 1 and its distributional divergence div z
can be extended to L1(0, T ;BV (Ω) ∩ L2(Ω))∗ in such a way that, for almost all
t ∈ (0, T ), satisfies

• the weak trace of the normal component of z(t) is well–defined and verifies
‖[z(t), ν]‖∞ ≤ 1;

• (z(t), Dv) is a Radon measure for every v ∈ BV (Ω) ∩ L2(Ω) (recall (3));
• the following Green’s formula is fulfilled:

〈 div z(t), v 〉Ω +

∫

Ω

(z(t), Dv) =

∫

∂Ω

v[z(t), ν] dHN−1

for every v ∈ BV (Ω) ∩ L2(Ω).
(ii) ξ ∈ L1(0, T ;BV (Ω) ∩ L2(Ω))∗ + L1(0, T ;L2(Ω)), which is the time derivative of u

in the sense of Definition 2.3.
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Moreover,

(7) ξ = div z+ f

and conditions
(
∫

Ω

1

2
u(t)2 dx

)′

+

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 =

∫

Ω

f(t)u(t) dx ,(8)

[z(t), ν] ∈ sign(−u(t)) HN−1a.e. on ∂Ω ,(9)

hold for almost every t ∈ (0, T ).

Remark 3.2. Applying the above Green’s formula pointwise to u, we obtain the following
identity for almost all t ∈ (0, T ):

〈div z(t), u(t)〉Ω = −

∫

Ω

(z(t), Du(t)) +

∫

∂Ω

u(t)[z(t), ν] dHN−1

Therefore,

(10) 〈〈ξ(t), u(t)〉〉Ω = −

∫

Ω

(z(t), Du(t)) +

∫

∂Ω

u(t)[z(t), ν] dHN−1 +

∫

Ω

f(t)u(t) dx

holds for almost all t ∈ (0, T ), so that, in some sense, we may take u as test function.
Notice, however, that the measurability of these functions are not guaranteed since we do
not have u ∈ L1(0, T ;BV (Ω)).

Remark 3.3. It is worth remarking that condition (8) can be written as
(
∫

Ω

1

2
u(t)2 dx

)′

= −

∫

Ω

|Du(t)| −

∫

∂Ω

|u(t)| dHN−1 +

∫

Ω

f(t)u(t) dx

for almost all t ∈ (0, T ). Notice that, owing to u ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω))
and f ∈ L1(0, T ;L2(Ω)), it follows that the right hand side belongs to L1(0, T ). As a
consequence, the function t 7→

∫

Ω
1
2
u(t)2 dx is absolutely continuous.

Remark 3.4. Observe that conditions (8)–(9), jointly with (10) and Green’s formula
imply
(
∫

Ω

1

2
u(t)2 dx

)′

+

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 =

∫

Ω

f(t)u(t) dx

= 〈〈ξ(t), u(t)〉〉Ω − 〈div z(t), u(t)〉Ω

= 〈〈ξ(t), u(t)〉〉Ω +

∫

Ω

(z(t), Du(t))−

∫

∂Ω

u(t)[z(t), ν] dHN−1

= 〈〈ξ(t), u(t)〉〉Ω +

∫

Ω

(z(t), Du(t)) +

∫

∂Ω

|u(t)| dHN−1

for almost all t ∈ (0, T ). Hence,

(11)

(
∫

Ω

1

2
u(t)2 dx

)′

+

∫

Ω

|Du(t)| = 〈〈ξ(t), u(t)〉〉Ω +

∫

Ω

(z(t), Du(t))

holds for almost all t ∈ (0, T ). This identity suggests that
(
∫

Ω

1

2
u(t)2 dx

)′

= 〈〈ξ(t), u(t)〉〉Ω
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and
∫

Ω

|Du(t)| =

∫

Ω

(z(t), Du(t))

but we are not able to check it (see, however, Remark 3.6 below).

Proposition 3.5. Let u be a solution to problem (1) with time derivative ξ. For every
nonnegative η ∈ C∞

0 (0, T ), it is verified that

(12) lim
ε→0

∫ T

0

〈〈

ξ(t),
1

ε

∫ t

t−ε

η(s)u(s) ds
〉〉

Ω
dt = −

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt ,

and

(13) lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

η(s)

∫

Ω

(z(t), Du(s)) ds dt =

∫ T

0

η(t)

∫

Ω

|Du(t)| dt .

Proof. Let Ψε(t) =
1

ε

∫ t

t−ε

η(s)u(s) ds. We stress that the integral

∫ T

0

〈〈 ξ(t),Ψε(t)〉〉Ω dt

=

∫ T

0

〈

div z(t),
1

ε

∫ t

t−ε

η(s)u(s) ds
〉

Ω
dt+

∫ T

0

∫

Ω

f(t)
1

ε

∫ t

t−ε

η(s)u(s) ds dx dt

is well–defined since div z(t) ∈ L1(0, T ;BV (Ω) ∩ L2(Ω))∗, function

t 7→ Ψε(t) =
1

ε

∫ t

t−ε

η(s)u(s) ds

belongs to L∞(0, T ;BV (Ω) ∩ L2(Ω)) (recall (5) above) and f ∈ L1(0, T ;L2(Ω)). Here
1
ε

∫ t

t−ε
η(s)u(s) ds is actually a Pettis integral.

Since ξ is the time derivative of u, we obtain
∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt = −
1

ε

∫ T

0

∫

Ω

(

η(t)u(t)− η(t− ε)u(t− ε)
)

u(t) dx dt

= −
1

ε

∫ T

0

η(t)

∫

Ω

u(t)2 dx dt+
1

ε

∫ T

0

η(t− ε)

∫

Ω

u(t− ε)u(t) dx dt

=
1

ε

∫ T

0

η(t)

∫

Ω

u(t)
(

u(t+ ε)− u(t)
)

dx dt .

Observe that inequality u(t)u(t+ ε) ≤
1

2
u(t+ ε)2 +

1

2
u(t)2 implies

u(t)
(

u(t+ ε)− u(t)
)

≤
1

2
u(t+ ε)2 −

1

2
u(t)2 .

Hence
∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt ≤
1

ε

∫ T

0

∫

Ω

η(t)
(1

2
u(t+ ε)2 −

1

2
u(t)2

)

dx dt

=
1

ε

∫ T

0

∫

Ω

1

2

(

η(t− ε)u(t)2− η(t)u(t)2
)

dx dt =
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

1

2
u(t)2 dx dt .

Next, we will compute
∫ T

0
〈〈ξ(t),Ψε(t)〉〉Ω dt in a different way. Indeed, we apply Green’s

formula to deduce
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(14) −
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

1

2
u(t)2 dx dt ≤ −

∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt

= −

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

〈 div z(t), u(s) 〉Ω +

∫

Ω

u(s)f(t) dx
]

ds dt

=

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

(z(t), Du(s))−

∫

∂Ω

u(s)[z(t), ν] dHN−1 −

∫

Ω

u(s)f(t) dx
]

ds dt

≤

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

|Du(s)|+

∫

∂Ω

|u(s)| dHN−1 −

∫

Ω

u(s)f(t) dx
]

ds dt .

Our next concern is to take the limit on the right hand side of (14) as ε tends to 0. We
deal with the first and second terms thanks to Lemma A.3; it is enough to consider the
functions given as η(s)

∫

Ω
|Du(s)| and η(s)

∫

∂Ω
|u(s)| dHN−1. The remainder is handled as

follows
∣

∣

∣

∣

1

ε

∫ t

t−ε

η(s)

∫

Ω

u(s)f(t) dx ds

∣

∣

∣

∣

≤
1

ε

∫ t

t−ε

η(s)

(
∫

Ω

u(s)2 dx

)
1

2

(
∫

Ω

f(t)2 dx

)
1

2

ds

≤ ‖f(t)‖L2(Ω)

1

ε

∫ t

t−ε

η(s)

(
∫

Ω

u(s)2 dx

)
1

2

ds

≤ ‖η‖∞‖u‖L∞(0,T ;L2(Ω))‖f(t)‖L2(Ω)

which belongs to L1(0, T ). Hence, letting ε go to 0 in (14), it yields

(15)

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt ≤ − lim

ε→0

∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt

≤

∫ T

0

η(t)
[

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt .

On the other hand, u is a solution to problem (1). So, recalling Remark 3.4 and inserting
that identity in (15), we obtain

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt ≤ − lim

ε→0

∫ T

0

〈〈ξ(t),Ψε(t)〉〉Ω dt ≤

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt ,

from where (12) follows. Going back to (14) and letting ε go to 0, inequatilies become
equalities and it follows from condition (9) that limit (13) holds.

