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Abstract. In the present paper we study the Dirichlet problem for the equation

−div

(
Du

|Du|

)
+ |Du| = f

in an unbounded domain Ω ⊂ RN , where the datum f is bounded and nonnegative.
We point out that the only hypothesis assumed on ∂Ω is that of being Lipschitz–
continuous. This problem is the non–homogeneous extension of the level set formula-
tion of the inverse mean curvature flow in an Euclidean space. We introduce a suitable
concept of weak solution, for which we prove existence, uniqueness and a Comparison
Principle.

1. Introduction

The aim of this paper is to study the problem

(1.1)



−div

(
Du

|Du|

)
+ |Du| = f , in Ω ;

u = 0 , on ∂E0 ;

lim
|x|→∞

u(x) = +∞ ;

where Ω = RN\E0, being N ≥ 2 and E0 an open bounded set having Lipschitz–
continuous boundary, and 0 ≤ f ∈ L∞(Ω). We introduce a natural concept of weak
solution and prove existence, uniqueness and a comparison principle. In bounded do-
mains, the Dirichlet problem for that equation has been considered in [16]. We will use
some of the techniques introduced in this paper, but we remark that the proofs of the
present paper are more involved due to the unbounded character of the domain. On
the other hand, previous results in unbounded domains have dealt with the homoge-
neous equation (the level set formulation of the inverse mean curvature flow) assuming
additional conditions of smoothness on the boundary (see [13, 14, 18, 19]). We im-
prove those papers in the sense that we do not assume the boundary being C1, only
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Lipschitz–continuous. Nevertheless, when this article was being completed we learned
of a preprint by Moser [20] in which this flow is studied from a very general perspective:
it is shown that there exists solution under the only assumption on the initial condition
E0 of being open and bounded. Thus, the present paper is actually an extension of
the inverse mean curvature flow in an Euclidean space to the inhomogeneous case and
using a different concept of solution. In our inhomogeneous case, the datum f plays
the role of damping the inverse mean curvature flow.

The inverse mean curvature flow is a one-parameter family of hypersurfaces {Γt}t≥0 ⊂
RN (N ≥ 2) whose normal velocity Vn(t) at each time t equals to the inverse of its mean
curvature H(t). If we let Γt := F (Γ0, t), then the parametric description of the inverse
mean curvature flow is to find F : Γ0 × [0, T ]→ RN such that

(1.2)
∂F

∂t
=

ν

H
, t ≥ 0,

where ν denotes the unit outward normal to Γt.

The inverse mean curvature flow and related geometric evolution problems have been
studied by several authors. Among the pioneers works should be quoted [25, 12, 11,
24]. Huisken and Ilmanen in [13] propose a level set formulation of the inverse mean
curvature flow (1.2), and define a notion of weak solution using an energy minimizing
principle in such a way that the generalized inverse mean curvature flow exists for all
time. Using this result they then give a proof of the Penrose Inequality, which says that
the total mass of a space–time containing black holes with event horizons of the total
area A should be at least

√
A(16π)−1 , for the particular case of a single black hole.

The level set formulation propose in [13] can be stated as follows. Assume that the
flow is given by the level sets of a Lipschitz function u : RN → R via

Γt = ∂Et, Et := {x ∈ RN : u(x) < t}.
Wherever u is smooth with ∇u 6= 0, equation (1.2) is equivalent to

div

(
∇u
|∇u|

)
= |∇u|.

Thus, (1.2) give rise to the boundary value problem

(1.3)


div

(
∇u
|∇u|

)
= |∇u| , in Ω ;

u = 0 , on ∂Ω ;

where Ω = RN\E0. Since E0 is bounded, it follows that Ω is unbounded, and then to
get uniqueness Huisken and Ilmanen look for solutions u satisfying

lim
|x|→∞

u(x) = +∞.
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To define weak solution of problem (1.3), Huisken and Ilmanen in [13] consider, for
any compact K ⊂ Ω and any function u ∈ BVloc(Ω) ∩ C(Ω), the functional

JKu (v) :=

∫
K

(|∇v|+ |∇u|v) dx,

and define a weak solution of problem (1.3) as a locally Lipschitz function u which
satisfies

JKu (u) ≤ JKu (v),

for every locally Lipschitz function v such that {v 6= u} ⊂⊂ Ω, and any compact K
containing {v 6= u}. They proved the existence of weak solution by elliptic regularity.
Later, in [14], Huisken and Ilmanen have proved regularity results of inverse mean
curvature flow and as consequence, every weak solution is regular after the first instant
where a level set is star shaped.

A different proof for the existence of weak solutions of problem (1.3) is given in
[18] by Moser, which relies on the observation that for p > 1, a logarithmic change of
dependent variable transforms the approximating equation div(|∇u|p−2∇u) = |∇u|p to
the homogeneous p-Laplace equation.

Our approach to existence is closer to the one performed by Moser. Indeed, to prove
the existence of solution of problem (1.1) we approximate it by the following problems
related to the p-Laplacian operator:

(1.4)


−∆p(u) + |∇u|p = f , in Ω ;

u = 0 , on ∂E0 ;

lim
|x|→∞

u(x) = +∞ ;

where ∆p(u) := div (|∇u|p−2∇u), with 1 < p ≤ 2. We show that problem (1.4) is
well–posed. The proof relies on a change of variable, which in the homogeneuos case
leads to p-harmonic functions. Nevertheless, in our case, we have not this advantages,
so that this result is new, as far as we know, and interesting in itself.

Moreover, our concept of weak solution is different to that used by Huisken and
Ilmanen, and Moser, and follows the ideas developed in [2] and [3] (see also [4]) to
study the Dirichlet problem associated with the total variation flow. Let us point
out that our concept of solution coincides with the alternative formulation proposed
by Huisken and Ilmanen in [13, Remark 2, p. 391], but we do not impose Lipschitz
continuity to the solutions. Since this definition is not based on a functional depending
on the solution being searched, it seems more natural.

Let us briefly summarize the contents of this paper. In Section 2 we fix the notation
and give some preliminaries results that we will need. Section 3 is devoted to the study
of the approximating problems, of the p–Laplacian type, that we used to prove the



4 J. M. MAZÓN AND S. SEGURA DE LEÓN

existence of solution. In Section 4 we introduce our notion of solution to problem (1.1)
and derive some consequences of the definition. In Section 5 we prove the existence of
solution and in Section 6 the uniqueness of solution and a Comparison Principle. In
Section 7 we show some explicit examples. Finally, in Section 8 we make some remarks
concerning the particular case of the level set formulation of the inverse mean curvature
flow.

2. Preliminary results

In this section we introduce some notation and some preliminary results that we need.
Throughout this paper N ≥ 2, HN−1 will denote the (N − 1)–dimensional Hausdorff
measure and LN the Lebesgue measure. If µ is a measure on Ω and q ≥ 1, the symbol
Lq(Ω, µ) will denote the usual Lebesgue space of q–summable functions from Ω to R.
The measure will not be written when referring to the Lebesgue measure. Given a
nonnegative f ∈ L1

loc(Ω), the Lebesgue space in which the measure be the Lebesgue
measure with weight f , will be denoted by Lq(Ω, fLN). Moreover, Lq(Ω;RN) will
denote the space corresponding to RN–valued functions with the Lebesgue measure.
The symbol W 1,q(Ω) will denote the Sobolev space of functions with distributional
derivatives in Lq(Ω) and W 1,q

0 (Ω) the subspace of functions in W 1,q(Ω) having zero
traces on ∂Ω.

2.1. Functions of bounded variations and some generalizations. The natural
energy space to study the problems we are interested in is the space of functions of
bounded variation. Recall that if Ω is an open subset of RN , a function u ∈ L1(Ω)
whose distributional gradient Du is a vector valued Radon measure with finite total
variation in Ω is called a function of bounded variation. The class of such functions
will be denoted by BV (Ω). We denote by BVloc(Ω) the space of functions u ∈ L1

loc(Ω),
such that u ∈ BV (ω) for all ω ⊂⊂ Ω. For every u ∈ BV (Ω), the Radon measure
Du is decomposed into its absolutely continuous and singular parts with respect to the
Lebesgue measure: Du = Dau + Dsu. So Dau = ∇u LN , where ∇u is the Radon–
Nikodým derivative of the measure Du with respect to the Lebesgue measure LN .

We denote by Su the set of all x ∈ Ω such that u does not have an approximate
limit at x. We say that x ∈ Ω is an approximate jump point of u if there exist
u+(x) > u−(x) ∈ R and νu(x) ∈ SN−1 such that

lim
ρ↓0

1

LN(B+
ρ (x, νu(x)))

∫
B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0

lim
ρ↓0

1

LN(B−ρ (x, νu(x)))

∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0,

where

B+
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}
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and

B−ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 < 0}.
We recall that for a Radon measure µ in Ω and a Borel set A ⊆ Ω the measure µ A is
defined by (µ A)(B) = µ(A∩B) for any Borel set B ⊆ Ω. If a measure µ is such that
µ = µ A for a certain Borel set A, the measure µ is said to be concentrated on A.

We denote by Ju the set of approximate jump points of u. By the Federer-Vol’pert
Theorem [1, Theorem 3.78], it is known that the set Su is countably HN−1–rectifiable
and HN−1(Su\Ju) = 0. Moreover, Du Ju = (u+ − u−)νuHN−1 Ju. Using Su and Ju,
we may split Dsu in two parts: the jump part Dju and the Cantor part Dcu defined
by

Dju = Dsu Ju and Dcu = Dsu (Ω\Su).
Then, we have

Dju = (u+ − u−)νuHN−1 Ju.

Moreover, if x ∈ Ju, then νu(x) = Du
|Du|(x), Du

|Du| being the Radon–Nikodým derivative of

Du with respect to its total variation |Du|.

If x is a Lebesgue point of u, then u+(x) = u−(x) for any choice of the normal vector
and we say that x is an approximate continuity point of u. We define the approximate
limit of u by ũ(x) = u+(x) = u−(x). The precise representative u∗ : Ω\(Su\Ju) → R
of u is defined as equal to ũ on Ω\Su and equal to u++u−

2
on Ju. It is well–know (see

for instance [1, Corollary 3.80]) that if ρ is a symmetric mollifier, then the mollified
functions u ? ρε pointwise converges to u∗ in its domain.

Recall that a LN–measurable set E ⊂ Ω is said to have finite perimeter in Ω if
χE ∈ BV (Ω), and then the perimeter of E in Ω is defined as

Per(E,Ω) :=

∫
Ω

|DχE|.

We also denote

Per(E) := Per(E,RN).

When E has finite perimeter in Ω, the reduced boundary ∂∗E is the set of all points
x ∈ supp(|DχE|) such that the limit

νE(x) := lim
ρ↓0

DχE(Bρ(x))

|DχE(Bρ(x))|

exists in RN and satisfies |νE(x)| = 1. The function νE : ∂∗E → SN−1 is called the
generalized inner normal to E.

Two well–known facts concerning the reduced boundary can be found in [1, Theorem
3.59]:

(2.1) |DχE| = HN−1 ∂∗E ,
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and in [1, Theorem 3.61]:

(2.2) lim
ρ↓0

LN(Bρ(x) ∩ E)

LN(Bρ(x))
=

1

2
HN−1–a.e. x ∈ ∂∗E ∩ Ω .

For further information concerning functions of bounded variation we refer to [1],
[10] or [27].

2.2. A generalized Green’s formula. We shall need several results from [6] (see also
[4]) in order to give sense to the dot product of bounded vector fields whose divergence
is a measure and the gradient of a BV function. This theory was also studied in [8]
from a different point of view.

Assume that Ω is an open bounded subset of RN with Lipschitz–continuous boundary.
Set

DM∞(Ω) :=
{
z ∈ L∞(Ω,RN) : div (z) is a bounded Radon measure in Ω

}
.

If z ∈ DM∞(Ω) and w ∈ BV (Ω)∩C(Ω)∩L∞(Ω), we define the functional (z, Dw) :
C∞0 (Ω)→ R by the formula

(2.3) 〈(z, Dw), ϕ〉 := −
∫

Ω

wϕd(div (z))−
∫

Ω

w z · ∇ϕdx.

