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Abstract. In this paper we prove a stability result for an anisotropic elliptic
problem. More precisely, we consider the Dirichlet problem for an anisotropic
equation, which is as the p–Laplacian equation with respect to a group of
variables and as the q–Laplacian equation with respect to the other variables
(1 < p < q), with datum f belonging to a suitable Lebesgue space. For this
problem, we study the behaviour of the solutions as p goes to 1, showing that
they converge to a function u, which is almost everywhere finite, regardless of
the size of the datum f . Moreover, we prove that this u is the unique solution
of a limit problem having the 1–Laplacian operator with respect to the first
group of variables.

Furthermore, the regularity of the solutions to the limit problem is studied
and explicit examples are shown.

1. Introduction

Our aim is to study the Dirichlet problem for an anisotropic elliptic equation
which is as the 1–Laplacian equation in some directions (say x) and as the q–
Laplacian equation in the others (say y), that is:

(1.1)




−divx

( Dxu

|Dxu|
)
− divy

(|∇yu|q−2∇yu
)

= f(x, y) , in Ω ;

u = 0 , on ∂Ω .

Here (x, y) ∈ Ω = Ξ×Υ with Ξ and Υ bounded open subsets of RN and RK respec-
tively and the subindexes denote differentiation with respect to x and y respectively.
We also assume that Ξ has a Lipschitz boundary. Concerning the right-hand side,
we assume that f belongs to Lr(Ω) with

(1.2) r = min
{ N + K

1 + (K/q′)
, q′

}
.

To handle equation (1.1), we have to give a notion of solution and then consider
a suitable functional framework. Adapting the well-known definition of solution for
the 1-Laplacian equation (see [3]), we consider an anisotropic subspace of BV (Ω),
which consists, roughy speaking, of functions such that Dxu is a Radon measure and
∇yu belongs to the Lebesgue space Lq(Ω). Obviously any notion of solution have
to give sense to the quotient Dxu

|Dxu| where, in general, Dxu is not a function but a
Radon measure. To this aim our definition (see Section 4) is based on a vector field
ζ ∈ L∞(Ω;RN ) satisfying ‖ζ‖∞ ≤ 1, −divxζ − divy

(|∇yu|q−2∇yu
)

= f in D′(Ω)
and (ζ, Dxu) = |Dxu|. Observe that, formally, ‖ζ‖∞ ≤ 1 and (ζ, Dxu) = |Dxu|
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imply ζ = Dxu
|Dxu| . The meaning of (ζ, Dxu) relies on an anisotropic extension of the

theory of L∞–divergence–measure vector fields by Anzellotti [2] and by Chen–Frid
[13, 14, 15].

In this paper we prove the existence, uniqueness and regularity of such a solution
to problem (1.1), as well as we present explicit examples. To this end, we consider
approximate problems of the form

(1.3)
{ −divx

(|∇xup|p−2∇xup

)− divy

(|∇yup|q−2∇yup

)
= f , in Ω ;

up = 0 , on ∂Ω ;

where 1 < p, q < ∞, and then we study the behaviour as p goes to 1 of the solutions
up. Thus, we may assume without lost of generality that p < min{q, N}; moreover
we may also assume p < Nq

q−K if q > K, and Np
N−p < q if N

N−1 < q.
We prove that the approximate solutions up converge to a BV –function u that

turns out to be a solution to equation (1.1).
Formally (1.1) is the limit problem of (1.3) as p goes to 1. A solution to this

limit problem could be seen as a minimum (or, more generally, as a critical point)
in the anisotropic subset of BV described above of the functional defined by

J [u] =
∫

Ω

|Dxu|+ 1
q

∫

Ω

|∇yu|q −
∫

Ω

fu .

However, if we try to show that J is bounded from below, then we will need to
consider a datum f small enough. Instead, in this paper we prove that the limit
problem (1.1) has a solution for all f regardless of its size, whether large or small.

A similar approach has been used to study the isotropic version of problem
(1.1), where the differential operator is replaced by −div

(|∇u|−1∇u
)
. In such a

case there is no stability result for solutions to p–Laplacian equation as p goes to
1, in the sense that solutions of the p–Laplacian equation converge to a function
that can be infinity on a set of positive measure when the datum f is large enough
(see [26, 27] for particular data and [30, 31] for more general data). Moreover,
there is no uniqueness of the solution to the limit problem. Equation (1.1) shares
some features with its isotropic version, as shown in Subsection 4.3. Indeed, the
solution is trivial (identically 0) when the considered datum f is small enough.
This situation occurs until the vector field ζ satisfies ‖ζ‖∞ = 1. After that the two
equations differ. When the norm of the datum increases, in the isotropic problem
it is not possible to find a vector field satisfying ‖ζ‖∞ ≤ 1 and solutions blow up,
while in the anisotropic problem the extra term divy

(|∇yu|q−2∇yu
)

absorbs the
excess and a finite solution can always be obtained.

Anisotropic problems have been studied by many years. Recently the number of
papers devoted to these kind of problems has increased. We refer, for example, to
[5, 6, 9, 16, 17, 20, 21, 22, 23, 28, 29, 32, 33]. We also point out that anisotropic
problems appear in connections with some problems in Physics [11, 18, 19, 25], in
Biology [5, 6, 7], and in Image Processing [34].

The plan of this paper is as follows. After introducing our precise hypotheses and
notation, in Section 2 we study our functional setting: we discuss two crucial in-
equalities and extend the Anzellotti theory of L∞–divergence–measure vector fields
to the anisotropic case, giving sense to (ζ, Dxu) and obtaining a Green’s formula.
In Section 3, we begin by studying the asymptotic behaviour of the sequence (up)
of approximate solutions to problem (1.3). As p → 1, we get a limit function u and
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a vector field ζ which is the weak limit of |∇xup|p−2∇xup. In Section 4 we intro-
duce our notion of solution and we prove the existence result stated in Theorem
4.2, which consists in proving that the limit function u above is a solution to (1.1).
Our uniqueness result is established in Theorem 4.3. We also show in Theorem 4.5
a regularity result when more regular data are considered. Finally, we show some
explicit examples of solutions to equation (1.1) regardless of the size of the datum,
in which it is seen how the extra term divy

(|∇yu|q−2∇yu
)

absorbs the excess when
‖ζ‖∞ reaches 1.

2. Crucial tools

2.1. Notation and Inequalities. Recall from the introduction that we denote by
Ξ and Υ bounded open subsets of RN and RK , respectively. We assume that Ξ has
a Lipschitz boundary, so that we may handle a unit vector field (denoted by νx)
normal to ∂Ξ and exterior to Ξ, defined HN−1-a.e. on ∂Ξ, where HN−1 denotes
the (N−1)-dimensional Hausdorff measure. Let Ω = Ξ×Υ ⊂ RN+K . If u : Ω → R
is a regular enough function, we will denote

∇xu =
( ∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xN

)
and ∇yu =

( ∂u

∂y1
,

∂u

∂y2
, . . . ,

∂u

∂yK

)
.