Remark 3.6. Taken into account Lemma A.6, we may understand (13) as follows: value
η(t)

∫

Ω
|Du(t)| is “almost” the approximate limit of η(s)

∫

Ω
(z(t), Du(s)) at s = t for every

η ∈ C∞
0 (0, T ). (Note, however, that limit is not pointwise but in mean.) So, in some sense,

this result allows us to identify
∫

Ω
(z(t), Du(t)) =

∫

Ω
|Du(t)| for almost all t ∈ (0, T ).

3.1. Source data in L2((0, T )× Ω). In order to prove the existence of solution to our
problem, we need a previous result which appears in [15], even though we will restrict our
analysis to data f ∈ L2((0, T )× Ω).
By [15, Theorem 4.1], for each f ∈ L2((0, T ) × Ω) and each u0 ∈ L2(Ω) there exists

a solution to (1) which satisfies u ∈ C([0, T ];L2(Ω)) ∩ L1(0, T ;BV (Ω)) as well as u′ ∈
L2((δ, T )×Ω) for all δ > 0. So, div z(t) ∈ L2(Ω) for almost all t ∈ (0, T ) and Anzellotti’s
theory applies.
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As a consequence of the Green formula, it is obtained that u′ is the time derivative of
u in the sense of Definition 2.3. Indeed, for every v ∈ L1(0, T ;BV (Ω) ∩ L2(Ω)), we get

∫ T

0

〈div z(t), v(t)〉Ωdt = −

∫ T

0

∫

Ω

(z(t), Dv(t)) dt+

∫ T

0

∫

∂Ω

v(t) [z(t), ν] dHN−1dt

which is well-defined and so u′ ∈ L1(0, T ;BV (Ω)∩L2(Ω))∗ +L2(0, T ;L2(Ω)). The condi-
tion (6) is now easy to check.
Thus, to see that u is a solution to problem (1) in the sense of Definition 3.1, it just

remains to show that satisfies 〈〈ξ(t), u(t)〉〉Ω = 1
2

(∫

Ω
u(t)2 dx

)′
for almost all t ∈ (0, T ).

We check this condition in the following result. We will also apply Proposition 3.7 in the
proof of Theorem 4.1.

Proposition 3.7. For any u ∈ C([0, T ];L2(Ω)) satisfying u′ ∈ L2((δ, T ) × Ω) for every
δ > 0, the following identity holds for almost all t ∈ (0, T ):

1

2

(
∫

Ω

u(t)2 dx

)′

=

∫

Ω

u′(t)u(t) dx .

Proof. We will check that the proof of [15, Proposition 2.9] works in this case.
Let η ∈ C∞

0 (0, T ) and let ε > 0 be small enough to perform the following calculations.
Observe that u′η ∈ L2((0, T )× Ω).
Making the same calculations that at the beginning of [15, Proposition 2.9] we get

(16) −

∫ T

0

∫

Ω

η(t− ε)− η(t)

−ε

u(t)2

2
dx dt =

1

2

∫ T

0

∫

Ω

u(t+ ε)− u(t)

ε
u(t+ ε)η(t) dx dt

+
1

2

∫ T

0

∫

Ω

u(t+ ε)− u(t)

ε
u(t)η(t) dx dt =

1

2
(I1 + I2) .

We now consider the auxiliary function Ψε(t) =
1

ε

∫ t

t−ε

η(s)u(s) ds, which is a Pettis

integral. Since Ψε ∈ L∞(0, T ;L2(Ω)), it satisfies 〈〈 u′(t),Ψε(t) 〉〉Ω ∈ L1(0, T ). In addition,

[15, Proposition 2.9] also yields I2 =
∫ T

0
〈〈 u′(t),Ψε(t) 〉〉Ω dt.

We also consider Φε(t) =
1

ε

∫ t

t−ε

η(s)u(s + ε) ds, which is a Pettis integral. Then

〈〈 u′(t),Φε(t) 〉〉Ω ∈ L1(0, T ) and it can be proved that I1 =

∫ T

0

〈〈 u′(t),Φε(t) 〉〉Ω dt.

Therefore, from (16) we deduce that

(17) −

∫ T

0

∫

Ω

η(t− ε)− η(t)

−ε

u(t)2

2
dx dt

=
1

2

(
∫ T

0

〈〈 u′(t),Ψε(t) 〉〉Ω dt+

∫ T

0

〈〈 u′(t),Φε(t) 〉〉Ω dt

)

.

Now, we take limits when ε tends to 0. The first term on the right hand side is handled
as follows.

|〈〈 u′(t),Ψε(t) 〉〉Ω| ≤

∫

Ω

|Ψε(t)||u
′(t)| dx

≤

(

∫

Ω

(

1

ε

∫ t

t−ε

|η(s)||u(s)| ds

)2

dx

)
1

2
(
∫

Ω

χsuppη|u
′(t)|2 dx

)
1

2
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≤

(

1

ε

∫ t

t−ε

η(s)2
∫

Ω

|u(s)|2 dx ds

)

1

2

(
∫

Ω

χsupp η|u
′(t)|2 dx

)
1

2

,

and both factors belong to L2(0, T ). Moreover, applying Lemma A.1, we get that the
family

1

ε

∫ t

t−ε

η(s)2
(
∫

Ω

|u(s)|2 dx

)

ds

converges in L1(0, T ), so that the generalized dominated convergence theorem and the

pointwise convergence lim
ε→0

1

ε

∫ t

t−ε

η(s)u(s, x) ds = η(t)u(t, x) imply

〈〈 u′(t),Ψε(t) 〉〉Ω →

∫

Ω

η(t)u(t)u′(t) dx ,

where the convergence holds in L1(0, T ). Hence,

(18) lim
ε→0

∫ T

0

〈〈 u′(t),Ψε(t) 〉〉Ω dt =

∫ T

0

∫

Ω

η(t)u(t)u′(t) dx dt .

Similarly, we deduce that

(19) lim
ε→0

∫ T

0

〈〈 u′(t),Φε(t) 〉〉Ω dt =

∫ T

0

∫

Ω

η(t)u(t)u′(t) dx dt .

Letting ε go to 0 in (17), by (18) and (19), we get

−

∫ T

0

η′(t)

∫

Ω

u(t)2

2
dx dt =

∫ T

0

∫

Ω

η(t)u(t)u′(t) dx dt .

Since this identity holds for every η ∈ C∞
0 (0, T ), it yields

(

1

2

∫

Ω

u(t)2 dx

)′

=

∫

Ω

u(t)u′(t) dx ,

for almost all t ∈ (0, T ).

Remark 3.8. Reasoning as in the proof of Proposition 3.7, we can also prove that

1

2

(
∫

Ω

u(t)2ω dx

)′

=

∫

Ω

u′(t)u(t)ω dx

for all ω ∈ C∞
0 (Ω).

Notice that solutions with source in L2((0, T )×Ω) are unique. To see it, just argue as
in the uniqueness proof of [15] and take into account that the function

t 7−→

∫

Ω

u(t)2 dx is absolutely continuous in (0, T ) .

4. Existence of solution if f ∈ L1(0, T ;L2(Ω))

This section is devoted to prove the existence of a solution to problem (1). We will
follow the proof of Theorem 5.1 in [15], but trying to guarantee all details.

Theorem 4.1. If f ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2(Ω), then there exists, at least, a
solution to problem (1).
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Proof. Since f ∈ L1(0, T ;L2(Ω)), there exists a sequence {fn} ⊂ L2(0, T ;L2(Ω)) such
that fn → f in L1(0, T ;L2(Ω)). Furthermore, each approximating problem

(20)











u′
n −∆1un = fn(t, x) in (0, T )× Ω ,

un = 0 on (0, T )× ∂Ω ,

un(x, 0) = u0(x) in Ω ,

has a solution un ∈ L1
w(0, T ;BV (Ω)) ∩ C([0, T ];L2(Ω)) whose time derivative satisfies

u′
n ∈ L1(0, T ;BV (Ω) ∩ L2(Ω))∗ + L1(0, T ;L2(Ω)) and u′

n ∈ L2((δ, T ) × Ω) for all δ > 0.
Moreover, there exists a vector field zn ∈ L∞((0, T )× Ω;RN) with ‖zn‖∞ ≤ 1 such that

(1) u′
n(t) = div zn(t) + fn(t) in D′(Ω),

(2) (zn(t), Dun(t)) = |Dun(t)| as measures in Ω,
(3) [zn(t), ν] ∈ sign(−un(t)),

(4)
∫

Ω
u′
n(t)un(t) dx = 1

2

(∫

Ω
un(t)

2 dx
)′
,

holds for almost every t ∈ (0, T ). This last identity is due to Proposition 3.7.

