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Abstract Modeling magnitude Magnetic Resonance Images
(MRI) Rician denoising in a Bayesian or generalized Tikhonov
framework using Total Variation (TV) leads naturally to the
consideration of nonlinear elliptic equations. These involve
the so called 1–Laplacian operator and special care is needed
to properly formulate the problem. The Rician statistics of
the data are introduced through a singular equation with a
reaction term defined in terms of modified first order Bessel
functions. An existence theory is provided here together with
other qualitative properties of the solutions. Remarkably,
each positive global minimum of the associated functional
is one of such solutions. Moreover, we directly solve this
non–smooth non–convex minimization problem using a con-
vergent Proximal Point Algorithm. Numerical results based
on synthetic and real MRI demonstrate a better performance
of the proposed method when compared to previous TV based
models for Rician denoising which regularize or convexify
the problem. Finally, an application on real Diffusion Tensor
Images, a strongly affected by Rician noise MRI modality, is
presented and discussed.
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1 Introduction

Multiple applications in computer vision and digital image
processing can be modeled from the field of quasilinear el-
liptic equations. Variational formulations of these equations
allow to introduce a concept of weak solution, which is well
adapted to image analysis, providing faithful discontinuous
solutions. Furthermore, the discrete formulations of these
equations are readily suited for fast image processing. In par-
ticular, medical image denoising is an important application
which allows to reduce scanning time of the patients while
preserving a good image quality. Moreover, several imaging
applications like segmentation, classification, registration,
super-resolution, object recognition or tracking can benefit
of pre–processed denoised images.

In this paper we focus on the modality of Magnetic Reso-
nance Imaging (MRI), where clinicians typically work with
images contaminated by Rician noise. MRI scanners acquire
complex data where both real and imaginary parts are cor-
rupted with zero-mean uncorrelated Gaussian noise with
equal variance. The calculation of the magnitude image trans-
forms the original complex Gaussian noise into Rician noise
(Henkelman, 1985; Gudbjartsson and Patz, 1995). The Rician
distribution considerably differs from a Gaussian distribu-
tion when low signal-to-noise-ratio (SNR) data is consid-
ered. This is the reason why several denoising methods that
take into account the Rician distribution of the noise are fo-
cused on Diffusion Weighted Images (DWI), one of the MRI
modalities more severely affected by noise (Basu et al, 2006;
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Wiest-Daesslé et al, 2008; Tristán-Vega and Aja-Fernández,
2010).

In particular, modeling these statistics in the framework
of a Tikhonov Regularization through the Total Variation
(TV) operator leads to consider a 1–Laplacian elliptic equa-
tion with a nonlinear lower order term defined in terms of
modified Bessel functions.

The TV operator

TV (u) = sup
{∫

Ω

udiv φ

∣∣∣φ ∈C∞
c (Ω ,RN),‖φ‖∞ ≤ 1

}
(1)

was introduced in the image community by Rudin, Osher
and Fatemi, (Rudin et al, 1992) through their celebrated de-
noising model (ROF in the following) which is the Gaussian
counterpart of the Rician model we are considering. The 1–
Laplacian operator characterizes the subdifferential of the TV
functional; for a proof of such result in the L2–framework,
we refer to (Andreu et al, 2004a) (see (Andreu et al, 2004a,
Proposition 1.10)). We point out that in (Bredies and Holler,
2012) the 1–Laplacian operator has also been characterized
as the pointwise subdifferential of the TV operator in form

−div
(

Du
|Du|

)
∈ ∂TV (u) .

It is well known that inverse ill–posed problems can be dealt
with in the framework of generalized Tikhonov regulariza-
tion. The resulting functional is composed of two basic terms
which reflect our belief in the data through one or more
(hyper)–parameters weighting the amount of regularization.
This in turn determines the smoothness of the denoised image
and functional analysis is invoked in order to select the ap-
propriate functional space. Sobolev spaces are rapidly ruled
out because of their excessive smoothing which generates
continuous unrealistic images. So this very nonlinear oper-
ator, the TV operator emerges because it allows for (weak)
distributional solutions in the very large space of functions
of bounded variation, those whose gradient is a Radon mea-
sure (Ambrosio et al, 2000). Such a sophisticated setting is
a generalized approach which allows for truly discontinu-
ous functions and opens the way to theoretical as well as
practical and accurate digital image processing (Chambolle
et al, 2010). Since the seminal paper from Rudin, Osher and
Fatemi (Rudin et al, 1992), there has been a burst in the appli-
cation of the Total Variation regularization to many different
image processing problems which include inpainting, blind
deconvolution or multichannel image segmentation (see for
instance (Chan et al, 2005) for a review on this topic). Fast
and robust numerical methods have been proposed to exactly
solve convex optimization problems with TV regularization,
such as the dual approach of (Chambolle, 2004) and, more
recently, the Split Bregman method (Goldstein and Osher,
2009) and the primal–dual approach of (Chambolle and Pock,
2011).