In [6] (see also [4, Corollary C.7, C.16]) the following result is proved.

Proposition 2.1. The distribution (z, Dw) is actually a Radon measure with finite
total variation.

The measures (z, Dw), |(z, Dw)| are absolutely continuous with respect to the measure
|Dw| and ∣∣∣∣∫

B

(z, Dw)

∣∣∣∣ ≤ ∫
B

|(z, Dw)| ≤ ‖z‖L∞(U)

∫
B

|Dw|

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
Moreover, if f : R→ R is a Lipschitz continuous increasing function, then

(2.4) θ(z, D(f ◦ w), x) = θ(z, Dw, x), |Dw| − a.e. in Ω,

where θ(z, Dw, ·) is the Radon–Nikodým derivative of (z, Dw) with respect to |Dw|.

We denote by ν the outward unit normal to ∂Ω. In [6], a weak trace on ∂Ω of the
normal component of z ∈ DM∞(Ω) is defined. More precisely, it is proved that there
exists a linear operator γ : DM∞(Ω)→ L∞(∂Ω) such that

‖γ(z)‖∞ ≤ ‖z‖∞

γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω,RN).
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We shall denote γ(z)(x) by [z, ν](x). Moreover, the following Green’s formula, relating
the function [z, ν] and the measure (z, Dw), for z ∈ DM∞(Ω) and w ∈ BV (Ω)∩C(Ω)∩
L∞(Ω), is established

(2.5)

∫
Ω

w d(div (z)) +

∫
Ω

(z, Dw) =

∫
∂Ω

[z, ν]w dHN−1.

Applying a Meyers–Serrin type Theorem, it was observed in [17] (see also [7]) that it is
possible to get a Green’s formula like (2.5) for z ∈ DM∞(Ω) and w ∈ BV (Ω)∩L∞(Ω),
that is, without assuming the continuity of w. To do that, for z ∈ DM∞(Ω) and
w ∈ BV (Ω) ∩ L∞(Ω) is defined the functional (z, Dw) : C∞0 (Ω)→ R by the formula

(2.6) 〈(z, Dw), ϕ〉 := −
∫

Ω

w∗ ϕd(div (z))−
∫

Ω

w z · ∇ϕdx,

which is well defined since |div (z)| is absolutely continuous with respect to HN−1 (see
[8, Proposition 3.1]). With this definition of (z, Dw), in [17] it is proved that (z, Dw)
is a Radon measure such that

(2.7)

∣∣∣∣∫
B

(z, Dw)

∣∣∣∣ ≤ ‖z‖L∞(U)|Dw|(B)

for every Borel set B and for every open set U such that B ⊂ U ⊂ Ω, and verifies the
Green formula

(2.8)

∫
Ω

w∗ d(div (z)) +

∫
Ω

(z, Dw) =

∫
∂Ω

[z, ν]w dHN−1.

Observe that for z ∈ DM∞(Ω) and w ∈ BV (Ω) ∩ L∞(Ω), we have the following
equality as Radon measures

(2.9) div (wz) = (z, Dw) + w∗ div (z) ,

so that wz ∈ DM∞(Ω).

Remark 2.2. When Ω is unbounded, we will say that a Radon measure is locally
bounded in Ω if its total variation is finite in each open bounded ω ⊂ Ω. We then
denote

DMloc
∞ (Ω) :=

{
z ∈ L∞(Ω,RN) : div (z) is a locally bounded Radon measure in Ω

}
.

It is easy to see that if w ∈ BVloc(Ω)∩L∞loc(Ω) and z ∈ DMloc
∞ (Ω), then the functional

(z, Dw) : C∞0 (Ω)→ R defined by the formula

(2.10) 〈(z, Dw), ϕ〉 := −
∫

Ω

w∗ ϕd(div (z))−
∫

Ω

w z · ∇ϕdx

is a Radon measure on Ω that also satisfy

(2.11)

∣∣∣∣∫
B

(z, Dw)

∣∣∣∣ ≤ ‖z‖L∞(U)|Dw|(B)

for every Borel set B and for every open set U such that B ⊂ U ⊂⊂ Ω.
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Nevertheless, Green’s formula does not hold in general. Hence, to apply Green’s
formula, we will have to restrict to an open bounded ω ⊂ Ω.

In principle it is not clear that (2.4) holds in the case that z ∈ DM∞(Ω) and
u ∈ BV (Ω)∩L∞(Ω). However, in [16, Proposition 2.2] we have showed that (2.4) holds
if we assume that the jump part is HN−1–null, that is Dju = 0. With a similar proof,
we can establish the following result.

Proposition 2.3. Let z ∈ DMloc
∞ (Ω) and consider u ∈ BVloc(Ω)∩L∞loc(Ω) with Dju =

0. If f : R→ R is a Lipschitz continuous increasing function, then

(2.12) θ(z, D(f ◦ u), x) = θ(z, Du, x), |Du| − a.e. in Ω

We also have the following result with the same proof of [16, Proposition 2.3].

Proposition 2.4. If z ∈ DMloc
∞ (Ω) and u,w ∈ BVloc(Ω) ∩ L∞loc(Ω) with Dju = Djw =

0, then

(2.13) (wz, Du) = w∗(z, Du) as Radon measures.

Finally, let us remark that with a similar proof to [7, Lemma 5.6] (see also [5, Propo-
sition 1]), we can obtain the following result.

Proposition 2.5. If z ∈ DMloc
∞ (Ω) and u ∈ BVloc(Ω) ∩ L∞loc(Ω), then

[uz, ν] = u[z, ν] HN−1 − a.e. in ∂Ω.

3. Approximating problems: Existence and uniqueness

From now on we will assume that E0 ⊂ RN is an open bounded set with Lipschitz
continuous boundary and Ω = RN\E0.

To prove the existence of solution of problem (1.1) we approximate it by the following
problems related to the p–Laplacian operator:

(3.1)


−∆p(u) + |∇u|p = f , in Ω ;

u = 0 , on ∂E0 ;

lim
|x|→∞

u(x) = +∞ .

Our aim in this Section is to prove the following results.

Theorem 3.1. For each 1 < p < 2 and each nonnegative f ∈ L∞(Ω), there exists a
unique solution of problem (3.1) in the sense of Definition 3.4. Moreover, if x0 ∈ E0

and s > 0 satisfy E0 ⊂ Bs(x0), then

(3.2) u(x) ≥ (N − p) log

(
|x− x0|

s

)
, x ∈ Ω .
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Theorem 3.2. Fix 1 < p < 2. For i ∈ {1, 2}, let Ei
0 a bounded and open set and

let ui be the solution to problem (3.1), in the sense of Definition 3.4, in the domain

Ωi = RN\Ei
0 with datum fi ∈ L∞(Ωi), i = 1, 2. If E2

0 ⊂ E1
0 and f1 ≤ f2 in Ω1, then

u1 ≤ u2 in Ω1.

Remark 3.3. Taking E0 = Bs(x0) and f ≡ 0, it is easy to check that

u(x) = (N − p) log

(
|x− x0|

s

)
, x ∈ Ω ,

is a solution to problem (3.1). Thus, the bound in (3.2) is achieved. Furthermore,
observe that then

u(x) = t⇐⇒ |x− x0| = set/(N−p) , for |x− x0| ≥ s and t ≥ 0 ,

defines a p–approximation to the inverse mean curvature flow starting from Bs(x0).

We will prove Theorem 3.1 as a consequence of Proposition 3.9 and Theorem 3.12
below, while Theorem 3.2 relies on Proposition 3.9 and Corollary 3.11.

We will begin by defining what is meant by a solution to this problem.

Definition 3.4. We say that a nonnegative function u is a solution to (3.1) if

(1) u ∈ W 1,p
loc (Ω) ∩ L∞loc(Ω)

(2) its trace on ∂E0 is 0
(3) lim

|x|→∞
u(x) = +∞

(4) e−u/(p−1) ∈ Lp(Ω, fLN)
(5) e−u/(p−1) ∈ W 1,p(Ω)

and

(3.3)

∫
Ω

|∇u|p−2∇u · ∇ϕdx+

∫
Ω

|∇u|pϕdx =

∫
Ω

fϕ dx ,

holds for every ϕ satisfying ϕ|ω ∈ W 1,p
0 (ω)∩L∞(ω) and ϕ ≡ 0 in Ω\ω, where ω ⊂ Ω is

open and bounded.

Remark 3.5. Since E0 is bounded and u ∈ W 1,p
loc (Ω), it follows that the trace of u on

the boundary of E0 is well–defined.

Remark 3.6. For a solution u to (3.1), consider the function v = e−u/(p−1). It follows
that v ∈ Lp(Ω, fLN) ∩ W 1,p(Ω) and its trace on ∂E0 is 1. Taking v(x) = 1 for all
x ∈ E0, we may assume that v is defined on RN and so v ∈ W 1,p(RN). Thus, Sobolev’s

inequality implies that v ∈ Lp∗(RN), where p∗ =
Np

N − p
. This type of arguments will

also be applied to every function belonging to W 1,p(Ω) whose trace is constant on E0

(as those test functions in Proposition 3.9 below), without further comments.
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Observe that, formally, under the change of unknown

(3.4) v = (p− 1)e−
u
p−1 u = −(p− 1) log

( v

p− 1

)
problem (3.1) becomes equivalent to

(3.5)



−∆p(v) + f

(
v

p− 1

)p−1

= 0 , in Ω ;

v > 0 , in Ω ;

v = p− 1 , on ∂E0 ;

lim
|x|→∞

v(x) = 0 .

Actually, for any α > 0 given, we will consider a slightly more general problem

(3.6)



−∆p(v) + fvp−1 = 0 , in Ω ;

v > 0 , in Ω ;

v = α , on ∂E0 ;

lim
|x|→∞

v(x) = 0 .

Definition 3.7. We say that v is a solution to (3.6) if v ∈ W 1,p(Ω) ∩ Lp(Ω, fLN)
satisfies that 0 < v ≤ α in Ω, its trace on ∂E0 is α, lim

|x|→∞
v(x) = 0 and

(3.7)

∫
Ω

|∇v|p−2∇v · ∇ϕdx+

∫
Ω

fvp−1ϕdx = 0 ,

holds for every ϕ ∈ W 1,p
0 (Ω) ∩ Lp(Ω, fLN).

Moreover, for each open bounded subset ω ⊂ Ω there exists a constant Cω > 0 such
that

(3.8) v ≥ Cω , in ω .

Remark 3.8. As in Remark 3.5, we may guarantee that the trace of v on the boundary
of E0 is well–defined and, as in Remark 3.6, v ∈ Lp∗(RN).

We next prove that the change of unknown (3.4) transforms a solution to (3.1) in a
solution to (3.5) and reciprocally.

Proposition 3.9. The function u is a solution to (3.1) in the sense of Definition 3.4

if, and only if, v = (p− 1)e−
u
p−1 is a solution to (3.5) in the sense of Definition 3.7.

Proof. Assume first that u is a solution to (3.1) and set v = (p − 1)e−
u
p−1 . It is

straightforward that v ∈ W 1,p(Ω) ∩ Lp(Ω, fLN) satisfies that its trace on ∂E0 is p− 1.
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Consider an open bounded set ω ⊂ Ω. Observe that u ∈ L∞(ω) implies that there

exists a constant Cω > 0 such that e−u ≥ Cω on ω. Thus, v ≥
(
(p − 1)Cω

)p−1
> 0 on

ω.
Consider again ω ⊂ Ω and the constant Cω > 0 such that e−u ≥ Cω on ω. Let

ϕ satisfy ϕ|ω ∈ W 1,p
0 (ω) ∩ L∞(ω) and ϕ ≡ 0 in Ω\ω. Since the function g(s) =

sp−1 is always Lipschitz–continuous away from 0, it follows from e−
u
p−1 ∈ W 1,p(ω) and

Stampacchia’s Theorem that e−u ∈ W 1,p(ω). Hence, e−uϕ ∈ W 1,p
0 (ω) ∩ L∞(ω) and so

it can be chosen as test function in (3.3). Then, taking it and simplifying, we obtain∫
Ω

e−u|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fe−uϕdx .