Our purpose is to check that the sequence {un} converges to a function u, which is a
solution to problem (1). We divide the proof in several steps.

4.1. Step 1: A priori estimates. We begin applying (8) and Hölder’s inequality to get

1

2

(
∫

Ω

un(t)
2 dx

)′

+

∫

Ω

|Dun(t)|+

∫

∂Ω

|un(t)| dH
N−1 =

∫

Ω

fn(t) un(t) dx

≤

(
∫

Ω

fn(t)
2 dx

)
1

2

(
∫

Ω

un(t)
2 dx

)
1

2

.

Integrating now between 0 and t ∈ (0, T ], it yields

1

2

∫

Ω

un(t)
2 dx−

1

2

∫

Ω

un(0)
2 dx+

∫ t

0

∫

Ω

|Dun(s)| ds+

∫ t

0

∫

∂Ω

|un(s)| dH
N−1 ds

≤

∫ t

0

(
∫

Ω

fn(s)
2 dx

)
1

2

(
∫

Ω

un(s)
2 dx

)
1

2

ds .

Denoting σn(t) = ‖un(t)‖L2(Ω) and disregarding nonnegative terms, the previous inequality
becomes

σn(t)
2 ≤ σn(0)

2 + 2

∫ t

0

‖fn(s)‖L2(Ω) σn(s) ds .

Now, due to Gronwall’s Lemma of [18] (see also [19] for a slightly extension) and the fact
that all approximating problems have the same initial data, we get

σn(t) ≤ σn(0) +

∫ t

0

‖fn(s)‖L2(Ω) ≤ ‖u0‖L2(Ω) + ‖fn‖L1(0,T ;L2(Ω))

which is bounded because fn → f in L1(0, T ;L2(Ω)). So there exists a constant C1 > 0
such that

(21) ‖un(t)‖L2(Ω) ≤ ‖u0‖L2(Ω) + ‖fn‖L1(0,T ;L2(Ω)) ≤ C1 for all t ∈ [0, T ] .

Moreover,
∫

Ω

un(t)
2 dx+ 2

∫ t

0

[

∫

Ω

|Dun(s)|+

∫

∂Ω

|un(s)| dH
N−1
]

ds
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≤

∫

Ω

un(0)
2 dx+ 2

∫ t

0

‖fn(s)‖L2(Ω)‖un(s)‖L2(Ω) ds

≤

∫

Ω

u2
0 dx+ 2C1 ‖fn‖L1(0,T ;L2(Ω)) = C2

for all t ∈ (0, T ), and so

(22) max
t∈[0,T ]

∫

Ω

un(t)
2 dx+ 2

∫ T

0

[

∫

Ω

|Dun(s)|+

∫

∂Ω

|un(s)| dH
N−1
]

ds ≤ C2 .

4.2. Step 2: Convergence of the sequence (un)n in L∞(0, T ;L2(Ω)). We next check
that {un}

∞
n=1 is a Cauchy sequence. We already know that {un} is bounded in the space

L∞(0, T ;L2(Ω)) owing to (21).
Taking un(t)− um(t) as a test in problem (20) for n and then taking it for m lead to
∫

Ω

u′
n(t)(un(t)− um(t)) dx+

∫

Ω

(zn(t), D(un(t)− um(t)))

−

∫

∂Ω

(un(t)− um(t))[zn(t), ν] dH
N−1 =

∫

Ω

fn(t)(un(t)− um(t)) dx

and
∫

Ω

u′
m(t)(un(t)− um(t)) dx+

∫

Ω

(zm(t), D(un(t)− um(t)))

−

∫

∂Ω

(un(t)− um(t))[zm(t), ν] dH
N−1 =

∫

Ω

fm(t)(un(t)− um(t)) dx .

Subtracting both expressions yields
∫

Ω

(un(t)− um(t)) (un(t)− um(t))
′ dx+

∫

Ω

((zn(t)− zm(t)), D(un(t)− um(t))

−

∫

∂Ω

(un(t)− um(t))[zn(t)− zm(t), ν] dH
N−1 =

∫

Ω

(fn(t)− fm(t))(un(t)− um(t)) dx .

and Proposition 3.7 implies

1

2

(
∫

Ω

(un(t)− um(t))
2 dx

)′

+

∫

Ω

((zn(t)− zm(t)), D(un(t)− um(t))

−

∫

∂Ω

(un(t)− um(t))[zn(t)− zm(t), ν] dH
N−1 =

∫

Ω

(fn(t)− fm(t))(un(t)− um(t)) dx .

Integrating between 0 and t ∈ (0, T ), dropping two nonnegative terms and having in mind
that the initial data are the same, we obtain

1

2

∫

Ω

(un(t)− um(t))
2 dx ≤

∫ t

0

∫

Ω

|fn(t)− fm(t)||un(t)− um(t)| dx dt

≤

∫ T

0

∫

Ω

|fn(t)− fm(t)||un(t)− um(t)| dx dt .

Now the right hand side tends to 0 since fn → f in L1(0, T ;L2(Ω)) and {un} is bounded
in L∞(0, T ;L2(Ω)). We conclude that {un}

∞
n=1 is a Cauchy sequence in L∞(0, T ;L2(Ω))

and so there exists u ∈ C([0, T ];L2(Ω)) such that

(23) un −→ u in C([0, T ];L2(Ω)) .
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As a consequence, the function u(t) is well–defined for all t ∈ [0, T ].

4.3. Step 3: Convergence u2
n → u2 in L∞(0, T ;L1(Ω)). This technical consequence

of the previous Step 2 will be used in Step 14. Recalling (22) and applying Hölder’s
inequality,
∫

Ω

|un(t)
2 − u(t)2| dx =

∫

Ω

|un(t)− u(t)||un(t) + u(t)| dx

≤

(
∫

Ω

|un(t)− u(t)|2 dx

)
1

2

(
∫

Ω

|un(t) + u(t)|2 dx

)
1

2

≤ 2C

(
∫

Ω

|un(t)− u(t)|2 dx

)
1

2

.

Step 3 is now straightforward.

4.4. Step 4: u ∈ L1
w(0, T ;BV (Ω)). Going back to (23), we deduce

un(t) −→ u(t) in L1(Ω) for every t ∈ (0, T ) .

It follows from this convergence and the lower semicontinuity of the total variation that
∫

Ω

|Du(t)| ≤ lim inf
n→∞

∫

Ω

|Dun(t)|

holds for almost all t ∈ (0, T ). Applying Fatou’s lemma, we get
∫ T

0

∫

Ω

|Du(t)| dt ≤

∫ T

0

lim inf
n→∞

∫

Ω

|Dun(t)| dt ≤ lim inf
n→∞

∫ T

0

∫

Ω

|Dun(t)| dt ≤ C2 .

Thus, u(t) ∈ BV (Ω) for almost all t ∈ (0, T ) and so [4, Lemma 5.19] implies the function
t 7→

∫

Ω
|Du(t)| is measurable and u ∈ L1

w(0, T ;BV (Ω)).

4.5. Step 5: Existence of the vector field z ∈ L∞((0, T )×Ω;RN). Our next objective
is to see that equation holds in the sense of distributions. To this end, we need to get the
vector field z ∈ L∞((0, T )× Ω;RN) which plays the role of Du/|Du|, and the element ξ
that plays the role of the time derivative of u. In addition, we establish the sense in which
zn converges to z and u′

n converges to ξ. The easy work corresponding to z will be done
in this Step, while the corresponding to ξ in Steps 6-7. Finally, in Step 8, we check that
the equation holds in the sense of distributions.

For every n ∈ N, it holds ‖zn‖∞ ≤ 1 then, up to a subsequence, zn
∗
⇀ z in L∞((0, T )×

Ω;RN) and ‖z‖∞ ≤ 1.