Our proposed model equation arises as the (formal) Euler–
Lagrange equation associated to an energy minimization
problem obtained in a Bayesian framework. A key feature of
this problem is that the nonlinear term modeling Rician noise
in the energy functional can be a non–convex changing sign
function with a double well profile. This leads to the study of
non–convex non–smooth minimization problems. In fact, this
non–convexity of the energy functional is crucial because
otherwise we could show uniqueness of the trivial solution
u ≡ 0. The variational minimization problem associated to
the model equation we consider was proposed in (Martin
et al, 2011), where the multivalued Euler–Lagrange equation
for the 1–Laplacian operator is deduced as a first order nec-
essary optimality condition. This minimization problem was
simultaneously and independently considered in (Getreuer
et al, 2011a), where blurring effects were included and ex-
istence and comparison results in the pure denoising case
were reported. In order to cope with the multivalued Euler–
Lagrange equation an ε-regularization of the TV term was
introduced in both works (Martin et al, 2011; Getreuer et al,
2011a) . More recently, in (Chen and Zeng, 2015) a convex
variational model for restoring blurred images corrupted by
Rician noise have been proposed to overcome the difficulties
related to the non–convex nature of the original problem we
are considering here.

The non–smoothness property of the model comes from
the very singular 1–Laplacian elliptic equation, which had
firstly been studied as a limit of equations involving the p–
Laplacian. The interest in studying such a case came from an
optimal design problem in the theory of torsion and related
geometrical problems (see (Kawohl, 1990) and (Kawohl,
1991) for constant data, and (Cicalese and Trombetti, 2003)
for more general data). The suitable notion of solution to the
1–Laplacian had to wait at the turn of the century (Andreu
et al, 2001a). Other important related papers published in
the early twenty–first century include (Andreu et al, 2001b;
Bellettini et al, 2002; Demengel, 2002; Kawohl and Fridman,
2003; Andreu et al, 2004b; Demengel, 2004; Bellettini et al,
2006). Due to its unique properties, this operator has been
the optimal choice for PDE based image processing in the
last twenty years. Briefly, the 1–Laplacian describes isotropic
diffusion within each level surface with no diffusion across
different level surfaces. In this way, its action does not over-
regularize the data and preserves edges and fine details. This
is not true when the p–Laplacian operator, for p > 1, is used,
since an artificial smoothing is introduced.

While the ROF model has been mathematically studied
and existence and uniqueness results have been obtained
(Chambolle and Lions, 1997), the Euler–Lagrange quasilin-
ear equation associated to the Rician problem has not been
considered yet for mathematical analysis. Notice that the
same is true even for the semilinear equation accounting
for Rician noise and linear diffusion. Here we focus on the
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mathematical analysis of the TV based Rician model. We
show that the nonlinear 1–Laplacian problem has, aside from
the trivial solution, at least a positive distributional solution
which is also a global minimum of the energy problem (pro-
vided that the datum is big enough). This result makes the
solutions of the TV Rician denoising model attractive for the
application in MRI and in particular for the DWI modality.
The existence result is based on the consideration of a se-
quence of approximating problems of the p–Laplacian type
for which no existence results are known due to the very
special nonlinearity associated to the Rician noise term. Stan-
dard techniques can be used. When p = 2, existence and
uniqueness of positive solutions is also deduced. In contrast,
for general 1≤ p < 2, the uniqueness of positive solutions
is still an open problem. Nevertheless, it is proved that for
constant data we have uniqueness of constant solutions for
any p.