Performing easy computations, it yields

−
∫

Ω

|∇v|p−2∇v · ∇ϕdx =

∫
Ω

f

(
v

p− 1

)p−1

ϕdx .

It remains to extend the class of admissible test functions. To this end, consider
ϕ ∈ W 1,p

0 (Ω) ∩ Lp(Ω, fLN). Let ζ be a smooth function satisfying 0 ≤ ζ ≤ 1, ζ ≡ 1
on the unit ball B1(0) and supp (ζ) ⊂ B2(0). Consider the sequence {ζk} given by
ζk(x) = ζ

(
x
k

)
and define ϕk = ζkϕ for all k ∈ N.

We claim that

ϕk → ϕ , in Lp(Ω, fLN)(3.9)

∇ϕk → ∇ϕ , in Lp(Ω;RN) .(3.10)

To see (3.9), observe that ϕk ≡ ϕ in Bk(0) and |ϕk| ≤ |ϕ|. Thus,(∫
Ω

f |ϕk − ϕ|p dx
)1/p

=
(∫
{|x|>k}

f |ϕk − ϕ|p dx
)1/p

≤ 2
(∫
{|x|>k}

f |ϕ|p dx
)1/p

,

and the latter integral goes to 0 as k →∞ since ϕ ∈ Lp(Ω, fLN).
We now show (3.10). As above, we have ∇ϕk ≡ ∇ϕ in Bk(0). Hence, by Hölder’s

inequality and the identity ∇ϕk = ζk∇ϕ+ ϕ∇ζk,

(3.11)
(∫

Ω

|∇ϕk −∇ϕ|p dx
)1/p

=
(∫
{|x|>k}

|∇ϕk −∇ϕ|p dx
)1/p

≤
(∫
{|x|>k}

|ζk∇ϕ−∇ϕ|p dx
)1/p

+
(∫
{|x|>k}

|ϕ|p|∇ζk|p dx
)1/p

≤ 2
(∫
{|x|>k}

|∇ϕ|p dx
)1/p

+
(∫
{|x|>k}

|ϕ|p∗ dx
)1/p∗(∫

Ω

|∇ζ|N dx
)1/N

.

Since ∇ϕ ∈ Lp(Ω;RN) and, by Sobolev’s inequality, ϕ ∈ Lp∗(Ω), it follows that

lim
k→∞

∫
{|x|>k}

|∇ϕ|p dx = 0 lim
k→∞

∫
{|x|>k}

|ϕ|p∗ dx = 0 .
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Thus, (3.11) yields (3.10).
Finally, note that ϕk ∈ W 1,p

0 (Ω ∩ B2k(0)) ∩ L∞(Ω ∩ B2k(0)), and so we may apply
(3.7) to each ϕk. Then (3.9) and (3.10) allow us to let k go to ∞ and conclude that
(3.7) holds true in general.

Reciprocally, assume that v is a solution to (3.5) and set u = −(p− 1) log
(

v
p−1

)
. It

is easy to check that u ∈ W 1,p
loc (Ω) ∩ L∞loc(Ω), e−u/(p−1) ∈ Lp(Ω, fLN) ∩W 1,p(Ω) and its

trace on ∂E0 is 0.
Consider an open bounded set ω ⊂ Ω and let Cω > 0 be a constant such that

v ≥ Cω on ω. Since g(s) = s−(p−1) is a Lipschitz–continuous function away from

0, it follows from Stampacchia’s Theorem that
(
p−1
v

)p−1

∈ W 1,p(ω). So
(
p−1
v

)p−1

ϕ ∈
W 1,p

0 (ω)∩L∞(ω). Taking it as test function in (3.7) when f is replaced with f/(p−1)p−1,
we have∫

Ω

(p− 1

v

)p−1

|∇v|p−2∇v · ∇ϕdx−
∫

Ω

(p− 1

v

)p
ϕ|∇v|p dx+

∫
Ω

fϕ dx = 0 .

By simple manipulations this equality becomes

−
∫

Ω

|∇u|p−2∇u · ∇ϕdx−
∫

Ω

ϕ|∇u|p dx+

∫
Ω

fϕ dx = 0 ,

and so the proof is complete. �

The previous result implies that Theorem 3.1 is a consequence of the existence and
uniqueness for problem (3.6). To begin our study of problem (3.6), we will see that it
is subject to a comparison principle.

By a supersolution (respectively, subsolution) to problem (3.6) we mean a positive
function v satisfying v ∈ W 1,p(Ω) ∩ Lp(RN , f1LN), with f1 ≤(resp.,≥) f , its trace on
∂E0 is greater (resp., less) than α and

(3.12)

∫
Ω

|∇v|p−2∇v · ∇ϕdx+

∫
Ω

f1v
p−1ϕdx ≥ (resp., ≤)0 ,

holds for every nonnegative ϕ ∈ W 1,p
0 (Ω) ∩ Lp(Ω, f1LN).

Proposition 3.10. Let v be a solution to problem (3.6) in the sense of Definition 3.7.

(1) If v1 is a supersolution to problem (3.6), then v ≤ v1.
(2) If v2 is a subsolution to problem (3.6), then v2 ≤ v.

Proof. We just have to prove the first assertion, since the second is analogously proved.
Observe that, since the trace of v1 on ∂E0 is greater than that of v, we deduce that

the trace of ϕ = (v − v1)+ on ∂E0 is equal to 0. Taking this ϕ in (3.7) and in the
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formulation (3.12) corresponding to v1, and subtracting them, we obtain∫
Ω

(|∇v|p−2∇v − |∇v1|p−2∇v1) · ∇(v − v1)+ dx

+

∫
Ω

f1(vp−1 − vp−1
1 )(v − v1)+ dx+

∫
Ω

(f − f1)vp−1(v − v1)+ dx ≤ 0 .

Since the integrands are nonnegative, we deduce that they vanish. So

(|∇v|p−2∇v − |∇v1|p−2∇v1) · ∇(v − v1)+ = 0 in Ω ,

and it implies ∇(v − v1)+ = 0 in Ω. Since Sobolev’s inequality leads to (v − v1)+ = 0
in Ω, we conclude that v ≤ v1. �

Corollary 3.11. Fix 1 < p < 2. Let vi be the solution to problem (3.6), in the sense

of Definition 3.7, in the domain Ωi = RN\Ei
0 with datum fi ∈ L∞(Ωi), i = 1, 2. If

E2
0 ⊂ E1

0 and f1 ≤ f2 in Ω1, then v2 ≤ v1 in Ω1.

Proof. We only have to see that v2 is a subsolution to problem (3.6) in the domain Ω1

with datum f1. This is indeed the case, since f2 ≥ f1 and v2|∂E1
0
≤ α = v1|∂E1

0
.

�

Once Theorem 3.2 is proved (as a consequence of Corollary 3.11 and Proposition
3.9), it only remains to see existence and uniqueness for problem (3.6).

Theorem 3.12. Let α > 0 and let f ∈ L∞(Ω) be nonnegative. Then, for each 1 < p <
2, there exists one and only one solution v to problem (3.6) in the sense of Definition
3.7. Moreover, if x0 ∈ E0 and s > 0 satisfy E0 ⊂ Bs(x0), then

(3.13) v(x) ≤ α

(
|x− x0|

s

)−N−p
p−1

, x ∈ Ω .

Proof. Existence
When f ≡ 0, we may apply the same approach used in [18]. Thus, we will assume

that f is positive on a set of positive LN–measure. Now we extend f to be 0 in E0 and
consider {v ∈ W 1,p(RN)∩Lp(RN , fLN) : v = α on E0}. Then we define on this affine
space the functional given by

(3.14) I[v] =

∫
RN
|∇v|p dx+

∫
RN
f |v|p dx .

This functional is convex and coercive, since I[v]1/p defines a norm in W 1,p(RN) that
is equivalent to its usual norm. By well–known results, there exists a function v which
minimizes I and so it satisfies (3.7) for all ϕ ∈ W 1,p

0 (Ω) ∩ Lp(Ω, fLN).
The solution v turns to be nonnegative. Indeed, we may take ϕ = v− in (3.7) which

becomes

−
∫
{v≤0}

|∇v|p dx−
∫
{v≤0}

f |v|p dx = 0 ,
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so that we deduce that v must vanish on the set {v ≤ 0}.
On the other hand, if k ≥ α then Tk(v) ∈ W 1,p(RN)∩Lp(Ω, fLN) is such that v = α

on E0, where Tk(s) = sup(−k, inf(s, k)). Hence denoting Gk(s) := s−Tk(s) and taking
ϕ = Gk(v) as test function in (3.7), we get∫

RN
|∇Gk(v)|pdx+

∫
RN
fvp−1Gk(v)dx = 0 ,

and so Gk(v) = 0. Therefore, we obtain that

(3.15) 0 ≤ v ≤ α .

Uniqueness
It is a straightforward consequence of Proposition 3.10.

Positivity of v
Set λ = ‖f‖∞ and consider the problem

(3.16)


−∆p(w) + λwp−1 = 0 , in RN\E0 ;

w =
α

2
, on ∂E0 ;

From the Steps 1–4, already proved, we deduce that there is a nonnegative weak solution
w ∈ W 1,p(RN\E0) to the problem (3.16). This solution turns to be regular enough (see
[9, 23]) to apply the Strong Maximum Principle given in [21, 26]. Hence, for every open
bounded ω ⊂ Ω we may find a constant Cω > 0 satisfying

w > Cω on ω .

On the other hand, applying Proposition 3.10, we obtain that w ≤ v. Therefore,

v > Cω on ω .

Compatibility of v with (3.13)
Given x0 ∈ E0 and s > 0 satisfying E0 ⊂ Bs(x0), consider the function defined by

w(x) = α
(
|x−x0|
s

)−N−p
p−1

. Since w ≥ α = v on ∂E0 and −∆p(w) = 0 ≥ −∆p(v) in Ω, it

follows from Proposition 3.10 that w ≥ v in Ω, as desired. �

4. Definition of solutions

We introduce the following concept of solution to problem (1.1).

Definition 4.1. We say that a nonnegative function u ∈ BVloc(Ω) ∩ L∞loc(Ω) is a weak
solution to (1.1) if Dju = 0,

(4.1) lim
|x|→∞

u(x) = +∞ ,
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(4.2) u|∂E0 = 0 HN−1 − a.e.,

and there exists a vector field z ∈ DMloc
∞ (Ω;RN), with ‖z‖∞ ≤ 1, satisfying

(4.3) −div (z) + |Du| = f in D′(Ω)

and

(4.4) (z, Du) = |Du| as measures in Ω .

Remark 4.2. Let us point out that in Remark 8.1 we shall see that in the case f ≡ 0,
for locally Lipschitz functions, the above concept of solution coincides with the one
introduced by Huisken and Ilmanen.

Remark 4.3. Having in mind (4.2), we can extend every solution u to be 0 in E0 and
consider u ∈ BVloc(RN). We shall use this extension without further comments. We
may also extend f to vanish in E0. We explicitly point out that the associated vector
field z will not be extended.

Remark 4.4. The condition Dju = 0 does not imply that u is a continuous function.
Nevertheless, then HN−1(Su) = 0 and so the points of discontinuity of its precise
representative u∗ make up a HN−1–null set. Having a negligible jump part implies
important consequences. Among them, the chain rule is as simple as the one for
Sobolev spaces, namely:
If u ∈ BV (Ω) ∩ L∞(Ω) satisfies Dju = 0, and f is a Lipschitz–continuous function,
then v = f ◦ u belongs to BV (Ω) and Dv = f ′(u∗)(Dau+Dcu).

It follows from this result that

(4.5) Du {u∗ = t} = 0 for all t ≥ 0.