4.6. Step 6: Convergence div zα
∗
⇀ div z in L1(0, T ;BV (Ω) ∩ L2(Ω))∗ for some

subnet {zα}α∈I . Let v ∈ L1(0, T ;BV (Ω) ∩ L2(Ω)). Since for almost every t ∈ (0, T ),
div zn(t) ∈ L2(Ω), it follows from Anzellotti’s theory that

(24) −

∫

Ω

v(t)div zn(t) dx =

∫

Ω

(zn(t), Dv(t))−

∫

∂Ω

v(t)[zn(t), ν] dH
N−1

for almost every t ∈ (0, T ). Then, integrating between 0 and T , it becomes
∣

∣

∣

∣

∫ T

0

∫

Ω

v(t)div zn(t) dx, dt

∣

∣

∣

∣

≤

∫ T

0

{
∫

Ω

|(zn(t), Dv(t))|+

∫

∂Ω

|v(t)||[zn(t), ν]| dH
N−1

}

dt

≤ ‖zn‖∞

∫ T

0

{
∫

Ω

|Dv(t)|+

∫

∂Ω

|v(t)| dHN−1

}

dt
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≤

∫ T

0

‖v(t)‖BV (Ω) dt ≤

∫ T

0

‖v(t)‖BV (Ω)∩L2(Ω) dt ,

and so the sequence {div zn}
∞
n=1 is bounded in L1(0, T ;BV (Ω)∩L2(Ω))∗. Therefore, there

exists ρ ∈ L1(0, T ;BV (Ω) ∩ L2(Ω))∗ and a subnet such that

div zα
∗
⇀ ρ in L1(0, T ;BV (Ω) ∩ L2(Ω))∗ .

Let ω ∈ C∞
0 (Ω) and η ∈ C∞

0 (0, T ). Due to (24), we already know that
∫ T

0

∫

Ω

η(t)ω div zα(t) dt = −

∫ T

0

η(t)

∫

Ω

zα(t) · ∇ω dx dt ,

and taking limits in α ∈ I the equality becomes
∫ T

0

η(t)〈 ρ(t), ω 〉Ω dt = −

∫ T

0

η(t)

∫

Ω

z(t) · ∇ω dx dt

which implies 〈 ρ(t), ω 〉Ω = 〈 div z(t), ω 〉Ω for almost every t ∈ (0, T ) and every ω ∈
C∞

0 (Ω).
Observe that div z can be extended uniquely to an element of L1(0, T ;W 1,1

0 (Ω)∩L2(Ω))∗

and we have proven that ρ is one of the further extensions of div z to the bigger space
L1(0, T ;BV (Ω) ∩ L2(Ω))∗. Since this extension not need to be unique, from now on, we
will identify div z with this specific extension.

Now, we define the element which performs the role of the time derivative of u:

(25) ξ = div z+ f ∈ L1(0, T ;BV (Ω) ∩ L2(Ω))∗ + L1(0, T ;L2(Ω)) .

4.7. Step 7: Convergence u′
α

∗
⇀ ξ in L1(0, T ;BV (Ω) ∩L2(Ω))∗ + L1(0, T ;L2(Ω)). We

start taking a test function v ∈ L1(0, T ;BV (Ω)∩L2(Ω))∩L∞(0, T ;L2(Ω)) in the equation
u′
α = div zα + fα to obtain

∫ T

0

∫

Ω

u′
α(t)v(t) dx dt =

∫ T

0

∫

Ω

v(t)div zα(t) dx dt+

∫ T

0

∫

Ω

fα(t)v(t) dx dt .

Taking limits in α ∈ I and considering convergences div zα
∗
⇀ div z in the dual of

L1(0, T ;BV (Ω) ∩ L2(Ω)) and fα → f in L1(0, T ;L2(Ω)) we get the desired result:

lim
α∈I

∫ T

0

∫

Ω

u′
α(t)v(t) dx dt =

∫ T

0

〈 div z(t), v(t) 〉Ω dt+

∫ T

0

∫

Ω

f(t)v(t) dx dt

=

∫ T

0

〈〈ξ(t), v(t)〉〉Ω dt .

4.8. Step 8: For almost all t the equation holds in the distributional sense. Let
now ω ∈ C∞

0 (Ω) and η ∈ C∞
0 (0, T ). We take the test function η(t)ω in u′

α = div zα(t)+fα
to get

−

∫ T

0

η′(t)

∫

Ω

uα(t)ω dx dt =

∫ T

0

η(t)

∫

Ω

u′
α(t)ω dx dt

=

∫ T

0

η(t)

∫

Ω

zα(t) · ∇ω dx dt+

∫ T

0

η(t)

∫

Ω

fα(t)ω dx dt .



16 M. LATORRE AND S. SEGURA DE LEÓN

Since uα → u in L1((0, T )× Ω), u′
α

∗
⇀ ξ in L1(0, T ;BV (Ω) ∩ L2(Ω))∗ + L1(0, T ;L2(Ω)),

zα
∗
⇀ z in L∞((0, T )× Ω;RN) and fα → f in L1(0, T ;L2(Ω)), taking limits in α ∈ I we

arrive at

−

∫ T

0

η′(t)

∫

Ω

u(t)ω dx dt =

∫ T

0

η(t)〈〈 ξ(t), ω 〉〉Ω dt

=

∫ T

0

η(t)

∫

Ω

z(t) · ∇ω dx dt+

∫ T

0

η(t)

∫

Ω

f(t)ω dx dt

for all η ∈ C∞
0 (0, T ), which implies
(
∫

Ω

u(t)ω dx

)′

= 〈〈 ξ(t), ω 〉〉Ω =

∫

Ω

z(t) · ∇ω dx+

∫

Ω

f(t)ω dx

for almost every t ∈ (0, T ).

4.9. Step 9: (z(t), Dv) is a Radon measure in Ω for a.e. t ∈ (0, T ) and for all

v ∈ BV (Ω)∩L2(Ω). The actual aim of this Step (and the following three ones) is to check
that a Green’s formula is available for z(t). We point out that these vectors fields does
not satisfy the assumptions of [5] since we cannot assure that its divergence is a Radon
measure.
Fix v ∈ BV (Ω) ∩ L2(Ω), and consider ω ∈ C∞

0 (Ω) and η ∈ C∞
0 (0, T ) with η ≥ 0.

Recall that div zα(t) ∈ L2(Ω) for almost all t ∈ (0, T ) and for all α; consequently, due to
Anzellotti’s theory, (zα(t), Dv) is a Radon measure which satisfies

∣

∣

∣

∣

∫

Ω

ω (zα(t), Dv)

∣

∣

∣

∣

≤ ‖ω‖L∞(Ω)

∫

Ω

|Dv|

for almost every t ∈ (0, T ) (recall that ‖zα‖∞ ≤ 1). Moreover, the following Green’s
formula holds

−〈 div zα(t), v ω 〉Ω −

∫

Ω

v zα(t) · ∇ω dx =

∫

Ω

ω (zα(t), Dv)

which implies
∣

∣

∣

∣

∫ T

0

η(t)
[

〈 div zα(t), v ω 〉Ω +

∫

Ω

v zα(t) · ∇ω dx
]

dt

∣

∣

∣

∣

≤

∫ T

0

η(t)

∣

∣

∣

∣

∫

Ω

ω (zα(t), Dv)

∣

∣

∣

∣

dt

≤ ‖ω‖L∞(Ω)

∫ T

0

η(t)

∫

Ω

|Dv| dt < +∞ .

Now, we take limits in α ∈ I to get
∣

∣

∣

∣

∫ T

0

η(t)
[

〈 div z(t), v ω 〉Ω +

∫

Ω

v z(t) · ∇ω dx
]

dt

∣

∣

∣

∣

≤ ‖ω‖L∞(Ω)

∫ T

0

η(t)

∫

Ω

|Dv| dt .

We deduce that for almost every t ∈ (0, T ) it holds:
∣

∣

∣

∣

〈 div z(t), v ω 〉Ω +

∫

Ω

v z(t) · ∇ω dx

∣

∣

∣

∣

≤ ‖ω‖L∞(Ω)

∫

Ω

|Dv| ,

from where it follows
∣

∣

∣

∫

Ω

ω (z(t), Dv)
∣

∣

∣
≤ ‖ω‖L∞(Ω)

∫

Ω

|Dv|

and so (z(t), Dv) is a Radon measure in Ω.
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4.10. Step 10: Definition of the trace on the boundary of the normal component

[z(t), ν]. For every v ∈ W 1,1(Ω) ∩ L∞(Ω), we define

(26) 〈 z(t), v 〉∂Ω = 〈 div z(t), v 〉Ω +

∫

Ω

z(t) · ∇v dx .

We point out that this value also depends on the extension ρ, which we have identified
with div z.
Now, let η ∈ C∞

0 (0, T ) be nonnegative and consider
∫ T

0

η(t)〈 z(t), v 〉∂Ω dt =

∫ T

0

η(t)〈 div z(t), v 〉Ω dt+

∫ T

0

η(t)

∫

Ω

z(t) · ∇v dx dt .