The numerical resolution of the proposed model is also
challenging because the energy functional is non–convex
for any p and also non–smooth for p = 1. To cope with the
non–convexity we propose a suitable decomposition of the
energy functional, which allows to write it as a Difference of
Convex (DC) functionals. A primal–dual approach (suitable
for non differentiable energy functionals such as the TV
operator) embedded into a proximal algorithm (suitable for
DC functionals) is then applied to show, also numerically,
the convergence of the p–Laplacian approximate solutions
to the true 1–Laplacian solution when p→ 1. This provides
a unified framework in which these problems can be solved
using the same algorithm and then fairly compared. Our
numerical method is then successfully compared with the
primal gradient descent algorithm presented in (Getreuer
et al, 2011a) and the convexified models of (Getreuer et al,
2011a) and (Chen and Zeng, 2015).

This paper is organized as follows. In Section 2 we define
the model problem characterizing the Bessel ratio function
and its properties jointly with the statement of our main re-
sult (see Theorem 1 below). Weak solutions are defined in
Section 3 where the main result is obtained considering suit-
able regularizing approximating problems of the p–Laplacian
type. Some qualitative properties are discussed in Section 4,
before the numerical resolution of the related minimization
problem is presented in Section 5. Finally, in section 6, the
performance of the algorithm is compared to other related
methods and an application on real DTI is presented.

2 Preliminaries

2.1 The model problem and the statement of the main result

Let Ω be an open, bounded domain in RN (N ≥ 2) with Lips-
chitz boundary ∂Ω (usually a rectangle in image processing).
Thus, there exists a outer unit normal vector n(x) at x ∈ ∂Ω ,

for H N−1–almost all point; here and in what follows H N−1

stands for the (N−1)–dimensional Hausdorff measure.
We will consider in Ω a Neumann problem involving the

1–Laplacian. This operator has to be studied in the frame-
work of functions of bounded variation. Recall that a function
u : Ω → R is said to be of bounded variation if u ∈ L1(Ω)

and its distributional gradient Du is a (vector) Radon measure
having finite total variation. We denote by BV (Ω) the space
containing all functions of bounded variation. For a system-
atic study of this space, we refer to (Ambrosio et al, 2000)
(see also (Giusti, 1984)). The appropriate concept of solution
to deal with the Neumann problem for the 1–Laplacian is
introduced in (Andreu et al, 2001a). For a review on the early
development of variational models in image processing and
a deep study of equations involving the 1–Laplacian, see
(Andreu et al, 2004b).

The boundary value problem in which we are interested
is:
−div

(
Du
|Du|

)
+h′(x,u) = 0, inΩ ,(

Du
|Du|

)
·n = 0, on∂Ω .

(2)

We shall assume that h′ : Ω ×R→ R is a non monotone
Carathéodory function defined as

h′(x,u) =
(

λ

σ2

)
u−
(

λ

σ2

)
rσ (x,u) f (x) (3)

where λ > 0 and σ2 6= 0 are real given parameters, f (x)≥ 0
for almost all x ∈Ω , and the function

rσ (x,u) =
I1

(
u(x) f (x)

σ2

)
I0

(
u(x) f (x)

σ2

) (4)

is the ratio between the first and zero order modified Bessel
functions of the first kind. Series representations and general
properties can be found in (Watson, 1922). Notice the de-
pendence (that we shall omit) rσ (x,u) = r(x,u) of the Bessel
ratio function on the parameter σ2, which is the estimated
variance of the original Gaussian noise of the complex MRI
data. This implicit dependence renders problem (2) a truly
2–parametric problem in so far σ2 cannot be scaled out from
λ and it has to be estimated from the noisy data f (x).

Assuming λ > 0, σ2 6= 0 fixed and f (x) ∈ L∞(Ω) given,
problem (2) reads:
(

λ

σ2

)
u−div

(
Du
|Du|

)
=

(
λ

σ2

)
r(x,u) f , in Ω ;(

Du
|Du|

)
·n = 0, on∂Ω .

(5)
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The modified Bessel functions Iν(s), ν ≥ 0, s≥ 0 which de-
fine the ratio r(x,u) (4) are monotone, exponentially growing
functions and this distinguish their behavior from ordinary
Bessel functions which have oscillating wave–like forms
(Amos, 1974; Neuman, 1992). Moreover I0(0) = 1, I0(s)> 1
for any s > 0 and Iν(0) = 0, Iν(s) > 0 for any s > 0 and
ν > 0 so r(x,0) = 0 and the Bessel ratio function r(x,u) in
(4) is well–defined and non–negative for any f ≥ 0 and u≥ 0.
Also I1(s)< I0(s) for any s > 0 and then 0≤ r(x,u)< 1. By
(3) we then have h′(x,0) = 0 and u≡ 0 is always a solution
of (2) and (5) for any non-negative datum f (x) and fixed
parameters λ > 0 and σ2 6= 0.