Thus, the gradient of u reads as ∇u = (∇xu,∇yu).
If z : Ω → RN+K is a smooth vector field, we will write ζ = (z1, z2, . . . , zN ) and

λ = (zN+1, zN+2 . . . , zN+K), so that z = (ζ, λ). Then we will denote

(2.4) divxζ =
N∑

i=1

∂zi

∂xi
and divyλ =

K∑

i=1

∂zN+i

∂yi
,

and this yields div z = divxζ + divyλ.
Throughout this paper we will denote by W

1,(p,q)
0 (Ω), with 1 < p, q < ∞, the

anisotropic Sobolev space defined as the closure of the space C∞0 (Ω) with respect
to the norm ‖u‖(p,q) = ‖∇xu‖p + ‖∇yu‖q. A function u belonging to W

1,(p,q)
0 (Ω)

satisfies ∇xu ∈ Lp(Ω;RN ) and ∇yu ∈ Lq(Ω;RK). Moreover for almost all x ∈ Ξ
the function y 7→ u(x, y) belongs to W 1,q

0 (Υ).
We will denote BV (q)(Ω), with 1 < q < ∞, the anisotropic subspace of BV (Ω)

consisting of those functions u satisfying that Dxu is a Radon measure and ∇yu
belongs to Lq(Ω;RK) in such a way that for almost all x ∈ Ξ the function y 7→
u(x, y) belongs to W 1,q

0 (Υ). Some remarks concerning this space are in order. As
in the corresponding isotropic space (see for instance [1]), we may prove that, for a
fixed u ∈ BV (q)(Ω),

∫

Ω

|Dxu| = sup
{ ∫

Ω

udivxφ : φ ∈ C1
0 (Ω;RN ), ‖φ‖∞ ≤ 1

}
.

Note that each φ ∈ C1
0 (Ω;RN ) defines a linear functional

u 7→
∫

Ω

u divxφ ,

which is continuous in L1(Ω). Hence, the functional defined by

(2.5) u 7→
∫

Ω

|Dxu|
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is lower semicontinuous with respect to the convergence in L1(Ω). In the same way,
we may see that each ϕ ∈ C1

0 (Ω), with ϕ ≥ 0, defines a functional

u 7→
∫

Ω

ϕ|Dxu| ,

which is lower semicontinuous in L1(Ω). Furthermore, we may handle another lower
semicontinuous functional which takes into account the value of u on the boundary.
Indeed, extend u ∈ BV (q)(Ω) to a larger domain Ξ′ ×Υ, with u ≡ 0 outside of Ω,
and consider the total variation of the extended function. The divergence theorem
gives ∫

Ξ′×Υ

u divxφ = −
∫

Ω

φ ·Dxu +
∫

∂Ξ×Υ

uφ · νx dHN+K−1

for all φ ∈ C1
0 (Ξ′ ×Υ;RN ). Hence, we deduce that the functional

(2.6) u 7→
∫

Ω

|Dxu|+
∫

∂Ξ×Υ

|u| dHN+K−1 ,

is lower semicontinuous in L1(Ω).
Obtaining a priori estimates for solutions of (1.3) depends on the following two

inequalities. The first one is a Sobolev type inequality, whose proof can be found in
[32] (see also [23]). The second one is a Poincaré type inequality, for which we give
a proof below (see also [23]). Observe that, if p < N , then the first one is better
when Np

N−p > q.

Theorem 2.1. Let (p, q)∗ = N+K
(N/p)+(K/q)−1 . Then W

1,(p,q)
0 (Ω) ↪→ L(p,q)∗(Ω) with

continuous embedding and there exists a positive constant S(p,q) (only depending on
p, q, N and K) such that

(2.7) ‖u‖(p,q)∗ ≤ S(p,q)

( N∏

i=1

∥∥∥ ∂u

∂xi

∥∥∥
1

N+K

p

)( K∏

i=1

∥∥∥ ∂u

∂yi

∥∥∥
1

N+K

q

)

≤ S(p,q) ‖∇xu‖
N

N+K
p ‖∇yu‖

K
N+K
q ,

for all u ∈ W
1,(p,q)
0 (Ω).

Remark 2.2. Following the proof given in [32] an estimate of the constant S(p,q)

can be made. Indeed, we may take S(p,q) = N+K−1
(N/p)+(K/q)−1 . We explicitly remark

that with this choice limp→1 S(p,q) = S(1,q).

Theorem 2.3. Let D denote the diameter of Υ and let u ∈ BV (q)(Ω) be fixed.
Then the following inequality holds

(2.8)
∫

Ω

|u(x, y)|q dx dy ≤ Dq

∫

Ω

|∇yu(x, y)|q dx dy .

Proof: Fix x ∈ Ξ and choose a direction in Υ, say that of y1. Then there is a
closed interval I of length D and an open set Υ1 ⊂ RK−1 such that Υ ⊂ I×Υ1. To
be more precise, if (y1, y2, . . . , yK) ∈ Υ, then y1 ∈ I and (y2, . . . , yK) ∈ Υ1. Next,
extend the function u to Ξ × I × Υ1: u ≡ 0 outside of Ξ × Υ. For almost every
(y2, y3, . . . , yK) ∈ Υ1, the function t 7→ u(x; t, y2, · · · , yK) is absolutely continuous
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and vanishes in the extremes of I. Applying Poincare’s inequality to this function
we obtain

∫

I

|u(x; t, y2, y3, . . . , yK)|q dt ≤ Dq

∫

I

∣∣∣ ∂u

∂y1
(x; t, y2, y3, . . . , yK)

∣∣∣
q

dt

≤ Dq

∫

I

∣∣∇yu(x; t, y2, y3, . . . , yK)
∣∣q dt .

Integrating over Ξ×Υ1, we end the proof.

2.2. Anisotropic Anzellotti’s theory. In order to give sense to our notion of
solution, we have to define certain pairings between vectors fields and derivatives
of a BV–function, and to prove a Green’s formula. Throughout this subsection, we
take z = (ζ, λ) with ζ ∈ L∞(Ω;RN ) and λ ∈ Lq′(Ω;RK), satisfying div z ∈ Lr(Ω).
On the other hand, we assume that u ∈ BV (q)(Ω).

We begin by defining three distributions on Ω. For every ϕ ∈ C∞0 (Ω), we write

〈(z, Du), ϕ〉 = −
∫

Ω

uϕ div z −
∫

Ω

uz · ∇ϕ(2.9)

〈(λ,∇yu), ϕ〉 =
∫

Ω

ϕλ · ∇yu(2.10)

(ζ,Dxu) = (z,Du)− (λ,∇yu) .(2.11)

Since the third distribution is the sum of the other two and (λ,∇yu) is a function,
if we prove that (z, Du) is a Radon measure, so is (ζ,Dxu).

Following [2], we have the following result.

Proposition 2.4. (1) For every ϕ ∈ C∞0 (Ω), it holds

|〈(z, Du), ϕ〉| ≤ ‖ϕ‖∞
[
‖ζ‖∞|Dxu|(Ω) + ‖λ‖q′‖∇yu‖q

]
.