Notice that if v1, v2 ∈ W 1,1(Ω) ∩ L∞(Ω) satisfy v1 = v2 on ∂Ω, then
∫ T

0

η(t)〈 div z(t), v1 − v2 〉Ω dt+

∫ T

0

η(t)

∫

Ω

z(t) · ∇(v1 − v2) dx dt = 0

since we take div z(t) in the distributional sense and v1 − v2 ∈ W 1,1
0 (Ω). Therefore,

∫ T

0

η(t)〈 z(t), v1 〉∂Ω dt =

∫ T

0

η(t)〈 z(t), v2 〉∂Ω dt

and so

∫ T

0

η(t)〈 z(t), v 〉∂Ω dt only depends on v through its trace.

On the other hand, given α ∈ I, since div zα(t) ∈ L2(Ω) a.e., Anzellotti’s theory applies
and so

|〈 zα(t), v 〉∂Ω| ≤ ‖zα(t)‖∞

∫

∂Ω

|v| dHN−1 ≤

∫

∂Ω

|v| dHN−1

wherewith
∣

∣

∣

∣

∫ T

0

η(t)〈 div zα(t), v 〉Ω dt+

∫ T

0

η(t)

∫

Ω

zα(t) · ∇v dx dt

∣

∣

∣

∣

≤

∫ T

0

η(t)

∫

∂Ω

|v| dHN−1 dt < +∞ .

Taking the limit for α ∈ I, it yields
∣

∣

∣

∣

∫ T

0

η(t)〈 div z(t), v 〉Ω dt+

∫ T

0

η(t)

∫

Ω

z(t) · ∇v dx dt

∣

∣

∣

∣

≤

∫ T

0

η(t)

∫

∂Ω

|v| dHN−1 dt ,

and consequently we deduce that
∣

∣

∣

∣

∫ T

0

η(t)〈 z(t), v 〉∂Ω dt

∣

∣

∣

∣

≤

∫ T

0

η(t)

∫

∂Ω

|v| dHN−1dt

for every nonnegative test function η ∈ C∞
0 (Ω).

In the same spirit of [5], for each t ∈ (0, T ), we define Ft : L
∞(∂Ω) → R by

Ft(w) = 〈 z(t), v 〉∂Ω

where w ∈ L∞(∂Ω) and v ∈ W 1,1(Ω) ∩ L∞(Ω) satisfies v
∣

∣

∂Ω
= w. We have seen that

∫ T

0

η(t)Ft(w) dt
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is well–defined and
∣

∣

∣

∣

∫ T

0

η(t)Ft(w) dt

∣

∣

∣

∣

≤

∫ T

0

η(t)

∫

∂Ω

|w| dHN−1dt

for all η ∈ C∞
0 (0, T ). Hence, for every w ∈ L∞(∂Ω),

|Ft(w)| ≤

∫

∂Ω

|w| dHN−1

holds for almost all t ∈ (0, T ). Note that the null set depends on w.
To go on we have to use a separability argument. Let V denote a countable set which

is dense in W 1,1(Ω). Truncating functions of V , if necessary, we may assume that v ∈
W 1,1(Ω) ∩ L∞(Ω) for all v ∈ V . We now get for almost all t ∈ (0, T ):

|Ft(w)| ≤

∫

∂Ω

|w| dHN−1

for every w ∈ L∞(∂Ω) satisfying w = v
∣

∣

∂Ω
with v ∈ V . Next fix one of these points t,

choose w0 ∈ L∞(∂Ω) and let v0 ∈ W 1,1(Ω) ∩ L∞(Ω) such that its trace is w0. Consider a
sequence (vn)n in V satisfying vn → v0 in W 1,1(Ω). It leads to

〈div z(t), vn〉Ω → 〈div z(t), v0〉Ω
∇vn → ∇v0 in L1(Ω;Rn)

wherewith Ft(wn) → Ft(w0). On the other hand, vn → v0 in W 1,1(Ω) also implies
wn → w0 in L1(∂Ω). Thus, it follows from |Ft(wn)| ≤

∫

∂Ω
|wn| dH

N−1 for all n ∈ N that
|Ft(w)| ≤

∫

∂Ω
|w| dHN−1. Therefore,

|Ft(w)| ≤

∫

∂Ω

|w| dHN−1 ∀w ∈ L∞(∂Ω)

holds for almost all t ∈ (0, T ). Taking one of these t ∈ (0, T ), the functional Ft may be
extended to a functional in L1(∂Ω)∗, so that is represented by a L∞–function, denoted by
[z(t), ν]. In other words, [z(t), ν] ∈ L∞(∂Ω) in such a way that ‖[z(t), ν]‖∞ ≤ 1 and

Ft(w) =

∫

∂Ω

w[z(t), ν] dHN−1 ∀w ∈ L∞(∂Ω)

for almost all t ∈ (0, T ). Moreover, we have deduced the following Green’s formula holds
for almost all t ∈ (0, T ):

(27) 〈 div z(t), v 〉Ω +

∫

Ω

z(t) · ∇v dx =

∫

∂Ω

v[z(t), ν] dHN−1

for every v ∈ W 1,1(Ω) ∩ L∞(Ω).

4.11. Step 11: Convergence of the traces on the boundary of the normal com-

ponents. Let η ∈ C∞
0 (0, T ) and w ∈ L∞(∂Ω). We will prove that

(28) lim
α∈I

∫ T

0

η(t)

∫

∂Ω

w[zα(t), ν] dH
N−1 dt =

∫ T

0

η(t)

∫

∂Ω

w [z(t), ν] dHN−1 dt .

If v ∈ W 1,1(Ω) ∩ L∞(Ω) is such that v
∣

∣

∂Ω
= w, then for every α ∈ I the Green’s formula

holds
∫ T

0

η(t)

∫

Ω

zα(t) · ∇v dx dt+

∫ T

0

η(t)

∫

Ω

v div zα(t) dx dt
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=

∫ T

0

η(t)

∫

∂Ω

w[zα(t), ν] dH
N−1 dt .

We can take limits in α ∈ I on the left hand side to get

lim
α∈I

∫ T

0

η(t)

∫

∂Ω

w[zα(t), ν] dH
N−1 dt

= lim
α∈I

[
∫ T

0

η(t)

∫

Ω

zα(t) · ∇v dx dt+

∫ T

0

η(t)

∫

Ω

v div zα(t) dx dt

]

=

∫ T

0

η(t)

∫

Ω

z(t) · ∇v dx dt+

∫ T

0

η(t)〈 div z(t), v 〉Ω dt

=

∫ T

0

η(t)

∫

∂Ω

v[z(t), ν] dHN−1 dt =

∫ T

0

η(t)

∫

∂Ω

w[z(t), ν] dHN−1 dt ,

where we have used Green’s formula (27).

4.12. Step 12: Green’s formula. Let v ∈ BV (Ω) ∩ L2(Ω). We are going to show that

〈 div z(t), v 〉Ω +

∫

Ω

(z(t), Dv) =

∫

∂Ω

v[z(t), ν] dHN−1

holds for almost every t ∈ (0, T ).

Consider η ∈ C∞
0 (0, T ). Owing to (24), for k > 0 and for every α ∈ I, it holds

(29)

∫ T

0

η(t)

∫

Ω

Tk(v) div zα(t) dx dt+

∫ T

0

η(t)

∫

Ω

(zα(t), DTk(v)) dt

=

∫ T

0

η(t)

∫

∂Ω

Tk(v)[zα(t), ν] dH
N−1 dt .

We remark the needed to use Tk(v) instead of v in order to handle the integral on the
boundary.
Our aim is to take the limit in α ∈ I in this identity. The limit in the first term is

consequence of div zα
∗
⇀ div z in L1(0, T ;BV (Ω)∩L2(Ω))∗. To deal with the second term

we may argue as in [5, Proposition 2.1] since
∫ T

0

η(t)

∫

U

|(zα(t), DTk(v))| dt ≤

∫ T

0

η(t)

∫

U

|DTk(v)| dt

for all open U ⊂ Ω and

lim
α∈I

∫ T

0

η(t)

∫

Ω

ω(zα(t), DTk(v)) dt =

∫ T

0

η(t)

∫

Ω

ω(z(t), DTk(v)) dt

for all ω ∈ C∞
0 (Ω). Finally, on the right hand side, we may apply (28) and so we are able

to take limits in α ∈ I, wherewith (29) becomes

(30)

∫ T

0

η(t)〈 div z(t), Tk(v) 〉Ω dt+

∫ T

0

η(t)

∫

Ω

(z(t), DTk(v)) dt

=

∫ T

0

η(t)

∫

∂Ω

Tk(v)[z(t), ν] dH
N−1 dt .
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Having in mind that Tk(v) → v in BV (Ω) ∩ L2(Ω), we may let k go to ∞ in (30). Thus,
∫ T

0

η(t)〈 div z(t), v 〉Ω dt+

∫ T

0

η(t)

∫

Ω

(z(t), Dv) dt =

∫ T

0

η(t)

∫

∂Ω

v[z(t), ν] dHN−1 dt

for all η ∈ C∞
0 (0, T ), which implies

〈 div z(t), v 〉Ω +

∫

Ω

(z(t), Dv) =

∫

∂Ω

v[z(t), ν] dHN−1

for almost all t ∈ (0, T ).