Indeed, Du = D(u− t) = D(u− t)+ −D(u− t)− and, on the other hand,

D(u− t)+ =

{
Du , if u > t ;
0 , if u ≤ t ;

and D(u− t)− =

{
0 , if u ≥ t ;
−Du , if u < t ;

which imply D(u− t)+ {u∗ = t} = 0 and D(u− t)− {u∗ = t} = 0. Hence,

Du {u∗ = t} = D(u− t)+ {u∗ = t} −D(u− t)− {u∗ = t} = 0 .

Proposition 4.5. Let u be a weak solution to problem (1.1) with associated vector field
z. Then it satisfies

−div(e−uz) = e−uf in D′(Ω)(4.6)

(z, D(1− e−u)) = |D(1− e−u)| as Radon measures in Ω.(4.7)

Proof. In fact, by (4.4), it yields

θ(z, Du, x) = 1 |Du| − a.e. in Ω.
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Then, applying Proposition 2.3 we deduce (4.7). From here, applying (2.9), (4.7), (4.3)
and the chain rule (on account of Dju = 0), we have

− div (e−uz) = div
(
(1− e−u) z

)
− div (z)

= (z, D(1− e−u)) + (1− e−u)∗ div (z)− div (z)

= |D(1− e−u)| − (e−u)∗ div (z)

= (e−u)∗|Du| − (e−u)∗(−f + |Du|) = e−uf,

and the proof concludes. �

Since our problem describes a geometric flow, all level sets {u ≤ t} should have finite
perimeter. Belonging u to the space BVloc(Ω) and having lim|x|→∞ u(x) = +∞, by the
coarea formula, we are sure that this fact is true for almost all t ≥ 0. The next result
shows that it actually holds for all t ≥ 0. In the spirit of Remark 4.3, in the next result
we consider u and f extended to RN .

Theorem 4.6. The following conditions hold for a solution u to problem (1.1) with
associated vector field z.

(1) For every t ≥ 0, the set {u ≤ t} has finite perimeter.
(2) For every t > 0, the set {u < t} has finite perimeter.
(3) For every t > 0,

(4.8) |Dχ{u≤t}| = −(z, Dχ{u≤t}) , as measures on Ω .

Moreover,

|Dχ{u=0}| = −(z, Dχ{u=0}) , as measures on Ω .

(4) For every t > 0,

|Dχ{u<t}| = −(z, Dχ{u<t}) , as measures on Ω .

(5) The function

(4.9) t 7→ Per({u ≤ t})
is right–continuous in [0,+∞[.

(6) The function

(4.10) t 7→ Per({u < t})
is left–continuous in ]0,+∞[.

(7) The following identity connecting both functions holds true:

(4.11) Per({u ≤ t}) = Per({u < t})−
∫
{u=t}

f(x) dx , for all t > 0 ;

Proof. We will consider several auxiliary real functions:

(i) g(t) =

∫
RN
|Dχ{u≤t}| = Per({u ≤ t}), t ≥ 0.
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(ii) h(t) =

∫
RN
|Dχ{u<t}| = Per({u < t}), t > 0.

(iii) G(t) =

∫
{u≤t}

|Du|, t ≥ 0.

(iv) F (t) =

∫
{u≤t}

f(x) dx, t ≥ 0.

Observe that all functions are nonnegative and that G(0) = 0 due to (4.5).
We will obtain Theorem 4.6 as a consequence of studying the connection among the

above functions.

Step 1: g, h ∈ L1
loc(0,+∞) and G is absolutely continuous on each bounded interval

of [0,+∞) and nondecreasing.
Let t ≥ 0. Since lim|x|→∞ u(x) = +∞, given t, we may find r(t) > 0 satisfying

(4.12) {u ≤ t} ⊂ Br(t)(0) .

Hence, it follows from u ∈ BVloc(Ω) that u ∈ BV (Br(t)(0)) and so the coarea formula
implies g, h ∈ L1(0, t). We conclude that g, h ∈ L1

loc(0,+∞).
Considering the truncation of u at level t, which is a function of bounded variation

in RN , the coarea formula also leads to

(4.13) G(t) =

∫ t

0

∫
RN
|Dχ{u>s}| ds =

∫ t

0

∫
RN
|Dχ{u≤s}| ds =

∫ t

0

g(s) ds .

Thus, G is absolutely continuous on each bounded interval. The nonnegativeness of g
yields that G is nondecreasing.

Step 2: Function F is nondecreasing and right–continuous.
Since f ≥ 0, we have that function F is nondecreasing, so that the set of its discon-

tinuities is at most countable. It is right–continuous due to

lim
h→0+

(F (t+ h)− F (t)) = lim
h→0+

∫
{t<u≤t+h}

f(x) dx = 0 .

It is not left–continuous in those t satisfying

∫
{u=t}

f(x) dx > 0 since

(4.14) lim
h→0−

(F (t)− F (t+ h)) = lim
h→0−

∫
{t+h<u≤t}

f(x) dx =

∫
{u=t}

f(x) dx .

Step 3: If there exists the right derivative G′+(t), then g(t) ≤ G′+(t) for all t ≥ 0.
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For t ≥ 0 and h > 0 fixed, consider the real function defined by

(4.15) η(s) =


1 , if s ≤ t ;

t− s
h

+ 1 , if t ≤ s ≤ t+ h ;

0 , if s ≥ t+ h .

It is straightforward that η is Lipschitz–continuous and its derivative is given by η′(s) =
− 1
h
χ]t,t+h[(s) for s 6= t, t + h. Take now φ ∈ C1

0(RN ,RN) such that ‖φ‖∞ ≤ 1. Then,
having in mind (4.5) and Remark 4.3, we have

−
∫
RN
η(u(x)) divφ(x) dx =

∫
RN
Dη(u) · φ ≤

∫
RN
|Dη(u)|

=
1

h

∫
{t<u<t+h}

|Du| = 1

h

[ ∫
{u≤t+h}

|Du| −
∫
{u≤t}

|Du|
]

=
G(t+ h)−G(t)

h
.

Letting h→ 0+, we deduce that

−
∫
{u≤t}

divφ(x) dx ≤ G′+(t) .

Taking now the supremum over all such φ, it yields∫
RN
|Dχ{u≤t}| ≤ G′+(t) .

Step 4: If there exists the left derivative G′−(t), then h(t) ≤ G′−(t) for all t > 0.
Just follow the same argument as in the previous step now considering t > 0, h < 0

and the function given by

(4.16) η(s) =


1 , if s ≤ t+ h ;

s− t
h

, if t+ h ≤ s ≤ t ;

0 , if s ≥ t .

Step 5: There exists a constant A such that g(t) = A+G(t)− F (t) holds for almost
all t > 0.

First, we claim that

(4.17) (z, Dχ{u>t}) = |Dχ{u>t}| as measures for almost all t > 0.

In fact, having in mind Proposition 2.3 and the proof of [16, Proposition 2.2], we have

〈(z, Du), ϕ〉 =

∫ +∞

−∞
〈(z, Dχ{u>t}), ϕ〉 dt ∀ϕ ∈ C∞0 (Ω).
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Then, since (z, Du) = |Du| as measures on Ω, by the coarea formula we get (4.17).
Now, by (4.17), we have

−(z, Dχ{u≤t}) = |Dχ{u≤t}| as measures on Ω for almost all t > 0.

Fix t2 > t1 > 0 satisfying −(z, Dχ{u≤ti}) = |Dχ{u≤ti}| as measures on Ω and being
Lebesgue points of g for i = 1, 2. Then there exists G′(ti) = g(ti) and, by Step 3, the
set {u ≤ ti} has a finite perimeter, i = 1, 2. Noting that {t1 < u ≤ t2} ⊂ Ω and
applying Green’s formula in Br(t2)+1(0) ∩ Ω, on account of (4.12), we obtain∫

Ω

|Dχ{u≤t2}| = −
∫

Ω

(z, Dχ{u≤t2}) = −
∫

Ω

(z, Dχ{t1<u≤t2})−
∫

Ω

(z, Dχ{u≤t1})

= −
∫
Br(t2)+1(0)∩Ω

(z, Dχ{t1<u≤t2})−
∫

Ω

(z, Dχ{u≤t1})

=

∫
Br(t2)+1(0)∩Ω

χ∗{t1<u≤t2} d(div z)−
∫

Ω

(z, Dχ{u≤t1})

=

∫
{t1<u≤t2}

d(div z) +

∫
Ω

|Dχ{u≤t1}| ,

and consequently

(4.18)

∫
{t1<u≤t2}

d(div z) =

∫
Ω

|Dχ{u≤t2}| −
∫

Ω

|Dχ{u≤t1}|.

Therefore, applying (4.18), (4.3) and (4.13), we get

G(t2)−G(t1) =

∫
{t1<u≤t2}

|Du| =
∫
{t1<u≤t2}

d(div z) +

∫
{t1<u≤t2}

f(x) dx

=

∫
Ω

|Dχ{u≤t2}| −
∫

Ω

|Dχ{u≤t1}|+ F (t2)− F (t1)

=

∫
RN
|Dχ{u≤t2}| −

∫
RN
|Dχ{u≤t1}|+ F (t2)− F (t1) .

It yields that G(t2)−G(t1) = g(t2)−g(t1)+F (t2)−F (t1), so that −G(ti)+g(ti)+F (ti)
is constant. Since this argument is true for each pair of points, up to a null set, we
conclude that −G(t) + g(t) + F (t) is a constant for almost all t > 0.

Step 6: For every t ≥ 0 there exists G′+(t) and G′+(t) = A+G(t)− F (t) holds.
Let h > 0. By (4.13) and the previous step, we have

G(t+ h) =

∫ t+h

0

g(s) ds =

∫ t+h

0

Ads+

∫ t+h

0

G(s) ds−
∫ t+h

0

F (s) ds ,

and similarly

G(t) =

∫ t

0

Ads+

∫ t

0

G(s) ds−
∫ t

0

F (s) ds .
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Thus,

G(t+ h)−G(t)

h
= A+

1

h

[ ∫ t+h

t

G(s) ds−
∫ t+h

t

F (s) ds
]

and letting h → 0+, it yields that there exists G′+(t) and G′+(t) = A + G(t) − F (t)
holds.

As a consequence of Step 3 and Step 6, we deduce that the set {u ≤ t} has a finite
perimeter for all t ≥ 0. Thus (1) is proved.

Step 7: For every t > 0 there exists G′−(t) and G′−(t) = A + G(t) − F (t−) holds
(where F (t−) denotes the limit from the left).

It is a straightforward consequence of having

G(t+ h)−G(t)

h
= A+

1

h

[ ∫ t

t+h

G(s) ds−
∫ t

t+h

F (s) ds
]

for h < 0.
It follows from Step 4 and Step 7, that the set {u < t} has a finite perimeter for all

t > 0 and so (2) is proved.

Step 8: The identity g(t) = G′+(t) holds and −(z, Dχ{u≤t}) = |Dχ{u≤t}| for every
t ≥ 0.

Fix any t ≥ 0, and consider the same function η defined in (4.15). Applying Green’s
formula in Br(t)+1(0) ∩ Ω as in Step 5, Proposition 2.3, Proposition 2.5 and the chain
rule, we may perform the following manipulations∫

Ω

η(u(x)) d(div z) = −
∫

Ω

(z, Dη(u)) +

∫
∂Ω

η(u)[z, ν] dHN−1

=

∫
Ω

(z, D(−η(u))) +

∫
∂Ω

[z, ν] dHN−1 =

∫
Ω

|D(−η(u))|+
∫
∂Ω

[z, ν] dHN−1

= −
∫

Ω

η′(u∗)|Du|+
∫
∂Ω

[z, ν] dHN−1 =
1

h

∫
{t<u<t+h}

|Du|+
∫
∂Ω

[z, ν] dHN−1

=
G(t+ h)−G(t)

h
+

∫
∂Ω

[z, ν] dHN−1 .

Letting h→ 0+, it follows that∫
Ω

χ{u≤t}d(div z) = G′+(t) +

∫
∂Ω

[z, ν] dHN−1 .