(2) For every open set U ⊂ Ω and every ϕ ∈ C∞0 (U), we have

|〈(ζ, Dxu), ϕ〉| ≤ ‖ϕ‖∞‖ζ‖L∞(U)

∫

U

|Dxu| .

Therefore, (z, Du) and (ζ, Dxu) are Radon measures, and |(ζ,Dxu)| ≤ ‖ζ‖∞|Dxu|.
In order to go on, we need the following anisotropic Meyer–Serrin theorem.

Proposition 2.5. For each u ∈ BV (q)(Ω)∩Lr′(Ω) there exists a sequence (un) in
W 1,1(Ω) ∩ C∞(Ω) such that

(1) un → u in Lr′(Ω) ,

(2)
∫

Ω

|∇xun| → |Dxu|(Ω) ,

(3) ∇yun → ∇yu in Lq(Ω).

Moreover, since ∂Ξ is Lipschitz–continuous, we can find un satisfying

un

∣∣
∂Ξ×Υ

= u
∣∣
∂Ξ×Υ

.

Proof: Fixed δ > 0, we claim the existence of a function uδ ∈ W 1,1(Ω) ∩ C∞(Ω)
such that∫

Ω

|u− uδ|r
′
< δr′

∫

Ω

|∇yun −∇yu|q < δq , and
∫

Ω

|∇xuδ| ≤ |Dxu|(Ω) + δ .
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In order to prove this claim, we denote by Ωk a sequence of open sets defined as
in the proof of the Meyers–Serrin theorem (see for instance [1], p. 122). Consider
also a partition of unity subordinate to this covering: φk ∈ C∞0 (Ω) such that
supp φk ⊂ Ωk, 0 ≤ φ ≤ 1 and

∑∞
k=0 φk(x) = 1 for all x ∈ Ω. Moreover, let (ρn)n

be a sequence of positive symmetric mollifiers. Finally, let (δk)k be a sequence of
positive numbers satisfying

∑∞
k=1 δk < δ. Now, for each k ∈ N, we can find εk > 0

such that

supp ρεk
∗ (φku) ⊂ Ωk ,

∫

Ω

|ρεk
∗ (φku)− φku|r′ < δr′

k ,

∫

Ω

|ρεk
∗ (u∇xφk)− u∇xφk| < δk , and

∫

Ω

|ρεk
∗ ∇y(uφk)−∇y(uφk)|q < δq

k .

Letting uδ =
∑∞

k=0 ρεk
∗ (uφk), we next follow the steps of the proof of [1], p. 123

to conclude the result.

Proposition 2.6. Let (un)n be a sequence in W 1,1(Ω) ∩ C∞(Ω) which converges
to u as in the above Proposition 2.5. Then

∫

Ω

(ζ,∇xun) →
∫

Ω

(ζ,Dxu) and
∫

Ω

λ · ∇yun →
∫

Ω

λ · ∇yu .

Proof: For any ϕ ∈ C∞0 (Ω), we have

|〈(ζ,∇xun), ϕ〉 − 〈(ζ,Dxu), ϕ〉|

≤ |〈(z,∇un), ϕ〉 − 〈(z, Du), ϕ〉|+
∣∣∣
∫

Ω

ϕλ · ∇yun −
∫

Ω

ϕλ · ∇yu
∣∣∣.

Therefore the first assertion follows from the analogous result proved by Anzellotti
(see [2]), and from the strong convergence ∇yun → ∇yu in Lq(Ω).

The second assertion is also a straightforward consequence of the strong conver-
gence ∇yun → ∇yu in Lq(Ω).

Now we prove a Green’s formula for function belonging to BV (q)(Ω).
As in [2] (see also [4] pp. 126–127) we may define the weak trace of the exterior
normal component of ζ in direction x, which will be denoted by [ζ, νx].

Theorem 2.7. Let Ξ be an open subset of RN with Lipschitz boundary and let Υ
be an open subset of RK . Denote Ω = Ξ×Υ ⊂ RN+K

If z = (ζ, λ) satisfies ζ ∈ L∞(Ω;RN ), λ ∈ Lq′(Ω;RK), and div z ∈ Lr(Ω), then
for every u ∈ BV (q)(Ω) the following formula holds

∫

Ω

udiv z +
∫

Ω

(ζ, Dxu) +
∫

Ω

λ · ∇yu =
∫

∂Ξ×Υ

u[ζ, νx] dHN+K−1 .

Proof: Consider a sequence (un)n in W 1,1(Ω) ∩ C∞(Ω) which converges to u as
in Proposition 2.5. Applying Green’s formula to each un, we obtain

∫

Ω

undivxζ +
∫

Ω

ζ · ∇xun =
∫

∂Ξ×Υ

un[ζ, νx] dHN+K−1 ,

∫

Ω

undivyλ +
∫

Ω

λ · ∇yun = 0 .
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Hence,

(2.12)
∫

Ω

undiv z +
∫

Ω

z · ∇un =
∫

∂Ξ×Υ

un[ζ, νx] dHN+K−1 .

We next study the convergence of each term in the above equality. Since un → u
in Lr′(Ω), we get

(2.13) lim
n→∞

∫

Ω

undiv z =
∫

Ω

udiv z .

By applying Proposition 2.6, we deduce that

(2.14) lim
n→∞

∫

Ω

z · ∇un = lim
n→∞

∫

Ω

ζ · ∇xun + lim
n→∞

∫

Ω

λ · ∇yun

=
∫

Ω

(ζ, Dxu) +
∫

Ω

λ · ∇yu .

Finally, since un

∣∣
∂Ξ×Υ

= u
∣∣
∂Ξ×Υ

,

(2.15) lim
n→∞

∫

∂Ξ×Υ

un[ζ, νx] dHN+K−1 =
∫

∂Ξ×Υ

u[ζ, νx] dHN+K−1 .

Therefore, on account of (2.13), (2.14) and (2.15), Theorem 2.7 follows by letting
n →∞ in (2.12).

3. Behaviour of up as p goes to 1

Let up ∈ W
1,(p,q)
0 (Ω) be the unique solution to the anisotropic elliptic equation

(3.16)
{ −divx

(|∇xup|p−2∇xup

)− divy

(|∇yup|q−2∇yup

)
= f, in Ω

up = 0, on ∂Ω ,

where 1 < p, q < ∞ and f belongs to Lr(Ω) with r as in (1.2). This means that
the following equality holds

(3.17)
∫

Ω

|∇xup|p−2∇xup · ∇xϕ +
∫

Ω

|∇yup|q−2∇yup · ∇yϕ =
∫

Ω

fϕ ,

for any ϕ ∈ W
1,(p,q)
0 (Ω). Existence of a unique solution up to (3.16) can be easily

obtained minimizing the functional

G[u] =
1
p

∫

Ω

|∇xu|p +
1
q

∫

Ω

|∇yu|q −
∫

Ω

fu

in the space W
1,(p,q)
0 (Ω). Indeed, first we note that

r ≥ rp := min
{

N + K

(N/p′) + (K/q′) + 1
, q′

}

so, by (1.2), f ∈ Lrp(Ω). Observe also that every minimizing sequence is bounded in
W

1,(p,q)
0 (Ω) and as a consequence we obtain a minimizing sequence which is weakly

convergent to some u in W
1,(p,q)
0 (Ω). Applying Theorems 2.1 and 2.3, one deduces

that sequence weakly converges to u in Lr′p(Ω). Finally, the lower–semicontinuity
of the gradient terms 1

p

∫
Ω
|∇xu|p + 1

q

∫
Ω
|∇yu|q and the continuity of

∫
Ω

fu imply
that u is a minimizer of the functional G.