4.13. Step 13: ξ is the time derivative of u in the sense of Definition 2.3. Let
Ψ ∈ L1(0, T ;BV (Ω) ∩ L2(Ω)) ∩ L∞(0, T ;L2(Ω)) with compact support in (0, T ) and let
Θ ∈ L1

w(0, T ;BV (Ω)) ∩ L1(0, T ;L2(Ω)) be the weak derivative of Ψ. Since
∫ T

0

∫

Ω

u′
α(t)Ψ(t) dx dt = −

∫ T

0

∫

Ω

uα(t)Θ(t) dx dt ,

u′
α

∗
⇀ ξ in L1(0, T ;BV (Ω) ∩ L2(Ω))∗ + L1(0, T ;L2(Ω)) and uα → u in L∞(0, T ;L2(Ω)),

we can take limits in α ∈ I to obtain
∫ T

0

〈〈ξ(t),Ψ(t)〉〉Ω dt = −

∫ T

0

∫

Ω

u(t) Θ(t) dx dt .

4.14. Step 14: Conditions (8) and (9). To prove that u is a solution to problem (1),
it remains to check that satisfies conditions (8) and (9) of Definition 3.1.
Let η ∈ C∞

0 (0, T ) be nonnegative and define

Ψε(t) =
1

ε

∫ t

t−ε

η(s)u(s) ds ,

that is a Pettis integral. Reasoning as in the beginning of Proposition 3.5, we see that

(31) −
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

1

2
u(t)2 dx dt ≤ −

∫ T

0

〈〈 ξ(t),Ψε(t) 〉〉Ω dt

= −

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

〈div z(t), u(s)〉Ω +

∫

Ω

f(t)u(s) dx
]

ds dt

=

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

(z(t), Du(s))−

∫

∂Ω

u(s)[z(t), ν] dHN−1 −

∫

Ω

u(s)f(t) dx
]

ds dt

≤

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

|Du(s)| −

∫

∂Ω

u(s)[z(t), ν] dHN−1 −

∫

Ω

u(s)f(t) dx
]

ds dt .

Having in mind Lemma A.3 and Corollary A.4, we let ε go to 0 to obtain

(32)

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt

≤

∫ T

0

η(t)
[

∫

Ω

|Du(t)| −

∫

∂Ω

u(t)[z(t), ν] dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt

≤

∫ T

0

η(t)
[

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt .

On the other hand, taking η(t)un(t) as test function in problem (20), it yields
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−

∫ T

0

η′(t)

∫

Ω

1

2
un(t)

2 dx dt+

∫ T

0

η(t)
[

∫

Ω

|Dun(t)|+

∫

∂Ω

|un(t)| dH
N−1
]

dt

=

∫ T

0

η(t)

∫

Ω

un(t)fn(t) dx dt .

Applying Step 3, the lower semicontinuity of the BV-norm and Fatou’s lemma, we deduce
that

−

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt+

∫ T

0

η(t)

[
∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1

]

dt

≤

∫ T

0

η(t)

∫

Ω

u(t)f(t) dx dt .

Finally, having in mind (32), it implies
∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt(33)

≤

∫ T

0

η(t)
[

∫

Ω

|Du(t)| −

∫

∂Ω

u(t)[z(t), ν] dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt

≤

∫ T

0

η(t)
[

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt

≤

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt .

It follows from (33) that

−

∫ T

0

η(t)

∫

∂Ω

u(t)[z(t), ν] dHN−1 dt =

∫ T

0

η(t)

∫

∂Ω

|u(t)| dHN−1 dt .

Since this identity holds for every nonnegative η ∈ C∞
0 (Ω), we get

∫

∂Ω

(

|u(t)|+ u(t)[z(t), ν]
)

dHN−1 = 0

for almost all t ∈ (0, T ), which implies the boundary condition (9).
Another consequence of (33) is the identity

∫ T

0

η′(t)

∫

Ω

1

2
u(t)2 dx dt

=

∫ T

0

η(t)
[

∫

Ω

|Du(t)|+

∫

∂Ω

|u(t)| dHN−1 −

∫

Ω

u(t)f(t) dx
]

dt .

Notice that the arbitrariness of η leads to condition (8) and so Theorem 4.1 is now
completely proven.

5. Uniqueness of solution

In this section we show the uniqueness of the solution to problem (1).

Theorem 5.1. For every f ∈ L1(0, T ;L2(Ω)) and every u0 ∈ L2(Ω), there exists at most
a solution to problem (1).
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Proof. Assume that u1 and u2 are two solutions to problem (1). Then there exist ξ1
and ξ2 which are the time derivatives of u1 and u2, respectively, and there also exist the
corresponding vector fields z1 and z2. We also point out that u1(0) = u2(0). To see that
u1 = u2, we fix η ∈ C∞

0 (0, T ) such that η ≥ 0. The proof is split into several stages.

Step 1: First we choose ε > 0 so small for the following calculations to be held and
define

Ψ1
ε(t) =

1

ε

∫ t

t−ε

η(s)u1(s) ds , Ψ2
ε(t) =

1

ε

∫ t

t−ε

η(s)u2(s) ds ,

which are actually Pettis integrals.
Since ξ1 and ξ2 are the time derivative of u1 and u2, respectively, and u1 and u2 are
solutions, it follows from (12) that

(34) lim
ε→0

∫ T

0

〈〈 ξ1(t),Ψ
1
ε(t) 〉〉Ω dt = −

∫ T

0

η′(t)

∫

Ω

1

2
u1(t)

2 dx dt

and

(35) lim
ε→0

∫ T

0

〈〈 ξ2(t),Ψ
2
ε(t) 〉〉Ω dt = −

∫ T

0

η′(t)

∫

Ω

1

2
u2(t)

2 dx dt .

On the other hand, we have

∫ T

0

〈〈 ξ1(t) + ξ2(t),Ψ
1
ε(t) + Ψ2

ε(t) 〉〉Ω dt

= −
1

ε

∫ T

0

∫

Ω

(

η(t)
(

u1(t) + u2(t)
)

− η(t− ε)
(

u1(t− ε) + u2(t− ε)
)

)

(

u1(t) + u2(t)
)

dx dt

= −
1

ε

∫ T

0

∫

Ω

η(t)
(

u1(t)+u2(t)
)2

dx dt+
1

ε

∫ T

0

∫

Ω

η(t−ε)
(

u1(t−ε)+u2(t−ε)
)(

u1(t)+u2(t)
)

dx dt

=
1

ε

∫ T

0

η(t)

∫

Ω

(

u1(t) + u2(t)
)

(

(

u1(t+ ε) + u2(t+ ε)
)

−
(

u1(t) + u2(t)
)

)

dx dt .

Since
(

u1(t+ ε) + u2(t+ ε)
)(

u1(t) + u2(t)
)

≤ 1
2

(

u1(t+ ε) + u2(t+ ε)
)2

+ 1
2

(

u1(t) + u2(t)
)2

holds, it yields
∫ T

0

〈〈 ξ1(t) + ξ2(t),Ψ
1
ε(t) + Ψ2

ε(t) 〉〉Ω dt

≤
1

ε

∫ T

0

∫

Ω

η(t)
(1

2

(

u1(t+ ε) + u2(t+ ε)
)2

−
1

2

(

u1(t) + u2(t)
)2
)

dx dt

=
1

ε

∫ T

0

∫

Ω

1

2

(

η(t− ε)
(

u1(t) + u2(t)
)2

− η(t)
(

u1(t) + u2(t)
)2
)

dx dt

=
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

1

2

(

u1(t) + u2(t)
)2

dx dt

=
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

[1

2
u1(t)

2 +
1

2
u2(t)

2 + u1(t)u2(t)
]

dx dt .