Next, since we know that χ{u≤t} ∈ BV (Ω), apply Green’s formula in Br(t)+1(0) ∩ Ω
again to deduce

−
∫

Ω

(z, Dχ{u≤t}) +

∫
∂Ω

[z, ν] dHN−1 =

∫
Ω

χ{u≤t}d(div z) = G′+(t) +

∫
∂Ω

[z, ν] dHN−1 .
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In other words:

(4.19) G′+(t) = −
∫

Ω

(z, Dχ{u≤t}) ≤
∫

Ω

|Dχ{u≤t}| = g(t) .

Finally, it follows from Step 3 that G′+(t) = g(t) and so the inequality in (4.19) becomes
an equality. Thus, −

∫
Ω

(z, Dχ{u≤t}) =
∫

Ω
|Dχ{u≤t}|. Now it is easy to deduce that

−(z, Dχ{u≤t}) = |Dχ{u≤t}| as measures on Ω .

Hence, (3) is proved.

Step 9: The identity h(t) = G′−(t) holds and −(z, Dχ{u<t}) = |Dχ{u<t}| for every
t > 0.

It is enough to argue as in the previous step, but using the function η defined in
(4.16). So (4) is proved.

Step 10: The identity g(t) = A+G(t)− F (t) holds for every t ≥ 0.
It follows from Step 6 and Step 8; as a consequence, (5) is proved.

Step 11: The identity g(t−) = A+G(t)−F (t−) = G′−(t) = h(t) holds for every t > 0.
It is straightforward that Step 11 implies g(t−) = A+G(t)−F (t−) for all t > 0. By

Step 7 and Step 9, we are done. It follows that (6) is proved.

Step 12: The identity (4.11) holds.
Taking into account the previous steps, we have

Per({u ≤ t})− Per({u < t}) = g(t)− h(t) = g(t)− g(t−)

= F (t−)− F (t) = −
∫
{u=t}

f(x) dx ,

for every t ≥ 0. �

Remark 4.7. As a consequence of (4.8), we have

θ(z, Dχ{u≤t}, ·) = −1 |Dχ{u≤t}| − a.e. in Ω.

Now, assuming z is continuous, by [6, Proposition 3.2] (see also [4, Theorem C.14]),

θ(z, Dχ{u≤t}, ·) = z ·
Dχ{u≤t}
|Dχ{u≤t}|

|Dχ{u≤t}| − a.e. in Ω.

Therefore,

z · ν{u≤t} = −1 HN−1 − a.e. in ∂∗{u ≤ t},
which means that the vector field z has the direction of the generalized outward unit
normal to ∂∗{u ≤ t}.
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Corollary 4.8. If u is a solution to problem (1.1) with associated vector field z, then

(4.20) Per({u ≤ t}) = etPer({u = 0})−
∫
{0<u≤t}

et−u(x)f(x) dx ,

for all t > 0.

Proof. Given t > 0 take r(t) satisfying (4.12) as in Theorem 4.6. Starting with Propo-
sition 4.5, applying Green’s formula in Br(t)+1(0) and having in mind Proposition 2.4,
Proposition 2.5 and Theorem 4.6, we obtain for 0 < s < t

(4.21)

∫
{s<u≤t}

e−u(x)f(x) dx

= −
∫
{s<u≤t}

div
(
e−uz

)
=

∫
Ω

(e−uz, Dχ{s<u≤t})

=

∫
Ω

[e−u]∗(z, Dχ{s<u≤t}) =

∫
Ω

[e−u]∗(z, Dχ{u≤t})−
∫

Ω

[e−u]∗(z, Dχ{u≤s})

= −
∫

Ω

[e−u]∗|Dχ{u≤t}|+
∫

Ω

[e−u]∗|Dχ{u≤s}| .

We next analyze the term
∫

Ω
[e−u]∗|Dχ{u≤t}|. On the one hand, we claim that

(4.22) u∗(x) = t for HN−1–almost all x ∈ ∂∗{u ≤ t} .

In fact, by (2.2) and having in mind that Dju = 0, it is enough to prove (4.22) for the
points of ∂∗{u ≤ t} that are Lebesgue points of u of density 1

2
. Let x be one of such

points, it follows that

(4.23) lim
ρ↓0

LN(Bρ(x) ∩ {u ≤ t})
LN(Bρ(x))

=
1

2

and

(4.24) lim
ρ↓0

LN(Bρ(x) ∩ {u > t})
LN(Bρ(x))

=
1

2
.

Then, from (4.23), taking into account that x is a Lebesgue point of u we get

lim
ρ↓0

1

LN(Bρ(x) ∩ {u ≤ t})

∫
Bρ(x)∩{u≤t}

|u(y)− u∗(x)| dy

= lim
ρ↓0

LN(Bρ(x))

LN(Bρ(x) ∩ {u ≤ t})
1

LN(Bρ(x))

∫
Bρ(x)∩{u≤t}

|u(y)− u∗(x)| dy

≤ 2 lim
ρ↓0

1

LN(Bρ(x))

∫
Bρ(x)

|u(y)− u∗(x)| dy = 0 .
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Thus,

u∗(x) = lim
ρ↓0

1

LN(Bρ(x) ∩ {u ≤ t})

∫
Bρ(x)∩{u≤t}

u(y) dy ≤ t .

Similarly, from (4.24), we obtain

u∗(x) = lim
ρ↓0

1

LN(Bρ(x) ∩ {u > t})

∫
Bρ(x)∩{u>t}

u(y) dy ≥ t,

and therefore (4.22) holds. On the other hand, we apply that, by (2.1), the Radon
measure |Dχ{u≤t}| is supported on ∂∗{u ≤ t}. Hence, it yields that∫

RN
[e−u]∗|Dχ{u≤t}| = e−t

∫
RN
|Dχ{u≤t}| .

Analogously, we have
∫
RN [e−u]∗|Dχ{u≤s}| = e−s

∫
RN |Dχ{u≤s}|. Once these equalities

are obtained, it follows from (4.21) that∫
{s<u≤t}

e−u(x)f(x) dx = −e−t
∫
RN
|Dχ{u≤t}|+ e−s

∫
RN
|Dχ{u≤s}|

= −e−tPer({u ≤ t}) + e−sPer({u ≤ s}) .

Remembering (4.9), let s→ 0+, we then deduce that∫
{0<u≤t}

e−u(x)f(x) dx = −e−tPer({u ≤ t}) + Per({u = 0}) ,

from where (4.20) follows. �

5. Existence of solutions

The aim of this section is to prove the following existence result.

Theorem 5.1. For each nonnegative f ∈ L∞(Ω), there exists a solution to problem
(1.1). Moreover, if x0 ∈ E0 and s > 0 satisfy E0 ⊂ Bs(x0), then

(5.1) u(x) ≥ (N − 1) log

(
|x− x0|

s

)
, x ∈ Ω .

Proof. Throughout this proof, we will assume that 1 < p < 3
2
. By Theorem 3.1, we

know that for each of these p there exists a unique solution up of problem (3.1), that

is, 0 ≤ up ∈ W 1,p
loc (Ω) ∩ L∞loc(Ω), e−up/(p−1) ∈ Lp(Ω, fLN), ∇

(
e−up/(p−1)

)
∈ Lp(Ω;RN),

lim
|x|→∞

up(x) = +∞, its trace on ∂E0 is 0 and

(5.2)

∫
Ω

|∇up|p−2∇up · ∇ϕdx+

∫
Ω

|∇up|pϕdx =

∫
Ω

fϕ dx ,
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holds for every ϕ ∈ W 1,p
loc (Ω)∩L∞(Ω)∩L1(Ω, fLN) such that its distributional gradient

∇ϕ belongs to Lp(Ω;RN) and its trace on ∂E0 is 0. Moreover, if x0 ∈ E0 and s > 0
satisfy E0 ⊂ Bs(x0), then

(5.3) up(x) ≥ (N − p) log

(
|x− x0|

s

)
, x ∈ Ω .

Our aim is to see that some subsequence of {up}p>1 tends to the solution of problem
(1.1) as p→ 1+. We proceed by dividing the proof into several steps.

Step 1: Local BV –estimate

Given a bounded open subset ω ⊂ Ω, let ϕ ∈ D(Ω) such that 0 ≤ ϕ ≤ 1, with ϕ ≡ 1
in ω. Then, taking ϕp as test function in (5.2) and applying Young’s inequality, we
have∫

Ω

|∇up|pϕp dx = −p
∫

Ω

ϕp−1|∇up|p−2∇up · ∇ϕdx+

∫
Ω

fϕp dx

≤ p

p′

∫
Ω

|∇up|pϕp dx+

∫
Ω

|∇ϕ|p dx+

∫
supp(ϕ)

f dx .

Hence, recalling that 1 < p < 3
2
, we have

∫
ω

|∇up|p dx ≤
1

2− p

∫
Ω

|∇ϕ|p dx+
1

2− p

∫
supp(ϕ)

f dx

≤ 1

2− p

∫
Ω

(1 + |∇ϕ|
3
2 ) dx+

1

2− p

∫
supp(ϕ)

f dx

≤ 2

∫
Ω

(1 + |∇ϕ|
3
2 ) dx+ 2

∫
supp(ϕ)

f dx ,

that is:

(5.4)

∫
ω

|∇up|p dx ≤ C = C(ω, f) ∀1 < p <
3

2
.

From here, applying again Hölder’s and Young’s inequality, we get

(5.5)

∫
ω

|∇up| dx ≤ C = C(ω, f) ∀1 < p <
3

2
.

By a diagonal argument we deduce there exists u ∈ BVloc(Ω) such that, up to subse-
quences, we have

(5.6) lim
p↓1

up = u in Lqloc(Ω) , 1 ≤ q <
N

N − 1
, and a.e. in Ω,

(5.7) ∇up ω
p↓1
−−⇀ Du ω weakly-* as measures for each open bounded ω ⊂ Ω .
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Step 2: u is nonnegative and u satisfies (5.1), so that lim|x|→+∞ u(x) = +∞
Since each up is nonnegative, it follows from the poinwise convergence that so is u.
On the other hand, letting p→ 1 in (5.3), the poinwise convergence (5.6) also implies

the inequality (5.1). The limit as |x| goes to ∞ is then a straightforward consequence.

Step 3: Local L∞–estimate

In this step, using the De Giorgi-Stampacchia methods, we are going to prove that
u ∈ L∞loc(Ω). We start by proving the following local Caccioppoli’s inequality. For any
x0 ∈ Ω and R > 0 small enough, there exists a constant C > 0, which does not depend
on p, such that

(5.8)

∫
Bρ(x0)

|DGk(u) dx| ≤ C

R− ρ

∫
BR(x0)

Gk(u) dx for 0 < ρ < R, k > 0 ;

here Gk denotes the real function defined by Gk(s) = (|s| − k)+sign (s).
To this end, we consider 0 < ε < min{1

2
, 1

8‖f‖∞}, and we fix R0 > 0 satisfying

LN(BR0(0))
1
N < ε. Then, for every 0 < R ≤ R0, we have LN(BR(0))

1
N < ε and so

(5.9) LN(BR(x0))
(N+1)p
N

−1 < εp for p > 1.

Next fix 0 < R ≤ R0 and 0 < ρ < R, and let η ∈ C∞0 (BR(x0)) be such that 0 ≤ η ≤ 1,
with η ≡ 1 in Bρ(x0) and |∇η| ≤ 2

R−ρ . Taking ηpGk(up) as test function in (5.2), and

neglecting some positive terms, we get∫
Ω

|∇Gk(up)|pηp dx+p

∫
Ω

ηp−1Gk(up)|∇Gk(up)|p−2∇Gk(up) ·∇η dx ≤
∫

Ω

fηpGk(up) dx.

Hence, applying Young’s inequality, we have∫
Ω

|∇Gk(up)|pηp dx

≤ (p− 1)

∫
Ω

ηp|∇Gk(up)|p dx+

∫
Ω

Gk(up)
p|∇η|p dx+ ‖f‖∞

∫
Ω

η Gk(up) dx.