In what follows, with abuse of notation, we will say that up is a sequence and
we will consider subsequences of it, as p goes to 1.



8 A. MERCALDO, J. D. ROSSI, S. SEGURA DE LEÓN, C. TROMBETTI

Theorem 3.1. Let up be a solution to (3.16) for any 1 < p < ∞. Then there exist
u ∈ BV (Ω) ∩ Lr′(Ω) and a subsequence of up, not relabelled, such that as p goes
to 1,

∇xup ⇀ Dxu *–weakly in the sense of measures;(3.18)

∇yup ⇀ ∇yu weakly in Lq(Ω;RK) ;(3.19)

up → u a.e. in Ω ;(3.20)

up → u in Lm(Ω) for 1 ≤ m < r′ .(3.21)

Proof: Taking up as test function in (3.17), we obtain

(3.22)
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q =
∫

Ω

fup ≤ ‖f‖r‖up‖r′ .

Our aim is to obtain an inequality as

(3.23)
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q ≤ M ,

being M a positive constant that does not depend on p. To get this estimate, first
recall that

r′ = max
{ N + K

N − 1 + (K/q)
, q

}
.

So that two possibilities have to be taken into account.
We begin by considering the case when r′ = N+K

N−1+(K/q) , that is, q ≤ N
N−1 .

Applying Theorem 2.1, we obtain
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q ≤ S(p,q)‖f‖r‖∇xu‖
N

N+K
p ‖∇yu‖

K
N+K
q .

Then Young’s inequality implies
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q ≤ (N/p′) + (K/q′)
N + K

(S(p,q)‖f‖r)
N+K

(N/p′)+(K/q′)

+
N

p(N + K)
‖∇xu‖p

p +
K

q(N + K)
‖∇yu‖q

q ,

from where it follows that
(N

p′
+K

) ∫

Ω

|∇xup|p +
(
N +

K

q′

) ∫

Ω

|∇yup|q ≤
(N

p′
+

K

q′

)
(S(p,q)‖f‖r)

N+K
(N/p′)+(K/q′) .

Thus, since K > K
q′ and N > N

p′ , this yields
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q ≤ (S(p,q)‖f‖r)
N+K

(N/p′)+(K/q′) .

Hence, we have obtained an inequality as (3.23) since N+K
(N/p′)+(K/q′) ≤ N+K

K q′ and
limp→1 S(p,q) = S(1,q).

We now turn to analyze the case when r′ = q, that is, q > N
N−1 . If we take

ε = 1/(2Dq), then Young’s inequality and Theorem 2.3 imply

‖f‖r‖up‖q ≤ ε

∫

Ω

|up|q + C(ε)‖f‖q′
r ≤ 1

2

∫

Ω

|∇yup|q + C(ε)‖f‖q′
r .
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Thus (3.22) becomes

(3.24)
∫

Ω

|∇xup|p +
1
2

∫

Ω

|∇yup|q ≤ C(‖f‖r, D, q)

and so inequality (3.23) is also obtained in the second case.
Applying Young’s inequality, it follows from (3.23) that

(3.25)
∫

Ω

|∇up| ≤
∫

Ω

|∇xup|+
∫

Ω

|∇yup|

≤ 1
p

∫

Ω

|∇xup|p +
p− 1

p
|Ω|+ 1

q

∫

Ω

|∇yup|q +
q − 1

q
|Ω| ≤ M + 2|Ω| ,

for p small enough. Hence, up is bounded in BV (Ω) and we may find u ∈ BV (Ω)
satisfying

∇xup ⇀ Dxu *–weakly in the sense of measures;(3.26)

∇yup ⇀ Dyu *–weakly in the sense of measures;(3.27)

up → u in L1(Ω) and a.e. in Ω .(3.28)

Since, by (3.23), the sequence ∇yup is bounded in Lq(Ω), it follows that, actually,
∇yup ⇀ ∇yu weakly in Lq(Ω). Moreover, Theorem 2.1 implies that up is bounded
in L

N+K
N+(K/q)−1 (Ω) and Theorem 2.3 implies that up is bounded in Lq(Ω), so that it

is bounded in Lr′(Ω). Therefore, u ∈ Lr′(Ω) and it follows by interpolation and
from (3.28) that up → u in Lm(Ω), where 1 ≤ m < r′.

Remark 3.2. We explicitely remark that inequality (2.7) is usually written repla-
cing the right-hand side with the norm of the anisotropic Sobolev space (that do
not contain a product), i.e.,

‖u‖(p,q)∗ ≤ S(p,q)

(
‖∇xu‖p + ‖∇yu‖q

)
u ∈ W 1,(p,q)(Ω) .

Nevertheless, this inequality is not suitable for our purposes, since from here we
can not obtain the a priori estimates (3.23). Indeed, taking up as test function in
(3.17) and using the previous Sobolev inequality, we get

∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q ≤ Sp′

(p,q)‖f‖p′
r +

p′

q′
Sq′

(p,q)‖f‖q′
r ,

from where we are not able to deduce the a priori estimate (3.23) since p′ → +∞,
when p → 1.

Theorem 3.3. Under the same assumptions of Theorem 3.1, there exist z = (ζ, λ)
with ζ ∈ L∞(Ω;RN ) and λ ∈ Lq′(Ω;RK) and a subsequence of up, not relabelled,
satisfying

‖ζ‖∞ ≤ 1 , λ = |∇yu|q−2∇yu

and

|∇xup|p−2∇xup ⇀ ζ weakly in Ls(Ω;RN ) ∀s < ∞ ,

∇yup → ∇yu in Lq(Ω;RK) .

as p goes to 1.
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Proof: It follows from the fundamental inequality (3.23) that there exists z =
(ζ, λ) where ζ ∈ Ls(Ω;RN ), for all s < ∞, and λ ∈ Lq′(Ω;RK) such that, up
to subsequences, |∇xup|p−2∇xup ⇀ ζ weakly in Ls(Ω), and |∇yup|q−2∇yup ⇀ λ

weakly in Lq′(Ω).

To prove that ζ ∈ L∞(Ω;RN ) and ‖ζ‖∞ ≤ 1 we may follow the same arguments
of [3], which we sketch for the sake of completeness. Fixed k > 0, define

Bp,k = {x ∈ Ω : |∇up(x)| > k} .

As a consequence of (3.23) we have that

(3.29) |Bp,k| ≤ C

kp
for every p > 1, k > 0.