Letting ε go to 0, we obtain

(36) lim sup
ε→0

∫ T

0

〈〈 ξ1(t) + ξ2(t),Ψ
1
ε(t) + Ψ2

ε(t) 〉〉Ω dt
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≤ −

∫ T

0

η′(t)

∫

Ω

[1

2
u1(t)

2 +
1

2
u2(t)

2 + u1(t)u2(t)
]

dx dt .

Taking into account (34) and (35), inequality (36) becomes
(37)

lim sup
ε→0

∫ T

0

[

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω + 〈〈 ξ2(t),Ψ

1
ε(t) 〉〉Ω

]

dt ≤ −

∫ T

0

η′(t)

∫

Ω

u1(t)u2(t) dx dt .

Similarly, we deduce

∫ T

0

〈〈 ξ1(t)−ξ2(t),Ψ
1
ε(t)−Ψ2

ε(t) 〉〉Ω dt ≤
1

ε

∫ T

0

(

η(t−ε)−η(t)
)

∫

Ω

1

2

(

u1(t)−u2(t)
)2

dx dt

=
1

ε

∫ T

0

(

η(t− ε)− η(t)
)

∫

Ω

[1

2
u1(t)

2 +
1

2
u2(t)

2 − u1(t)u2(t)
]

dx dt

so that

lim sup
ε→0

∫ T

0

〈〈 ξ1(t)− ξ2(t),Ψ
1
ε(t)−Ψ2

ε(t) 〉〉Ω dt

≤ −

∫ T

0

η′(t)

∫

Ω

[1

2
u1(t)

2 +
1

2
u2(t)

2 − u1(t)u2(t)
]

dx dt .

Then (34) and (35) imply

(38) − lim inf
ε→0

∫ T

0

[

〈〈 ξ1(t),Ψ
2
ε(t)〉〉Ω+ 〈〈 ξ2(t),Ψ

1
ε(t) 〉〉Ω

]

dt ≤

∫ T

0

η′(t)

∫

Ω

u1(t)u2(t) dx dt .

Gathering (37) and (38), we conclude that there exists the limit and

−

∫ T

0

η′(t)

∫

Ω

u1(t)u2(t) dx dt = lim
ε→0

∫ T

0

[

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω + 〈〈 ξ2(t),Ψ

1
ε(t) 〉〉Ω

]

dt

which, together with (34) and (35), turns out that

(39) −

∫ T

0

η′(t)

∫

Ω

1

2

(

u1(t)− u2(t)
)2

dx dt = lim
ε→0

∫ T

0

〈〈 ξ1(t)− ξ2(t),Ψ
1
ε(t)−Ψ2

ε(t) 〉〉Ω dt .

Step 2: Our next concern is to compute the limit, as ε goes to 0, on the right hand side
of (39) in a different way. To this end, we write

(40)

∫ T

0

〈〈 ξ1(t)− ξ2(t),Ψ
1
ε(t)−Ψ2

ε(t) 〉〉Ω dt

=

∫ T

0

〈〈 ξ1(t),Ψ
1
ε(t) 〉〉Ω dt+

∫ T

0

〈〈 ξ2(t),Ψ
2
ε(t) 〉〉Ω dt

−

∫ T

0

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω dt−

∫ T

0

〈〈 ξ2(t),Ψ
1
ε(t) 〉〉Ω dt = Iaε − Ibε

where

Iaε =

∫ T

0

〈〈 ξ1(t),Ψ
1
ε(t) 〉〉Ω dt+

∫ T

0

〈〈 ξ2(t),Ψ
2
ε(t) 〉〉Ω dt

and

Ibε =

∫ T

0

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω dt+

∫ T

0

〈〈 ξ2(t),Ψ
1
ε(t) 〉〉Ω dt .
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We now use the identities ξi(t) + div zi(t) = f(t) for i = 1, 2. With regard to Iaε , just
apply again condition (12) to get

(41) lim
ε→0

Iaε = −

∫ T

0

η′(t)

∫

Ω

[1

2
u1(t)

2 +
1

2
u2(t)

2
]

dx dt

=

∫ T

0

η(t)
[

〈〈ξ1(t), u1(t)〉〉Ω + 〈〈ξ2(t), u2(t)〉〉Ω

]

dt

=

∫ T

0

η(t)
[

〈div z1(t), u1(t)〉Ω + 〈div z2(t), u2(t)〉Ω +

∫

Ω

f(t)(u1(t) + u2(t)) dx
]

dt

= −

∫ T

0

η(t)
[

∫

Ω

|Du1(t)|+

∫

Ω

|Du2(t)|+

∫

∂Ω

|u1(t)| dH
N−1 +

∫

∂Ω

|u2(t)| dH
N−1
]

dt

+

∫ T

0

η(t)

∫

Ω

f(t)(u1(t) + u2(t)) dx dt .

Notice that the existence of limε→0 I
b
ε is now guaranteed by (39) and (41), having in mind

(40).
On the other hand, we have
∫ T

0

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω dt =

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

〈div z1(t), u2(s)〉Ω +

∫

Ω

f(t)u2(s) dx
]

ds dt .

Observing that

−

∫ T

0

1

ε

∫ t

t−ε

η(s)〈div z1(t), u2(s)〉Ω ds dt

≤

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

|(z1(t), Du2(s)|+

∫

∂Ω

|u2(s)[z1(t), ν]| dH
N−1
]

ds dt

≤

∫ T

0

1

ε

∫ t

t−ε

η(s)
[

∫

Ω

|Du2(s)|+

∫

∂Ω

|u2(s)| dH
N−1
]

ds dt ,

we obtain that
∫ T

0

〈〈 ξ1(t),Ψ
2
ε(t) 〉〉Ω dt

≥ −

∫ T

0

1

ε

∫ t

t−ε

η(s)

[
∫

Ω

|Du2(s)|+

∫

∂Ω

|u2(s)| dH
N−1

]

ds dt

+

∫ T

0

1

ε

∫ t

t−ε

η(s)

∫

Ω

f(t)u2(s) dx ds dt

and, appealing to Lemma A.3, the right hand side converges to

(42) −

∫ T

0

η(t)

[
∫

Ω

|Du2(t)|+

∫

∂Ω

|u2(t)| dH
N−1

]

dt+

∫ T

0

η(t)

∫

Ω

f(t)u2(t) dx dt

as ε goes to 0. Analogously, we infer that
∫ T

0

〈〈 ξ2(t),Ψ
1
ε(t) 〉〉Ω dt

≥ −

∫ T

0

1

ε

∫ t

t−ε

η(s)

[
∫

Ω

|Du1(s)|+

∫

∂Ω

|u1(s)| dH
N−1

]

ds dt
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+

∫ T

0

1

ε

∫ t

t−ε

η(s)

∫

Ω

f(t)u1(s) dx ds dt

whose right hand side converges, as ε → 0, to

(43) −

∫ T

0

η(t)

[
∫

Ω

|Du1(t)|+

∫

∂Ω

|u1(t)| dH
N−1

]

dt+

∫ T

0

η(t)

∫

Ω

f(t)u1(t) dx dt .

Finally, it follows from (41), (42) and (43) that

lim
ε→0

Ibε ≥ lim
ε→0

Iaε .

Therefore, (40) implies that

lim
ε→0

∫ T

0

〈〈 ξ1(t)− ξ2(t),Ψ
1
ε(t)−Ψ2

ε(t) 〉〉Ω dt = lim
ε→0

Iaε − lim
ε→0

Ibε ≤ 0 .

Now, since (39) holds, it yields

0 ≤

∫ T

0

η′(t)

∫

Ω

1

2
(u1(t)− u2(t))

2 dx dt = −

∫ T

0

η(t)

(

1

2

∫

Ω

(u1(t)− u2(t))
2 dx

)′

dt

= lim
ε→0

Ibε − lim
ε→0

Iaε

for all nonnegative η ∈ C∞
0 (0, T ). Then,

0 ≤ −

(

1

2

∫

Ω

(u1(t)− u2(t))
2 dx

)′

≤ 2

∫

Ω

(|Du1(t)|+ |Du2(t)|) + 2

∫

∂Ω

(|u1(t)|+ |u2(t)|) dH
N−1

= 2(‖u1(t)‖BV (Ω) + ‖u2(t)‖BV (Ω)) ∈ L1(0, T ) ,

and we deduce that function t 7→

∫

Ω

(

u1(t)−u2(t)
)2

dx is absolutely continuous in (0, T ).

Conclusion: Since the function t 7→
∫

Ω

(

u1(t)− u2(t)
)2

dx is absolutely continuous with
nonpositive derivative, it follows that is nonincreasing in (0, T ). Then

∫

Ω

(

u1(t)− u2(t)
)2

dx dt ≤

∫

Ω

(

u1(0)− u2(0)
)2

dx dt = 0 for all t ∈ [0, T ],

and we conclude that u1(t) = u2(t) a.e. in Ω for every t ∈ [0, T ].