Thus,

(5.10)

∫
BR(x0)

|∇Gk(up)|pηp

≤ 1

2− p
dx

∫
BR(x0)

Gk(up)
p|∇η|p dx+

‖f‖∞
2− p

∫
BR(x0)

η Gk(up) dx .
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Now, the second term of the right hand side of (5.10) can be estimated applying the
Hölder, Young and Sobolev inequalities:∫

BR(x0)

η Gk(up) dx ≤ LN(BR(x0))
Np−N+p

Np

(∫
BR(x0)

ηp
∗ |Gk(up)|p

∗
dx

) 1
p∗

≤ 1

p′εp′
LN(BR(x0))

Np−N+p
N(p−1) +

εp

p

(∫
BR(x0)

ηp
∗ |Gk(up)|p

∗
dx

) p
p∗

≤ p− 1

p

(
LN(BR(x0))

Np−N+p
N

εp

) 1
p−1

+
εp(N − 1)

N − p

∫
BR(x0)

|∇(η Gk(up)|p dx ,

where we have estimated the Sobolev constant by (N−1)p
N−p . Consequently, having in mind

(5.9), we arrive to∫
BR(x0)

η Gk(up) dx

≤ p− 1

p
+
εp(N − 1)

N − p
2p−1

(∫
BR(x0)

ηp|∇(Gk(up)|p dx+

∫
BR(x0)

Gk(up)
p|∇η|p dx

)
.

Therefore, (5.10) becomes∫
BR(x0)

|∇Gk(up)|pηp dx ≤ 2

∫
BR(x0)

Gk(up)
p|∇η|p dx+ 2‖f‖∞

∫
BR(x0)

η Gk(up) dx

≤ 2

∫
BR(x0)

Gk(up)
p|∇η|p dx+ 2‖f‖∞

p− 1

p

+ ‖f‖∞
εp(N − 1)

N − p
2p
(∫

BR(x0)

ηp|∇(Gk(up)|p dx+

∫
BR(x0)

Gk(up)
p|∇η|p dx

)
.

Now, by our choice of ε, we have ‖f‖∞ εp(N−1)
N−p 2p ≤ ‖f‖∞ ε(N−1)

N−p 2 ≤ 1
2

for 1 < p < 3
2
, and

consequently we obtain that

1

2

∫
BR(x0)

|∇Gk(up)|pηp dx

≤ 2‖f‖∞
p− 1

p
+

(
2 + ‖f‖∞

εp(N − 1)

N − p
2p
)∫

BR(x0)

Gk(up)
p|∇η|p dx ,

from where it follows that∫
BR(x0)

|∇Gk(up)|pηp dx ≤ 4‖f‖∞
p− 1

p
+ 5

∫
BR(x0)

Gk(up)
p|∇η|p dx

≤ 4‖f‖∞
p− 1

p
+

10

(R− ρ)p

∫
BR(x0)

Gk(up)
p dx .
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Then, applying Young’s inequality, we get

(5.11)

∫
Bρ(x0)

|∇Gk(up)| dx ≤
∫
BR(x0)

|∇Gk(up)|η dx

≤ 1

p

∫
BR(x0)

|∇Gk(up)|pηp dx+
p− 1

p
LN(BR(x0))

≤ 10

p(R− ρ)p

∫
BR(x0)

Gk(up)
p dx+ (p− 1)

(
4

p2
‖f‖∞ +

1

p
LN(BR(x0))

)
.

Since, for 1 < p ≤ q < N
N−1

,

Gk(up)
p ≤ 1 +Gk(up)

q

and

lim
p↓1

Gk(up) = Gk(u) in Lq(BR(x0)), 1 ≤ q <
N

N − 1
,

we may pass to the limit on the right hand side. Having in mind the lower semi-
continuity of the total variation on the left hand side, and letting p→ 1+ in (5.11), we
obtain that ∫

Bρ(x0)

|DGk(u)| ≤ C

R− ρ

∫
BR(x0)

Gk(u) dx

and the proof of (5.8) is finished.
We claim now that there exists a constant C > 0, not depending on p, such that

(5.12)∫
Bρ(x0)

Gk(u) dx ≤ C

(R− ρ)(k − h)
1
N

(∫
BR(x0)

Gh(u) dx

)1+ 1
N

for 0 < ρ < R, k > h.

In fact, for k > 0, we denote

Ak := {x ∈ BR(x0) : u(x) ≥ k}.

Fixed 0 < ρ < R, let η ∈ C∞0 (BR+ρ
2

(x0)) such that 0 ≤ η ≤ 1, with η ≡ 1 in Bρ(x0) and

|∇η| ≤ 4
R−ρ . If we take ψ := η Gk(u) ∈ BV (BR(x0)), applying the Hölder and Sobolev
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inequalities, we obtain the following estimate

∫
Bρ(x0)

Gk(u) dx ≤
∫
BR+ρ

2
(x0)

ψ dx ≤

∫
BR+ρ

2
(x0)

ψ
N
N−1 dx

N−1
N

LN(Ak)
1
N

≤ LN(Ak)
1
N

∫
BR+ρ

2
(x0)

|Dψ| dx

≤ LN(Ak)
1
N

∫
BR+ρ

2
(x0)

η|DGk(u)| dx+

∫
BR+ρ

2
(x0)

Gk(u)|∇η| dx


≤ LN(Ak)

1
N

∫
BR+ρ

2
(x0)

|DGk(u)| dx+
4

R− ρ

∫
BR+ρ

2
(x0)

Gk(u) dx

 .

Then, by (5.8) there exists a constat C > 0, not depending on p, such that∫
Bρ(x0)

Gk(u) dx ≤ C

R− ρ
LN(Ak)

1
N

∫
BR(x0)

Gk(u) dx .

Now, if 0 < h < k, we have∫
BR(x0)

Gk(u) dx ≤
∫
BR(x0)

Gh(u) dx

and

LN(Ak)
1
N ≤ 1

(k − h)
1
N

(∫
BR(x0)

Gh(u) dx

) 1
N

.

Therefore, ∫
Bρ(x0)

Gk(u) dx ≤ C

(R− ρ)(k − h)
1
N

(∫
BR(x0)

Gh(u) dx

)1+ 1
N

and (5.12) holds.
Finally, from (5.12) and applying [22, Lemma 5.1.] we have there exists d > 0 such

that ∫
BR

2
(x0)

Gd(u) dx = 0,

and thus
ess sup
x∈BR

2
(x0)

u(x) ≤ d.

Hence, u ∈ L∞loc(Ω).

Step 4: Existence of a vector field z ∈ L∞(Ω;RN) such that ‖z‖∞ ≤ 1
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First, fixed ω ⊂⊂ Ω, we will see that {|∇up|p−2∇up}p>1 is weakly relatively compact
in L1(ω;RN). Indeed, applying (5.4) and Hölder’s inequality, it yields∫

ω

|∇up|p−1 dx ≤
(∫

ω

|∇up|p dx
)(p−1)/p

|ω|1/p ≤ C(ω) .

On the other hand, the sequence is equi–integrable since, for each measurable set E ⊂ ω,
we obtain ∫

E

|∇up|p−1 dx ≤
(∫

ω

|∇up|p dx
)(p−1)/p

|E|1/p ≤ C(ω)|E|1/p .

Therefore, we get a subsequence (without relabeling) and a vector field zω ∈ L1(ω;RN)
satisfying

|∇up|p−2∇up ⇀ zω , weakly in L1(ω;RN) .

Furthermore, arguing as in [2, Lemma 1], it follows from (5.4) that zω ∈ L∞(ω;RN)
and ‖zω‖∞ ≤ 1 holds.

Next we consider an increasing sequence {ωn}n such that ωn ⊂⊂ Ω for all n ∈ N and⋃∞
n=1 ωn = Ω. A diagonal argument shows that there exist a subsequence (no relabel)

and a vector field z : Ω→ RN such that its restriction to each ω ⊂⊂ Ω is equal to zω
and

|∇up|p−2∇up ⇀ z , weakly in L1(ω;RN) .

Hence, z ∈ L∞(Ω;RN) with ‖z‖∞ ≤ 1 and

(5.13) |∇up|p−2∇up ⇀ z , weakly in L1
loc(Ω;RN) .

Step 5: div (z) is a Radon measure having locally bounded total variation

We will apply (5.4) and (5.13) to see that div (z) is a Radon measure. Observe

that (5.2) and (5.4) imply that the sequence div
(
|∇up|p−2∇up

)
is locally bounded in

L1(Ω;RN). Hence, up to subsequences, it converges weakly–* in the sense of measures
to a Radon measure having locally bounded total variation. It follows from (5.13) that
the limit must be div (z).

Step 6: The equation −div(z) + |Du| = f holds in D′(Ω)

Take ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 as test function in (5.2) to get∫
Ω

|∇up|p−2∇up · ∇ϕdx+

∫
Ω

|∇up|pϕdx =

∫
Ω

fϕ dx .

Now Young’s inequality implies∫
Ω

|∇up|ϕdx ≤
1

p

∫
Ω

|∇up|pϕdx+
p− 1

p

∫
Ω

ϕdx

=
1

p

∫
Ω

fϕ dx− 1

p

∫
Ω

|∇up|p−2∇up · ∇ϕdx+
p− 1

p

∫
Ω

ϕdx .
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Thus, we may let p go to 1, applying the lower semicontinuity on the left hand side and
(5.13) on the right. It yields∫

Ω

ϕ|Du| ≤
∫

Ω

fϕ dx−
∫

Ω

z · ∇ϕdx ,

in other words, the inequality

(5.14) −div (z) + |Du| ≤ f , holds in D′(Ω) .

The reverse inequality is not straightforward, we first need to establish a related
equality. Given ϕ ∈ C∞0 (Ω), take ϕe−up as test function in (5.2); simplifying we get∫

Ω

e−up |∇up|p−2∇up · ∇ϕ =

∫
Ω

fe−upϕ .

On account of (5.13), (5.6) and e−up ≤ 1 for all p > 1, we may let p go to 1 and obtain∫
Ω

e−uz · ∇ϕ =

∫
Ω

fe−uϕ .

Thus,

(5.15) −div
(
e−uz

)
= fe−u , holds in D′(Ω) .

Next we will define a function in Ω, up to a HN−1–null set,

(e−u)] =


e−u

− − e−u+

u+ − u−
, in Ju ;

e−ũ , in Ω\Su .
This is a representative of the function e−u, which is different of the precise represen-
tative (when Ju is not a negligible set). With this notation, the chain rule becomes

(5.16) |D(e−u)| = (e−u)]|Du| .
In [16], we defined a Radon measure by(

z, D(e−u)]
)

= −(e−u)]div (z) + div
(
e−u z

)
and we proved (see [16, (2.28)]) that

(5.17) |
(
z, D(e−u)]

)
| ≤ ‖z‖∞|De−u|

as measures. Then, it follows from (5.14), (5.15), (5.16) and (5.17) that

− div (e−u z) = −(e−u)] div (z)− (z, D(e−u)])

≤ e−u f − (e−u)] |Du| − (z, D(e−u)])

≤ e−u f − (e−u)] |Du|+ |D(e−u)| = e−u f = −div (e−u z) .

Hence, all the inequalities become equalities and so

(e−u)] (−div (z) + |Du|) = e−uf, as Radon measures on Ω,
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from where it follows that

(5.18) −div (z) + |Du| = f , holds in D′(Ω) .

Step 7: (z, Du) = |Du| as measures

This Step is proven exactly as in [16, proof of Theorem 3.5], having in mind that in
that proof Green’s formula is only applied on open bounded sets.

Step 8: Dju = 0

It also follows the argument of [16, proof of Theorem 3.5].

Step 9: u = 0 on ∂E0

Let R > 0 be large enough to have E0 ⊂ BR(0) and consider a cut–off function
ζ ∈ C∞0 (RN) satisfying 0 ≤ ζ ≤ 1 and

ζ(x) =

{
1 , if |x| ≤ R ;

0 , if |x| ≥ 2R .