The same inequality (3.23) implies that (|∇xup|p−2∇xupχBp,k
) is bounded in any

Ls(Ω;RN ) with s < ∞. Thus, there is some gk ∈ L1(Ω,RN ) such that

|∇xup|p−2∇xupχBp,k
⇀ gk

weakly in L1(Ω,RN ) as p → 1. Now for any φ ∈ L∞(Ω,RN ) with ‖φ‖∞ ≤ 1, we
easily prove that ∣∣∣∣

∫

Ω

|∇xup|p−2∇xup · φχBp,k

∣∣∣∣ ≤
C

k
.

Letting p goes to 1, we get that
∣∣∣∣
∫

Ω

gk · φ
∣∣∣∣ ≤

C

k

holds for all φ ∈ L∞(Ω,RN ) with ‖φ‖∞ ≤ 1. By duality, we obtain

(3.30)
∫

Ω

|gk| ≤ C

k
.

On the other hand, we also have that
∣∣|∇xup|p−2∇xupχΩ\Bp,k

∣∣ ≤ kp−1 for any p > 1,

Taking the limit as p tends to 1, we obtain that |∇up|p−2∇upχΩ\Bp,k
weakly

converges in L1(Ω,RN ) to some function fk ∈ L1(Ω,RN ) such that ‖fk‖∞ ≤ 1.
Hence, we may write ζ = fk + gk with ‖fk‖∞ ≤ 1 and gk satisfying (3.30), for all
k > 0. It follows that ζ = limk→∞ fk in L1(Ω;RN ) and so ‖ζ‖∞ ≤ 1.

To prove the strong convergence of the gradients ∇yup to ∇yu, we will compute

(3.31) lim
p→1

∫

Ω

(|∇yup|q−2∇yup − |∇yu|q−2∇yu
) · ∇y(up − u) = 0 .

Observe that, by (3.19), we already have

(3.32) lim
p→∞

∫

Ω

|∇yu|q−2∇yu · ∇y(up − u) = 0 .

To handle the remaining terms, we consider ε > 0 and v ∈ C∞(Ω) such that

(3.33)
∫

Ω

|f | |u− v|+
∣∣∣
∫

Ω

|∇xv| − |Dxu|(Ω)
∣∣∣ < ε .
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Taking up − v as test function in (3.17), it yields
∫

Ω

|∇xup|p −
∫

Ω

|∇xup|p−2∇xup · ∇xv +
∫

Ω

|∇yup|q−2∇yup · ∇y(up − v)

=
∫

Ω

f(up − v) .

If we apply Young’s inequality and let p goes to 1 applying the lower semicontinuity
of (2.5), we obtain

|Dxu|(Ω)−
∫

Ω

ζ · ∇xv + lim sup
p→1

∫

Ω

|∇yup|q−2∇yup · ∇y(up − v) ≤
∫

Ω

f(u− v) .

Since ∣∣∣
∫

Ω

ζ · ∇xv
∣∣∣ ≤ ‖ζ‖∞

∫

Ω

|∇xv| ≤
∫

Ω

|∇xv|,

it follows that

lim sup
p→1

∫

Ω

|∇yup|q−2∇yup · ∇y(up − v) ≤
∫

Ω

|f ||u− v|+
∫

Ω

|∇xv| − |Dxu|(Ω) < ε ,

by (3.33). Now the arbitrariness of ε > 0 implies

lim sup
p→1

∫

Ω

|∇yup|q−2∇yup · ∇y(up − v) ≤ 0 .

From it and (3.32) we deduce that

lim sup
p→1

∫

Ω

(|∇yup|q−2∇yup − |∇yu|q−2∇yu
) · ∇y(up − u) ≤ 0 .

Since the integrand is non–negative, we get (3.31). Once (3.31) has been proved,
we apply the same argument of [12] (see also [10]) and passing to a subsequence, if
necessary, we deduce that ∇yup converge pointwise to ∇yu in Ω.

Therefore, λ = |∇yu|q−2∇yu, that is,

(3.34) |∇yup|q−2∇yup ⇀ |∇yu|q−2∇yu weakly in Lq′(Ω;RK) .

As a consequence of (3.19), (3.34) and (3.31), we obtain

lim
p→1

∫

Ω

|∇yup|q = lim
p→1

∫

Ω

|∇yu|q−2∇yu·∇y(up−u)+ lim
p→1

∫

Ω

|∇yup|q−2∇yup ·∇yu

=
∫

Ω

|∇yu|q .

From this convergence and (3.19), we deduce ∇yup → ∇yu in Lq(Ω;RK) .

4. Main results

In this Section, we begin by introducing the definition of a solution to problem
(1.1) and then we prove existence, uniqueness and regularity results for such a
solution
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Definition 4.1. We say that u ∈ BV (q)(Ω) is a solution to (1.1) if the following
conditions hold:

There exists z = (ζ, λ) with ζ ∈ L∞(Ω;RN ) and λ ∈ Lq′(Ω;RK) satisfying

‖ζ‖∞ ≤ 1 and λ = |∇yu|q−2∇yu ;(4.35)

−div z = f in D′(Ω) ;(4.36)

[ζ, νx] ∈ sign (−u) HN+K−1–a.e. on ∂Ξ×Υ ;(4.37)

(ζ, Dxu) is a Radon measure and (ζ, Dxu) = |Dxu| .(4.38)

By applying Green’s formula given by Theorem 2.7, one can easily deduce the
following variational formulation of problem (1.1): the identity

(4.39)
∫

Ω

|Dxu| −
∫

Ω

(ζ,Dxv) +
∫

Ω

|∇yu|q−2∇yu · ∇y(u− v)

=
∫

Ω

f(u− v)−
∫

∂Ξ×Υ

|u| dHN+K−1 −
∫

∂Ξ×Υ

v[ζ, νx] dHN+K−1

holds for every v ∈ BV (q)(Ω).

4.1. Existence and uniqueness. We have the following existence result.

Theorem 4.2. There exists, at least, a solution to problem (1.1).

Proof: First apply Theorem 3.1 to get u ∈ BV (Ω)∩Lr′(Ω) that, by Theorem 3.3,
satisfies

lim
p→1

∫

Ξ

∫

Υ

|∇yup(x, y)−∇yu(x, y)|qdy dx = 0 .

Then there exists a sequence pn satisfying pn > 1, limn→∞ pn = 1 and

lim
n→∞

∫

Υ

|∇yupn(x, y)−∇yu(x, y)|qdy = 0 ,

for almost all x ∈ Ξ. We may assume, without loss of generality, that for those
x ∈ Ξ each function y 7→ upn(x, y) belongs to W 1,q

0 (Υ). Hence, for almost all x ∈ Ξ,
the function y 7→ u(x, y) belongs to W 1,q

0 (Υ) and so u ∈ BV (q)(Ω). Moreover, from
Theorem 3.3, we obtain z = (ζ, λ) satisfying (4.35) in Definition 4.1.

We next proceed to prove the other three conditions of Definition 4.1.

Proof of (4.36): Taking ϕ ∈ C∞0 (Ω) as test function in (3.17) we get
∫

Ω

|∇xup|p−2∇xup · ∇xϕ +
∫

Ω

|∇yup|q−2∇yup · ∇yϕ =
∫

Ω

fϕ .

Letting p goes to 1, by Theorem 3.3, we obtain
∫

Ω

ζ · ∇xϕ +
∫

Ω

λ · ∇yϕ =
∫

Ω

fϕ .