As a consequence of this uniqueness result, each solution to problem (1) can be obtained
as a limit of solutions with L2–data. It implies that every feature of these approximate
solutions can be transferred to a general solution to (1). Therefore, estimates involving
norms of data and comparison between two different solutions hold true (see [15, Corollary
5.3, Corollary 5.4 and Corollary 5.5]).

Appendix A.

In this Appendix we want to explicit the results from real analysis we use. We will
begin with two well–known results which we state for the reader’s convenience. The first
one is a consequence of the Brezis–Lieb lemma, while the other is a generalized version of
the dominated convergence theorem (see, for instance [16]).

Lemma A.1 (Brezis–Lieb). Let {fn} be a sequence in L1(Ω). Then, the conditions
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(1) fn(x) → f(x) a.e. in Ω
(2) f ∈ L1(Ω)
(3)

∫

Ω
|f | = limn→∞

∫

Ω
|fn|

imply

fn → f strongly in L1(Ω) .

Lemma A.2 (Generalized Dominated Convergence Theorem). Let {fn} and {gn} be
sequences of measurable functions in Ω. If

(1) gn(x) → g(x) a.e. in Ω
(2) fn → f strongly in L1(Ω)
(3) |gn| ≤ fn for all n ∈ N

then

gn → g strongly in L1(Ω) .

Given f ∈ L1(0, T ), it follows from Lebesgue’s Theorem that

1

ε

∫ t

t−ε

f(s) ds → f(t) pointwise a.e. in (0, T ) .

Our aim in the following results is to check that we actually have strong convergence in
L1(0, T ).

Lemma A.3. Let f ∈ L1(0, T ) be a nonnegative function with compact support. Then

1

ε

∫ t

t−ε

f(s) ds → f(t) strongly in L1(0, T ) .

Proof. Define F : [0, T ] → R as F (t) =
∫ t

0
f(s) ds. This function is absolutely contin-

uous and F ′(t) = f(t) a.e. Take ε > 0 small enough to have f(t) = 0 for all t ∈ [0, ε].
Then

lim
ε→0

1

ε

∫ T

0

∫ t

t−ε

f(s) ds dt = lim
ε→0

1

ε

∫ T

ε

∫ t

t−ε

f(s) ds dt = lim
ε→0

1

ε

∫ T

ε

(

F (t)− F (t− ε)
)

dt

= lim
ε→0

1

ε

(
∫ T

ε

F (t) dt−

∫ T

ε

F (t− ε) dt

)

= lim
ε→0

1

ε

(
∫ T

ε

F (t) dt−

∫ T−ε

0

F (t) dt

)

= lim
ε→0

1

ε

∫ T

T−ε

F (t) dt = F (T ) =

∫ T

0

f(t) dt .

Since 1
ε

∫ t

t−ε
f(s) ds ≥ 0, it follows from the Brezis–Lieb Lemma that the convergence is

in L1(0, T ).

Corollary A.4. Let f, g : (0, T ) → R be measurable functions such that |g(t)| ≤ f(t) a.e.
in (0, T ). Assume that f ∈ L1(0, T ) with compact support. Then

1

ε

∫ t

t−ε

g(s) ds → g(t) in L1(0, T ) .

Proof. Applying Lemma A.3 to f , we know that

1

ε

∫ t

t−ε

f(s) ds → f(t) in L1(0, T ) .
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Our result is now a consequence of
∣

∣

∣

1

ε

∫ t

t−ε

g(s) ds
∣

∣

∣
≤

1

ε

∫ t

t−ε

f(s) ds

for all ε > 0 and the generalized dominated convergence theorem.

Remark A.5. It is worth noting that similar arguments apply to functions depending
on more variables. This fact allows us to justify the assertion stated in the introduction.
Let η ∈ C∞

0 (0, T ) be a nonnegative function and assume u ∈ L1(0, T ;W 1,1(Ω)) and
z ∈ L∞((0, T )× Ω). Then the function

s 7→ η(s)

∫

Ω

|∇u(s, x)| dx

belongs to L1(0, T ;RN). By Lemma A.3,

lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

η(s)

∫

Ω

|∇u(s, x)| dx ds dt =

∫ T

0

η(t)

∫

Ω

|∇u(t, x)| dx dt .

Since lim
ε→0

1

ε

∫ t

t−ε

η(s)|∇u(s, x)| ds = η(t)|∇u(t, x)| for almost all (t, x) ∈ (0, T ) × Ω, it

follows from the nonnegativeness of all integrands that

(44)
1

ε

∫ t

t−ε

η(s)|∇u(s, x)| ds → η(t)|∇u(t, x)| strongly in L1((0, T )× Ω) .

On the other hand, we also have lim
ε→0

1

ε

∫ t

t−ε

η(s)∇u(s, x) ds = η(t)∇u(t, x) for almost all

(t, x) ∈ (0, T )× Ω, owing to η(s)∇u(s, x) ∈ L1((0, T )× Ω), wherewith

lim
ε→0

1

ε

∫ t

t−ε

η(s) z(t, x) · ∇u(s, x) ds = η(t) z(t, x) · ∇u(t, x)

for almost all (t, x) ∈ (0, T )×Ω. Observing that |η(s) z(t, x)·∇u(s, x)| ≤ η(s)‖z‖∞|∇u(s, x)|
and applying (44), the generalized dominated convergence theorem leads to

lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

η(s)

∫

Ω

z(t, x) · ∇u(s, x) dx ds dt =

∫ T

0

η(t)

∫

Ω

z(t, x) · ∇u(t, x) dx dt .

Lemma A.6. Let f ∈ L1(0, T ) with compact support and let g : (0, T )× (0, T ) → R be a
measurable function such that |g(t, s)| ≤ f(s) for almost every s, t ∈ (0, T ). If

lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

g(t, s) ds dt =

∫ T

0

f(t) dt ,

then

lim
ε→0

∫ T

0

1

ε

∫ t

t−ε

|g(t, s)− f(t)| ds dt = 0 ,

Proof. We define the auxiliary functions

fε(t) =
1

ε

∫ t

t−ε

f(s) ds and gε(t) =
1

ε

∫ t

t−ε

g(t, s) ds .

By Lemma A.3, fε → f strongly in L1(0, T ). Hence,

lim
n→∞

∫ T

0

(

fε(t)− gε(t)
)

dt = 0 .
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Observe that almost all t ∈ (0, T ) satisfy |g(t, s)| ≤ f(s) for almost all s ∈ (0, T ), so that
gε(t) ≤ fε(t) holds a.e. It follows that fε − gε → 0 strongly in L1(0, T ) and so

gε → f strongly in L1(0, T ) .

Notice also that for almost all t ∈ (0, T ), the inequality

|g(t, s)− f(t)| ≤ |f(s)− f(t)|+ f(s)− g(t, s) holds for almost all s .

Therefore, almost all t ∈ (0, T ) satisfy

(45)
1

ε

∫ t

t−ε

|g(t, s)− f(t)| ds ≤
1

ε

∫ t

t−ε

|f(s)− f(t)| ds+
1

ε

∫ t

t−ε

f(s)− g(t, s) ds .

Our aim is to check that the left hand side of (45) tends to 0 strongly in L1(0, T ). To
this end, we analize its right hand side. The first term goes to 0 pointwise for almost all
t ∈ (0, T ) due to Lebesgue’s Theorem. Moreover, we also have the estimate

1

ε

∫ t

t−ε

|f(s)− f(t)| ds ≤
1

ε

∫ t

t−ε

f(s) ds+ f(t) .

Thus, we deduce from the generalized dominated converge theorem that

1

ε

∫ t

t−ε

|f(s)− f(t)| ds → 0 strongly in L1(0, T ) .

Since we already know that the second term on the right hand side of (45) tends to 0
strongly in L1(0, T ), it follows that

1

ε

∫ t

t−ε

|g(t, s)− f(t)| ds → 0 strongly in L1(0, T )

as desired.

Remark A.7. As a consequence of the previous result, we can find a subsequence

1

εn

∫ t

t−εn

|g(t, s)− f(t)| ds

which converges to 0 a.e. Hence,

lim inf
ε→0

1

ε

∫ t

t−ε

|g(t, s)− f(t)| ds = 0 a.e.

Nevertheless, we are not able to check that every subsequence tends to 0 a.e. and so we
cannot deduce that the approximate limit of g(t.·) at t is f(t).
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