Taking ζ up as test function in (5.2), it yields∫
Ω

ζ|∇up|p dx+

∫
Ω

up|∇up|p−2∇up · ∇ζ dx+

∫
Ω

ζ up|∇up|p dx =

∫
Ω

fζ up dx ,

and applying Young’s inequality we obtain

(5.19)

∫
Ω

ζ|∇up| dx+

∫
Ω

ζ up|∇up| dx

≤ 1

p

∫
Ω

ζ|∇up|p dx+
1

p

∫
Ω

ζ up|∇up|p dx+
p− 1

p

∫
Ω

ζ(1 + up) dx

=
1

p

∫
Ω

fζ up dx−
1

p

∫
Ω

up|∇up|p−2∇up · ∇ζ dx+
p− 1

p

∫
Ω

ζ(1 + up) dx .

In order to let p go to 1, we have to use, on the left hand side, the lower semi-continuity
of the functionals given by

F1(u) =

∫
Ω

ζ|Du|+
∫
∂Ω

ζ|u| dHN−1

and

F2(u) =

∫
Ω

ζ u∗|Du|+ 1

2

∫
∂Ω

ζ u2 dHN−1 .
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On the right hand side of (5.19), we apply Step 3, (5.13) and the fact that ζ has compact
support. Thus, it follows from (5.19) that

(5.20)

∫
Ω

ζ|Du|+
∫
∂Ω

|u| dHN−1 +

∫
Ω

ζ u∗|Du|+ 1

2

∫
∂Ω

u2 dHN−1

≤
∫

Ω

fζ u dx−
∫

Ω

uz · ∇ζ dx .

Observe that Steps 6–7 imply, by Green’s formula on Ω̃ = B2R(0)\E0, that

(5.21)

∫
Ω̃

fζ u dx =

∫
Ω̃

(z, D(ζ u))−
∫
∂Ω̃

ζ u[z, ν] dHN−1 +

∫
Ω̃

ζ u∗|Du| .

Taking into account that

〈(z, Du), (ζϕ)〉 = 〈(z, D(ζ u)), ϕ〉 −
∫

Ω

uϕz · ∇ζ dx

holds for every ϕ ∈ C∞0 (Ω), we have

(z, D(ζ u)) = ζ(z, Du) + uz · ∇ζLN Ω as measures.

Then, since (z, Du) = |Du|, we deduce from (5.21) that∫
Ω̃

fζ u dx−
∫

Ω̃

uz · ∇ζ dx =

∫
Ω̃

ζ|Du| −
∫
∂Ω̃

ζu[z, ν] dHN−1 +

∫
Ω̃

ζ u∗|Du| ,

and having in mind that every integrand vanishes outside Ω̃,∫
Ω

fζ u dx−
∫

Ω

uz · ∇ζ dx =

∫
Ω

ζ|Du| −
∫
∂Ω

u[z, ν] dHN−1 +

∫
Ω

ζ u∗|Du| .

Substituting it in (5.20) and simplifying, we get∫
∂Ω

(|u|+ u[z, ν]) dHN−1 +
1

2

∫
∂Ω

u2 dHN−1 ≤ 0 .

Since both terms are nonnegative, it yields that the trace of u vanishes on ∂Ω = ∂E0,
as desired. �

6. Uniqueness and Comparison Principle

This Section is devoted to prove uniqueness of solutions to problem (1.1) and deduce
a Comparison Principle.

Theorem 6.1. For each nonnegative f ∈ L∞(Ω), the weak solution to problem (1.1)
is unique.

Proof. Let ui, i = 1, 2, be two solutions to problem (1.1). Then, ui ∈ BVloc(Ω)∩L∞loc(Ω)
with ui ≥ 0, lim|x|→∞ ui(x) = +∞, ui|∂Ω = 0 HN−1-a.e. and Djui = 0, and there exist
vector fields zi ∈ L∞(Ω;RN) (i = 1, 2) satisfying ‖zi‖∞ ≤ 1,

(6.1) div (zi) is a Radon measure having locally bounded total variation,
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(6.2) −div (zi) + |Dui| = f in D′(Ω),

and

(6.3) (zi, Dui) = |Dui| as measures in Ω .

Moreover, due to Proposition 4.5, we also have that

(6.4) −div(e−uizi) = e−uif in D′(Ω).

and

(6.5) (zi, D(1− e−ui)) = |D(1− e−ui)|.
In the following two steps, we will fix k > 0 and denote Tk(s) = sup(−k, inf(s, k))

and Gk(s) = s− Tk(s), as in the proof of Theorem 3.12.

Step 1: The Radon measure (z1 − z2, D(Tk(u1)− u2)+) is positive

Having in mind (6.3) and the fact (z1, Du2) ≤ |Du2| and (z2, DTk(u1)) ≤ |DTk(u1)|,
it follows that∫

Ω

φ(z1 − z2, D(Tk(u1)− u2)+)

=

∫
{Tk(u1)≥u2}

φ [|DTk(u1)|+ |Du2| − (z1, Du2)− (z2, DTk(u1))] ≥ 0,

for any nonnegative φ ∈ Cc(Ω), so that Step 1 is proved.

Step 2: The Radon measure (z1 − z2, D(Tk(u1)− u2)+) vanishes

Since lim|x|→∞ u2(x) = +∞, we may find Rk > 0 such that |x| ≥ Rk implies |u2(x)| >
k. It follows that [(e−u2 − e−Tk(u1))+]∗ vanishes on {|x| ≥ Rk}. Now multiplying (6.2)
by [(e−u2 − e−Tk(u1))+]∗ and applying Green’s formula (2.8) in BRk(0) ∩ Ω, we obtain

(6.6)

∫
Ω

f(x)(e−u2 − e−Tk(u1))+(x) dx

=

∫
BRk (0)∩Ω

f(x)(e−u2 − e−Tk(u1))+(x) dx

=

∫
BRk (0)∩Ω

(zi, D((e−u2 − e−Tk(u1))+) +

∫
BRk (0)∩Ω

[(e−u2 − e−Tk(u1))+]∗|Dui|

=

∫
Ω

(zi, D((e−u2 − e−Tk(u1))+) +

∫
Ω

[(e−u2 − e−Tk(u1))+]∗|Dui|,

i = 1, 2.
We begin by analyzing (6.6) for i = 1. We first remark that it follows from (6.3),

Proposition 2.3 and the chain rule that

(z1, D(1− e−Tk(u1))) = |D(1− e−Tk(u1))| = [e−Tk(u1)]∗|DTk(u1)| .
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Applying it, we deduce from (6.6) that

∫
Ω

f(x)(e−u2 − e−Tk(u1))+(x) dx

= −
∫
{Tk(u1)>u2}

(z1, D(1− e−u2)) +

∫
{Tk(u1)>u2}

(z1, D(1− e−Tk(u1)))

+

∫
{Tk(u1)>u2}

[e−u2 ]∗|Du1| −
∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du1|

= −
∫
{Tk(u1)>u2}

(z1, D(1− e−u2)) +

∫
{Tk(u1)>u2}

[e−u2 ]∗|Du1|

−
∫
{k>u2}

[e−Tk(u1)]∗|DGk(u1)|

Similarly, it follows from (6.5), the chain rule and (6.6) for i = 2 that

∫
Ω

f(x)(e−u2 − e−Tk(u1))+(x) dx

= −
∫
{Tk(u1)>u2}

(z2, D(1− e−u2)) +

∫
{Tk(u1)>u2}

(z2, D(1− e−Tk(u1)))

+

∫
{Tk(u1)>u2}

[e−u2 ]∗|Du2| −
∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du2|

=

∫
{Tk(u1)>u2}

(z2, D(1− e−Tk(u1)))−
∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du2|.

As a consequence of the previous equations, we obtain that

−
∫
{Tk(u1)>u2}

(z1, D(1− e−u2)) +

∫
{Tk(u1)>u2}

[e−u2 ]∗|Du1| − e−k
∫
{k>u2}

|DGk(u1)|

=

∫
{Tk(u1)>u2}

(z2, D(1− e−Tk(u1)))−
∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du2| .
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Therefore,∫
{Tk(u1)>u2}

[e−u2 ]∗|Du1|+
∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du2|

=

∫
{Tk(u1)>u2}

(z1, D(1−e−u2))+

∫
{Tk(u1)>u2}

(z2, D(1−e−Tk(u1)))+e−k
∫
{k>u2}

|DGk(u1)|

≤
∫
{Tk(u1)>u2}

|D(1− e−Tk(u1))|+
∫
{Tk(u1)>u2}

|D(1− e−u2)|+ e−k
∫
{k>u2}

|DGk(u1)|

=

∫
{Tk(u1)>u2}

[e−Tk(u1)]∗|Du1|+
∫
{Tk(u1)>u2}

[e−u2 ]∗|Du2|,

and consequently,

(6.7)

∫
{Tk(u1)>u2}

(
[e−Tk(u1)]∗ − [e−u2 ]∗

)
(|Du1| − |Du2|) ≥ 0.

On the other hand, it follows from (6.4) (for i = 1), (2.9), Proposition 2.3 and the
chain rule that

− div
(
e−Tk(u1)z1

)
= −div

(
eGk(u1)(e−u1z1)

)
= eGk(u1)(e−u1f)− [e−u1 ]∗

(
z1, D

(
eGk(u1)

))
= e−Tk(u1)f − [e−u1 ]∗

∣∣D(eGk(u1)
)∣∣

= e−Tk(u1)f − [e−Tk(u1)]∗|DGk(u1)| = e−Tk(u1)f − e−k|DGk(u1)| ,
and so

(6.8) −div
(
e−Tk(u1)z1

)
+ e−k|DGk(u1)| = e−Tk(u1)f .

Observing that [(Tk(u1)−u2)+]∗ vanishes on {|x| ≥ Rk}, multiplying (6.8) by [(Tk(u1)−
u2)+]∗, applying Green’s formula (2.8) in BRk(0)∩Ω and dropping a nonnegative term,
we obtain

(6.9)

∫
Ω

(e−Tk(u1)z1, D(Tk(u1)− u2)+) ≤
∫

Ω

e−Tk(u1)f(x)(Tk(u1)− u2)+ dx .

Next, multiplying (6.4) (for i = 2) by [(Tk(u1) − u2)+]∗ and applying Green’s formula
(2.8) in BRk(0) ∩ Ω, it yields

(6.10)

∫
Ω

(e−u2z2, D(Tk(u1)− u2)+) =

∫
Ω

e−u2f(x)(Tk(u1)− u2)+ dx .

Hence, subtracting (6.10) from (6.9),∫
Ω

(e−Tk(u1)z1, D(Tk(u1)− u2)+)−
∫

Ω

(e−u2z2, D(Tk(u1)− u2)+)

≤
∫

Ω

(
e−Tk(u1) − e−u2

)
f(x)(Tk(u1)− u2)+ dx ≤ 0 .
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Thus, ∫
Ω

(e−Tk(u1)z1 − e−u2z2, D(Tk(u1)− u2)+) ≤ 0 ,

and so

(6.11)

0 ≥
∫
{Tk(u1)>u2}

(e−Tk(u1)z1 − e−u2z2, D(Tk(u1)− u2))

=

∫
{Tk(u1)>u2}

((e−Tk(u1) − e−u2)z2, D(Tk(u1)− u2))

+

∫
{Tk(u1)>u2}

(e−Tk(u1)(z1 − z2), D(Tk(u1)− u2)).

The first term on the right hand side is analyzed having in mind (6.3), (6.7), Propo-
sition 2.4 and the inequality |(z2, DTk(u1))| ≤ |DTk(u1)|, and performing some easy
calculations:∫

{Tk(u1)>u2}
((e−Tk(u1) − e−u2)z2, D(Tk(u1)− u2))

=

∫
{Tk(u1)>u2}

(e−Tk(u1) − e−u2)∗(z2, D(Tk(u1)− u2))

=

∫
{Tk(u1)>u2}

(e−Tk(u1) − e−u2)∗(z2, DTk(u1))−
∫
{Tk(u1)>u2}

(e−Tk(u1) − e−u2)∗|Du2|

≥
∫
{Tk(u1)>u2}

(e−Tk(u1) − e−u2)∗|DTk(u1)| −
∫
{Tk(u1)>u2}

(e−Tk(u1) − e−u2)∗|Du2|

=

∫
{Tk(u1)>u2}

(
[e−Tk(u1)]∗ − [e−u2 ]∗

)
(|DTk(u1)| − |Du2|)

=

∫
{Tk(u1)>u2}

(
[e−Tk(u1)]∗ − [e−u2 ]∗

)
(|Du1| − |Du2|)

−
∫
{Tk(u1)>u2}

(
e−k − [e−u2 ]∗

)
|DGk(u1)| ≥ 0 .