Proof of (4.38): As usual, we denote the truncation at level ±k by

Tk(s) =





s −k ≤ s ≤ k,
k s > k,
−k s < −k.
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We now choose Tk(up) ϕ, with ϕ ∈ C∞0 (Ω) and ϕ ≥ 0, as test function in (3.17).
Then

(4.40)
∫

Ω

ϕ|∇xTk(up)|p +
∫

Ω

Tk(up)|∇xup|p−2∇xup · ∇xϕ

+
∫

Ω

ϕ|∇yTk(up)|q +
∫

Ω

Tk(up)|∇yup|q−2∇yup · ∇yϕ =
∫

Ω

fTk(up)ϕ .

Applying Young’s inequality, we get
∫

Ω

ϕ|∇xTk(up)| ≤ 1
p

∫

Ω

ϕ|∇xTk(up)|p +
p− 1

p

∫

Ω

ϕ ,

so that it follows from (4.40) that
∫

Ω

ϕ|∇xTk(up)|+ 1
p

∫

Ω

Tk(up)|∇xup|p−2∇xup · ∇xϕ

+
1
p

∫

Ω

ϕ|∇yTk(up)|q +
1
p

∫

Ω

Tk(up)|∇yup|q−2∇yup · ∇yϕ

≤ 1
p

∫

Ω

fTk(up)ϕ +
p− 1

p

∫

Ω

ϕ .

In order to pass to the limit in the first term on the left hand–side, we may apply
the lower semicontinuity of the functional u 7→ ∫

Ω
ϕ|Dxu|, obtaining

∫

Ω

ϕ|DxTk(u)|+
∫

Ω

Tk(u)ζ · ∇xϕ +
∫

Ω

ϕ|∇yTk(u)|q

+
∫

Ω

Tk(u)λ · ∇yϕ ≤
∫

Ω

fTk(u)ϕ .

Letting now k →∞, we get
∫

Ω

ϕ|Dxu|+
∫

Ω

u ζ · ∇xϕ +
∫

Ω

ϕ|∇yu|q +
∫

Ω

uλ · ∇yϕ

≤
∫

Ω

fuϕ = −
∫

Ω

(div z)uϕ .

It follows from Green’s formula that∫

Ω

ϕ|Dxu|+
∫

Ω

ϕ|∇yu|q ≤ 〈(ζ, Dxu), ϕ〉+
∫

Ω

ϕλ · ∇yu .

By the definition of λ, we get
∫
Ω

ϕ|Dxu| ≤ 〈(ζ,Dxu), ϕ〉 for all ϕ ∈ C∞0 (Ω) satisfying
ϕ ≥ 0. Hence,

|Dxu| ≤ (ζ, Dxu) as measures.

The equality follows since

(ζ, Dxu) ≤ ‖ζ‖∞|Dxu| ≤ |Dxu| .

Proof of (4.37): Considering up as test function in (3.17), we get
∫

Ω

|∇xup|p +
∫

Ω

|∇yup|q =
∫

Ω

fup .
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By applying Young’s inequality and the lower semicontinuity of the functional (2.6)
we obtain

(4.41)
∫

Ω

|Dxu|+
∫

∂Ξ×Υ

|u| dHN+K−1 +
∫

Ω

|∇yu|q ≤
∫

Ω

fu .

Now, f = −div z in D′ and Green’s formula imply∫

Ω

fu = −
∫

Ω

div (z)u =
∫

Ω

(ζ, Dxu) +
∫

Ω

λ · ∇yu−
∫

∂Ξ×Υ

u[ζ, νx] dHN+K−1 .

Therefore, it follows from (4.41) that
∫

Ω

|Dxu|+
∫

∂Ξ×Υ

|u| dHN+K−1 +
∫

Ω

|∇yu|q

≤
∫

Ω

(ζ,Dxu) +
∫

Ω

λ · ∇yu−
∫

∂Ξ×Υ

u[ζ, νx] dHN+K−1 .

Since |Dxu| = (ζ, Dxu) and
∫
Ω
|∇yu|q =

∫
Ω

λ · ∇yu, it yields
∫

∂Ξ×Υ

(|u|+ u[ζ, νx]) dHN+K−1 ≤ 0 .

Since |u| + u[ζ, νx] ≥ 0 HN+K−1–a.e. in ∂Ξ × Υ we obtain |u| + u[ζ, νx] = 0
HN+K−1–a.e. in ∂Ξ×Υ and so [ζ, νx] ∈ sign (−u), HN+K−1–a.e. in ∂Ξ×Υ .

Now we prove the uniqueness result.

Theorem 4.3. There exists, at most, a solution to problem (1.1).

Proof: Suppose that u1 and u2 are two solutions to problem (1.1). Thus, there
exist z1 = (ζ1, λ1) and z2 = (ζ2, λ2) satisfying (4.35)–(4.38). Taking u2 as test
function in the variational formulation (4.39) corresponding to u1, it yields

∫

Ω

|Dxu1| −
∫

Ω

(ζ1, Dxu2) +
∫

Ω

|∇yu1|q−2∇yu1 · ∇y(u1 − u2)

=
∫

Ω

f(u1 − u2)−
∫

∂Ω

|u1| dHN+K−1 −
∫

∂Ω

[ζ1, νx]u2 dHN+K−1 .

Analogously, we obtain
∫

Ω

|Dxu2| −
∫

Ω

(ζ2, Dxu1) +
∫

Ω

|∇yu2|q−2∇yu2 · ∇y(u2 − u1)

=
∫

Ω

f(u2 − u1)−
∫

∂Ω

|u2| dHN+K−1 −
∫

∂Ω

[ζ2, νx]u1 dHN+K−1 .

Adding both equalities, we deduce

(4.42)
∫

Ω

|Dxu1| −
∫

Ω

(ζ2, Dxu1) +
∫

Ω

|Dxu2| −
∫

Ω

(ζ1, Dxu2)

+
∫

Ω

(|∇yu1|q−2∇yu1 − |∇yu2|q−2∇yu2

) · ∇y(u1 − u2)

= −
∫

∂Ω

|u2| dHN+K−1 −
∫

∂Ω

[ζ1, νx]u2 dHN+K−1

−
∫

∂Ω

|u1| dHN+K−1 −
∫

∂Ω

[ζ2, νx]u1 dHN+K−1 .
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By Proposition 2.4, since ‖ζ1‖∞ ≤ 1 and ‖ζ2‖∞ ≤ 1, we get
∫

Ω

|Dxu1| −
∫

Ω

(ζ2, Dxu1) ≥ 0 ,

∫

Ω

|Dxu2| −
∫

Ω

(ζ1, Dxu2) ≥ 0 ,

∫

∂Ω

|u2| dHN+K−1 +
∫

∂Ω

[ζ1, νx]u2 dHN+K−1 ≥ 0 ,

∫

∂Ω

|u1| dHN+K−1 +
∫

∂Ω

[ζ2, νx]u1 dHN+K−1 ≥ 0 ,

and so (4.42) becomes
∫

Ω

(|∇yu1|q−2∇yu1 − |∇yu2|q−2∇yu2

) · ∇y(u1 − u2) ≤ 0 .

Hence, since the integrand is nonnegative,
(|∇yu1|q−2∇yu1 − |∇yu2|q−2∇yu2

) · ∇y(u1 − u2) = 0 a.e. in Ω ,

and as a consequence ∇yu1 = ∇yu2 a.e. in Ω. Finally, applying Theorem 2.3, we
conclude u1 = u2 a.e. in Ω, as desired.

Remark 4.4. If there is no direction where the operator is a q–Laplacian with
q > 1, it can not be expected a uniqueness result. Assume, to simplify, that u is a
regular solution to the problem

(4.43)




−div

( Du

|Du|
)

= f , in Ω ;

u = 0, on ∂Ω ;

and h ∈ C1(R,R) is strictly increasing and satisfies h(0) = 0, then v = h(u) is also
a solution to (4.43). Hence uniqueness in general does not hold (see also [4], p. 61).

4.2. Regularity. The following regularity result holds.

Theorem 4.5. Let f ∈ Lm(Ω), with m > r. We also assume that m < N + K
q

when q < N
N−1 . Then u ∈ Ls(Ω), where

s = max
{ m′(N + K)(q − 1)(

(N − 1)q + K
)
m′ − (N + K)

,m(q − 1)
}

.

Proof: We are going to prove that the sequence up is bounded in Ls(Ω). To this
end, we will follow the arguments in [8]. Let k ≥ 1 and consider, as test function
in (3.17),

v =





1 , if |up| ≥ k ;
(|up| − k + 1) sign up , if k − 1 ≤ |up| < k ;
0 , if |up| < k − 1 .

We get

(4.44)
∫

{k−1≤|up|<k}
|∇xup|p +

∫

{k−1≤|up|<k}
|∇yup|q ≤

∫

{|up|≥k−1}
|f | .

Assume first that q ≥ N
N−1 , so that q′ = r and our datum belongs to Lm(Ω)

with m > q′. Thus, by (4.44), we have

(4.45)
∫

{k−1≤|up|<k}
|∇yup|q ≤

∫

{|up|≥k−1}
|f | , for all k ≥ 1 .
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Consider a parameter γ > 1 to be determined. Then, by Theorem 2.3, we get
∫

Ω

|up|γq ≤ C

∫

Ω

∣∣∇y|up|γ
∣∣q = C

∫

Ω

|up|q(γ−1)|∇yup|q

= C

∞∑

k=1

∫

{k−1≤|up|<k}
|up|q(γ−1)|∇yup|q ≤ C

∞∑

k=1

∫

{k−1≤|up|<k}
kq(γ−1)|∇yup|q .

By applying (4.45) in each term of the right hand side, one deduces
∫

Ω

|up|γq ≤ C

∞∑

k=1

∫

{|up|≥k−1}
kq(γ−1)|f | = C

∞∑

k=1

∞∑

h=k

kq(γ−1)

∫

{h−1≤|up|<h}
|f | .

Changing the order of summation and using
∑h

k=1 kq(γ−1) ≤ Chq(γ−1)+1, we have

∫

Ω

|up|γq ≤ C

∞∑

h=1

hq(γ−1)+1

∫

{h−1≤|up|<h}
|f |

= C

∞∑

h=1

∫

{h−1≤|up|<h}
(1 + |up|)q(γ−1)+1|f | = C

∫

Ω

(1 + |up|)q(γ−1)+1|f |

≤ C

(∫

Ω

|f |m
)1/m (∫

Ω

(1 + |up|)
(
q(γ−1)+1

)
m′

)1/m′

.

If we take γ satisfying γq =
(
q(γ − 1) + 1

)
m′, then we obtain γ = m

q′ > 1 (since
m′ < q) and an estimate of up in Lγq(Ω). Since γq = m(q − 1), we are done.

Assume now that q < N
N−1 . It implies q < N+K

N+(K/q)−1 = r′. The proof follows
the same lines as above but applying Theorem 2.1 instead of Theorem 2.3. We only
point out the differences.

Consider parameters γp > 1 to be determined. Then, by Theorem 2.3 and
Young’s inequality, we get

(∫

Ω

|up|γp
N+K

(N/p)+(K/q)−1

) (N/p)+(K/q)−1
(N/p)+(K/q)

≤ S(p,q)

(∫

Ω

∣∣∇x|up|γp
∣∣p

) N/p
(N/p)+(K/q)

(∫

Ω

∣∣∇y|up|γp
∣∣q

) K/q
(N/p)+(K/q)

≤ S(p,q)

[∫

Ω

∣∣∇x|up|γp
∣∣p +

∫

Ω

∣∣∇y|up|γp
∣∣q

]

≤ S(p,q)γ
q
p

∞∑

k=1

kq(γp−1)

[∫

{k−1≤|up|<k}
|∇xup|p +

∫

{k−1≤|up|<k}
|∇yup|q

]
.

Now we apply (4.44) and perform similar computations as those done in the previous
case to get

(4.46)
(∫

Ω

|up|γp
N+K

(N/p)+(K/q)−1

) (N/p)+(K/q)−1
(N/p)+(K/q)

≤ S(p,q)γ
q
p‖f‖m

(∫

Ω

(1 + |up|)
(
q(γp−1)+1

)
m′

)1/m′

.



ANISOTROPIC ELLIPTIC PROBLEMS OF P-LAPLACIAN TYPE 17

We remark that 1
m′ < N+(K/q)−1

N+(K/q) since m < N + K
q . Thus, we may consider p small

enough to satisfy 1
m′ < (N/p)+(K/q)−1

(N/p)+(K/q) . If we take γp satisfying γp
N+K

(N/p)+(K/q)−1 =(
q(γp − 1) + 1

)
m′, then we obtain

γp =
m′(q − 1)

qm′ − N+K
(N/p)+(K/q)−1

.

Observe that γp is bounded by a constant not depending on p. Hence, we have∫

Ω

|up|γp
N+K

(N/p)+(K/q)−1 ≤ C ,

where C depends on f through its m–norm, and on p through the parameter γp,
the Sobolev constant S(p,q) and the exponent (N/p)+(K/q)−1

(N/p)+(K/q) . Therefore, we may let
p goes to 1 and get an estimate of u in a Lebesgue space:

lim
p→1

γp
N + K

(N/p) + (K/q)− 1
=

m′(q − 1)(N + K)
qm′(N + (K/q)− 1)− (N + K)

= s .

Now some remarks are in order. Observe that N − q(N − 1) > 0 since q < N
N−1 .

So that, we obtain

N +
K

q
<

N + K

N − q
(
N − 1

) .

Since m < N+K
N−q(N−1) , one deduces qm′ − N+K

N+(K/q)−1 > 0. As a consequence,
limp→1 γp > 1 if and only if m > N+K

(K/q′)+1 . Since this last inequality holds, we
have really improved the regularity of our solution. Finally, we point out that this
improvement needs that the inequalities N+K

(K/q′)+1 < m < N + K
q hold, and it is

easy to see that we indeed have N+K
(K/q′)+1 < N + K

q .