Hence, dropping this nonnegative term in (6.11) and applying Proposition 2.4 again,
we obtain ∫

{Tk(u1)>u2}
[e−Tk(u1)]∗(z1 − z2, D(Tk(u1)− u2)) ≤ 0 ,

and so

e−k
∫

Ω

(z1 − z2, D(Tk(u1)− u2)+) ≤ 0 .
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Finally, since the Radon measure (z1− z2, D(Tk(u1)− u2)+) is nonnegative, we deduce
that

(z1 − z2, D(Tk(u1)− u2)+) = 0 .

Step 3: The Radon measure (z1 − z2, D(u1 − u2)) vanishes

Given R > 0, consider k > ‖u1‖L∞(BR(0)∩Ω). Then

(z1 − z2, D(u1 − u2)+)) BR(0) ∩ Ω = (z1 − z2, D(Tk(u1)− u2)+)) BR(0) ∩ Ω = 0 .

Since this fact holds for every R > 0, it follows that

(z1 − z2, D(u1 − u2)+)) = 0 .

Then
(z1 − z2, D(u1 − u2)−) = (z2 − z1, D(u2 − u1)+) = 0 .

Therefore,
(z1 − z2, D(u1 − u2)) = 0.

Step 4: It holds u1 = u2 in Ω.

Following the arguments of the proof of [16, Theorem 3.8] in each Ω ∩ BR(0) and
letting R → +∞, we get Du1 = Du2 as measures in Ω. Consequently, u1 − u2 is a
constant in each connected component of Ω. Since u1 − u2 = 0 on ∂Ω, the conclusion
follows. �

As a consequence of uniqueness and Theorem 3.2, we deduce the following Compar-
ison Principle for problem (1.1).

Theorem 6.2. Let ui be the solution to problem (1.1) in the domain Ωi = RN\Ei
0 with

datum fi ∈ L∞(Ωi), i = 1, 2. If E2
0 ⊂ E1

0 and f1 ≤ f2 in Ω1, then u1 ≤ u2 in Ω1.

Proof. Applying Theorems 5.1 and 6.1, we know that each ui is the pointwise limit
of the sequence of approximate solutions ui,p to problems (3.1) in the domain Ωi with
datum fi. Since Theorem 3.2, E2

0 ⊂ E1
0 and f1 ≤ f2 in Ω1 imply that u1,p ≤ u2,p in Ω1,

it follows that u1 ≤ u2 in Ω1. �

7. Examples

We are going to find explicit radial solutions to problem (1.1).

Example 7.1. Let r > 0. Consider E0 := Br(0), take Ω = RN \E0 and f(x) := f̃(|x|),
with f̃ :]r,+∞[→ [0,+∞[. We are looking for a radial solution u(x) = g(|x|), where
g : [r,+∞[→ [0,+∞[ is continuous and such that g(s) ≥ 0 for s ∈ [r,+∞[ and g(r) = 0.
Moreover, we assume that g is nondecreasing.

Assuming that g′(|x|) > 0, we have Du(x) = g′(|x|) x
|x| and consequently z(x) = x

|x| .

Obviously, this latest identification need not be occur where g′ vanishes. We next see
that g is actually increasing. Assume, on the contrary, that there exist r ≤ s1 < s2
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such that g(s1) = g(s2) = t. Let s1 be the smallest number and let s2 be the greatest

one satisfying that equality. Then {u < t} = Bs1(0) and {u ≤ t} = Bs2(0), so that

Per({u < t}) < Per({u ≤ t}) .
On the other hand, by (4.11),

Per({u ≤ t}) = Per({u < t})−
∫
{u=t}

f(x) dx ≤ Per({u < t}) ,

which is a contradiction.
Once we have seen that g is increasing, we may deduce that z(x) = x

|x| for almost all

|x| > r. Actually, z(x) = x
|x| for all |x| > r; otherwise, the vector field z would jump

and g would too. Thus, div z(x) =
N − 1

|x|
for all |x| > r. Then

−div z(x) + |Du(x)| = f(x),

leads to the equation

(7.1) g′(s) = f̃(s) +
N − 1

s
.

Hence,

g(s) =

∫ s

r

f̃(σ) dσ + (N − 1) log
(s
r

)
.

Therefore the solution to problem (1.1) is given by

(7.2) u(x) =

∫ |x|
r

f̃(s) ds+ (N − 1) log

(
|x|
r

)
.

It is now straightforward to find the solution to problem (1.1) starting from E0 =
Br(a). We next exemplify some particular cases.

(1) If

f̃(s) = psp−1 − N − 1

s
, p > 0 ,

then we have that the solution is given by

u(x) = |x− a|p − rp .

(2) If f̃ ≡ λ > 0, then

(7.3) u(x) = λ(|x− a| − r) + (N − 1) log

(
|x− a|
r

)
.

(3) If f̃ ≡ 0, that is, for the inverse mean curvature flow, we obtain that the solution
is

u(x) = (N − 1) log

(
|x− a|
r

)
.
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(4) If we take f̃(s) =
(
1− N−1

s

)
χ]r0,r1[(s), with r < r0 < r1 and r0 > N − 1, then

the solution is given by

u(x) =



(N − 1) log
(
|x−a|
r

)
, if r < |x− a| ≤ r0 ;

|x− a| − r0 + (N − 1) log
(
r0
r

)
, if r0 < |x− a| ≤ r1 ;

(r1 − r0) + (N − 1) log
(
|x−a| r0
r r1

)
, if |x− a| > r1 .

Observe that the level sets of the above solutions are expanding spheres but with
different speed.

We point out that, having in mind Theorem 6.2, the radial solution (7.3) implies
estimates on the solution to (1.1).

Proposition 7.2. Assume that x0 ∈ RN and r > 0 satisfy Br(x0) ⊂ E0. Then

u(x) ≤ ‖f‖∞(|x− x0| − r) + (N − 1) log

(
|x− x0|

r

)
, x ∈ Ω.

Example 7.3. Let 0 < r1 < r2. Consider E0 := Br2(0)\Br1(0), take Ω = RN \ E0

and f(x) := f̃(|x|), with f̃ : [0, r1[∩]r2,+∞[→ [0,+∞[. We are looking for a radial
solution u(x) = g(|x|), where g : [0, r1] ∩ [r2,+∞[→ [0,+∞[ is continuous and such
that g(s) ≥ 0 for s ∈ [0, r1] ∩ [r2,+∞[ and g(ri) = 0, i = 1, 2. Furthermore, we will
assume that g is nonincreasing on [0, r1] and nondecreasing on [r2,+∞[.

It is straightforward that u is a solution in RN \Br2(0) and in Br1(0). Hence, by the
arguments of Example 7.1, we deduce that

u(x) =

∫ |x|
r2

f̃(s) ds+ (N − 1) log

(
|x|
r2

)
, |x| > r2 ;

while the arguments of [16, Section 4] provide us the solution in Br1(0). We point out
that in this last zone, the solution is bounded, so that we get a level set where this
hole disappears (this level may be 0 when the datum is small enough, for instance, for

f̃(s) = λ, 0 ≤ s < r1, with 0 ≤ λ ≤ N). There is another feature that distinguish the

solution in both zones, namely there are no flat zones in RN \Br2(0), as we have seen,
while there can be in Br1(0) (see [16, Example 4.1]).

8. The level set formulation of the inverse mean curvature flow

As we have mentioned in the introduction, the level set formulation of the inverse
mean curvature flow, corresponds to the homogeneous case f ≡ 0, that is to the problem
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(8.1)



−div

(
Du

|Du|

)
+ |Du| = 0 , in Ω ;

u = 0 , on ∂E0 ;

lim
|x|→∞

u(x) = +∞ ;

where Ω = RN\E0. The existence and uniqueness of weak solutions was proved in
[13] and [18], under the assumption that the boundary of E0 is of class C1; they also
require a uniform one–sided bound for the mean curvature of ∂E0 since in the proof this
hypothesis is needed. One improvement of this assumption was done by Moser in [19],
where he only imposes that ∂E0 is continuously differentiable. Let us point out that
here we also improve this result since we only assume that ∂E0 is Lipschitz–continuous.

Remark 8.1. Let us see that for problem (8.1), assuming that u is locally Lipschitz–
continuous, our concept of solution coincides with the one given by Huisken and Ilma-
nen. Due to uniqueness it is enough to show that if u is a solution to problem (8.1) in
the sense of Definition 4.1 and u is locally Lipschitz, then it is also a solution in the
sense of Huisken and Ilmanen. To check it, we need to show that u satisfies

JKu (u) ≤ JKu (v), JKu (v) :=

∫
K

(|∇v|+ |∇u|v) dx

for every locally Lipschitz function v such that {v 6= u} ⊂⊂ Ω and every compact K
containing {v 6= u}. In fact, since u is a solution to problem (8.1), there exists a vector
field z ∈ DMloc

∞ (Ω;RN) satisfying ‖z‖∞ ≤ 1, (4.3) and (4.4). Fix one of those v and
a compact K containing {v 6= u}. Consider ω an open bounded set with Lipschitz–
continuous boundary satisfying K ⊂ ω ⊂ Ω. Multiplying (4.3) by v and applying
Green’s formula in ω, we get

(8.2)

∫
∂ω

[z, ν]v dHN−1 =

∫
ω

(z, Dv) + v|Du|.

Since ‖z‖∞ ≤ 1, it follows that (z, Dv) ≤ |Dv| and so we deduce that∫
∂ω

[z, ν]v dHN−1 ≤
∫
ω

|Dv|+ v|Du| .

On the other hand, taking v = u in (8.2) and having in mind (4.4), we get∫
∂ω

[z, ν]u dHN−1 =

∫
ω

|Du|+ u|Du|.

Then u = v on ∂ω, implies
∫
ω
|Du| + u|Du| ≤

∫
ω
|Dv| + v|Du|. Since it holds for

every open bounded ω with Lipschitz continuous boundary containing K, it follows
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that JKu (u) ≤ JKu (v). Therefore, among all admissible functions, the minimum of JKu
is attained at u.

Example 8.2. Consider the initial datum E0 = Br1(a)\Br2(a) ⊂ RN , with r1 > r2.
Then the solution of problem (8.1) is given by

u(x) :=

 (N − 1) log

(
|x− a|
r1

)
, if |x− a| > r1 ;

0 , if |x− a| < r2 ;

producing a sudden phenomenon of fattening. The corresponding vector field z is given
by

z(x) :=
x− a
|x− a|

, if |x− a| > r1 ,

and any vector field z satisfying ‖z‖∞ ≤ 1 and div z = 0 in Br2(a).
To check that u must vanish in Br2(a), recall that −div z + |Du| = 0 holds in Br2(a)

in the sense of distributions. Applying Green’s formula, it yields∫
Br2 (a)

(z, Du) +

∫
Br2 (a)

u|Du| =
∫
∂Br2 (a)

u[z, ν] dHN−1 = 0 ,

due to u
∣∣
∂Br2 (a)

= 0. Since (z, Du) = |Du|, it follows that∫
Br2 (a)

(u+ 1)|Du| = 0 .

We then deduce that the Radon measure Du vanishes on Br2(a), so that u ≡ 0, as
desired.

This phenomenon of sudden jump of the evolving surface is also possible at some
instants t > 0, and at these instants, its perimeter is preserved (see [13, Example 1.5]).
In [13] this property is explained using the notion of strictly minimizing hull. In our
formulation of the level set approach, this fact can be deduced from Theorem 4.6.

To see it, we consider the level corresponding to one of these instants t. We have to
prove

Per({u < t}) = Per({u ≤ t}),

but it is just (4.11) with f ≡ 0.
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