4.3. Examples. We take Ω = Ξ×Υ, with Ξ = B1(0) in RN (N ≥ 2) and Υ = B1(0)
in RK , and we will assume throughout this subsection that q > N

N−1 , so r = q′ < N .
Our aim is to show examples of problems (1.1) having solutions of the form

u(x, y) = a(x)b(y).

Consider f1 a positive radial decreasing function belonging to the Marcinkiewicz
space LN,∞(Ξ) and satisfying ‖f1‖LN,∞(Ξ) ≤ 1. Let a ∈ W 1,1

0 (Ξ) ∩ L∞(Ξ) be a
solution to

(4.47)




−div

( Da

|Da|
)

= f1 , in Ξ ;

a = 0 , on ∂Ξ .

Thus, a is a radial nonnegative function and there exists ζ ∈ L∞(Ξ;RN ) satisfying
(1) ‖ζ‖∞ ≤ 1,
(2) −div ζ = f1 in D′(Ξ),
(3) (ζ, Da) = |Da| as measures on Ξ.

We refer to [30], Section 3, for a detailed discussion of all matters concerning radial
solutions to problem (4.47).

Now let f2 ∈ Lq′(Υ), with f2 ≥ 0, and let b ∈ W 1,q
0 (Υ) be the unique solution to

(4.48)
{ −∆qb = f2 , in Υ ;

b = 0 , on ∂Υ .
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It is straightforward that b ≥ 0 in Υ.
Let us check that u(x, y) = a(x)b(y) is a solution to (1.1) with datum

(4.49) f(x, y) = f1(x) + f2(y)a(x)q−1 ∈ Lr(Ω) .

To this end, define ζ(x, y) = ζ(x), λ(x, y) = a(x)q−1|∇b(y)|q−2∇b(y) and z = (ζ, λ).
Then ζ ∈ L∞(Ω;RN ) with ‖ζ‖∞ = ‖ζ‖∞ ≤ 1, and λ(x, y) ∈ Lq′(Ω;RK) with
λ = |∇yu|q−2∇yu. Moreover,

−divxζ = f1(x) and − divyλ = a(x)q−2f2(y) in D′(Ω) ,

so that −div z = f in the sense of distributions.
To show that (ζ, Dxu) is a Radon measure on Ω, take first ϕ(x, y) = φ(x)ψ(y),

where φ(x) ∈ C∞0 (Ξ) and ψ(y) ∈ C∞0 (Υ). Then

〈(ζ,Dxu), ϕ)〉 = −
∫

Ω

a(x)b(y)φ(x)ψ(y)div ζ(x)−
∫

Ω

a(x)b(y)ψ(y)ζ(x) · ∇φ(x)

=
( ∫

Υ

b ψ
)[
−

∫

Ξ

aφ div ζ −
∫

Ξ

a ζ · ∇φ
]

=
( ∫

Υ

b ψ
)
〈(ζ,Da), φ〉 .

Let us denote C0(Ω) = {ϕ ∈ C(Ω) : ϕ∣∣∂Ω
= 0}, and let us write C0(Ξ) and C0(Υ)

with a similar meaning. Since C∞0 (Ξ) is uniformly dense in C0(Ξ) and C∞0 (Υ) is
uniformly dense in C0(Υ), it follows that

(4.50) 〈(ζ, Dxu), ϕ〉 =
( ∫

Υ

bψ
)
〈(ζ, Da), φ〉 ,

for all ϕ(x, y) = φ(x)ψ(y), with φ(x) ∈ C0(Ξ) and ψ(y) ∈ C0(Υ). Thus, by linearity,
we continuously extend (ζ, Dxu) to functions ϕ ∈ C0(Ω) which can be written as
ϕ(x, y) =

∑n
i=1 φi(x)ψi(y) with φi ∈ C0(Ξ) and ψi ∈ C0(Υ). Further, appealing to

a variant of the Stone–Weierstrass Theorem, we may continuously extend (ζ, Dxu)
to C0(Ω), so that (ζ,Dxu) is a Radon measure.

We also deduce from (4.50) that if BΞ is a Borel subset of Ξ and BΥ is a Borel
subset of Υ, then (ζ,Dxu)(BΞ × BΥ) = (ζ,Da)(BΞ)

∫
BΥ

b. Since we also have
|Dxu|(BΞ×BΥ) = |Da|(BΞ)

∫
BΥ

b, we conclude that (ζ, Dxu) = |Dxu| as measures.

Let us study now some special choices of f1 and f2. First consider

f1(x) = λ
N − 1
|x| , with 0 < λ < 1.

It is well–known that a(x) = 0 for all x ∈ Ξ is a solution of (4.47), with ζ(x) = λ x
|x|

(cf. [30]). So that the solution to (1.1) with datum

f(x, y) = λ
N − 1
|x|

is given by u(x, y) = 0, whatever datum f2(y) be considered in (4.49). We explicitly
observe that in this case ‖ζ‖L∞ = λ < 1.

Now let us consider

f1(x) =
N − 1
|x| .

Then a(x) = 1−|x| is a solution to (4.47) with ζ(x) = x
|x| . Thus, taking f2(y) = 0

in (4.49), the solution to (1.1) is also given by u(x, y) = 0.
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On the other hand, taking

f1(x) =
N − 1
|x| and f2(y) 6= 0 ,

the solution to (1.1) is given by

u(x, y) = (1− |x|) b(y),

which is nontrivial since b(y) is nontrivial. So the datum

f(x, y) = λ
N − 1
|x| + f2(y), with 0 < λ < 1 ,

produces the trivial solution for any choice of f2, and the datum

f(x, y) =
N − 1
|x| + f2(y)(1− |x|)q−1,

which is larger than N−1
|x| , gives a nontrivial solution u(x, y) as well. In others

words, once the vector field ζ satisfies ‖ζ‖∞ > 1, the solution to (1.1) becomes non
trivial. Roughly speaking, data large enough produce an excess which have to be
absorbed only by the term −divy

(|∇yu|q−1∇yu
)
.

Since we may consider every f2 ∈ Lq′(Υ), it follows that we may start from a
datum f(x, y) with norm ‖f‖r as large as we want.

Furthermore, the above argument shows that if we take f(x, y) = λN−1
|x| , with

λ > 1, as datum, we can not expect the solution to problem (1.1) to be a product
of two functions with separate variables.
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[20] A. El Hamidi and J. Vétois, “Sharp Sobolev Asymptotics for Critical Anisotropic Equa-
tions”, Arch. Ration. Mech. Anal. 192 (2009), no. 1, 1–36.

[21] A. El Hamidi and J. M. Rakotoson, “Compactness and quasilinear problems with critical
exponents”, Differential Integral Equations 18 (2005), 1201–1220.

[22] A. El Hamidi and J. M. Rakotoson, “Extremal functions for the anisotropic Sobolev
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[23] I. Fragalà, F. Gazzola and B. Kawohl, “Existence and nonexistence results for anisotro-
pic quasilinear elliptic equations” Ann. Institut H. Poincaré Anal. Non Linéaire 21 (2004),
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