The specific form of h′(x,u) given in (3) describes the Ri-
cian noise distribution of a given datum image f (x) and it has
been deduced in several papers dealing with medical imaging
since the paper (Basu et al, 2006) where it was proposed for
DTI. When dealing with the image processing application
we shall assume that f ∈ L∞(Ω) even if our existence theory
applies more generally to f ∈ L2(Ω).

The function h′(x,u) is the Gateaux derivative of h(x,u):

h(x,u) =
∫ u

0
h′(x, t)dt

Using (3) we have:

h(x,u) =
(

λ

2σ2

)
u2−λ log I0

(
u f
σ2

)
(6)

with h(x,0) = 0 and the logarithm is well–defined and non-
negative for any f ≥ 0 and u≥ 0 because of I0(s)≥ 1, ∀s≥ 0.

Following the Bayesian modeling approach, the associ-
ated minimization problem is

min
u∈BV (Ω)

J1(u)+H(u, f ) ,

where J1(u) = TV (u) is the Total Variation regularization
functional, previously defined in (1), and that can also be
denoted as

J1(u) =
∫

Ω

|Du| .

The fidelity term (modelling Rician noise) is

H(u, f ) =
∫

Ω

h(x,u)dx

=

(
λ

2σ2

)∫
Ω

u2dx−λ

∫
Ω

log I0

(
u f
σ2

)
dx . (7)

Notice that H(0, f ) = 0, ∀ f .
The minimization problem for image denoising of Ri-

cian corrupted data is formulated as follows. An equivalent
formulation is considered in (Getreuer et al, 2011a). Fixed
real parameters λ > 0 and σ2 6= 0 and given a noisy im-
age f ∈ L∞(Ω) recover a clean image u ∈ BV (Ω)∩L∞(Ω)

minimizing the energy:

E1(u) = J1(u)+H(u, f ) (8)

=
∫

Ω

|Du|+λ

∫
Ω

u2

2σ2 −λ log I0

(
u f
σ2

)
dx .

This minimization problem can naturally be studied in the
L2–setting since

|H(u, f )| ≤ λ

2σ2

∫
Ω

u2 dx+
λ

σ2

∫
Ω

|u| f dx

(see (10) in Lemma 1 below). Thus, our main result can be
stated as follows:

Theorem 1 Let λ > 0 and σ2 6= 0 be given real parame-
ters. For every non–negative f ∈ L2(Ω), there exists a non–
negative u ∈ BV (Ω)∩L2(Ω) which is a solution to problem
(2), in the sense of Subsection 3.1, and it is a global minimum
of functional E1 in (8).

Remark 1 This existence result relates problem (2) and the
global minimization of functional (8), which is a non–smooth
and non–convex optimization problem. Its proof can be found
in Section 3 below, while Section 4 is devoted to complete
this theorem. Among others, it is shown that the solution we
find satisfies the following properties:

1. If f ∈ L∞(Ω), then u ∈ L∞(Ω) and ‖u‖∞ ≤ ‖ f‖∞.
2. Solution u vanishes identically when f (x) ≤

√
2σ2 a.e.

in Ω .
3. Solution u is strictly positive when f (x)≥ µ >

√
2σ2 a.e.

x ∈Ω , and moreover E1(u)< 0 holds.

This last feature provides a sufficient condition in order to
have a non trivial minimizer of functional (8).

Remark 2 The problem of minimizing E1 has also been con-
sidered by Getreuer et al. (their results were announced in
(Getreuer et al, 2011a) and proved in (Getreuer et al, 2011b;
Tong, 2012)). It is worth comparing these results with those
in the present paper since both approaches are very differ-
ent. We prove our results through the formal Euler–Lagrange
equation of the minimization problem, while the results in
(Getreuer et al, 2011b; Tong, 2012) are obtained by direct
methods. We explicitly point out two aspects:

1. Our existence result is more general, since we take data
f belonging to L2(Ω), and (Getreuer et al, 2011b; Tong,
2012) consider data f ∈ L∞(Ω) with the additional as-
sumption infx∈Ω f (x)≥ α > 0.

2. One important feature of the present paper is that a simple
condition is provided to distinguish data which lead to
non trivial solutions. Instead, the results by Getreuer et
al. do not identify non trivial solutions.

Remark 3 Uniquenes of non-trivial solutions is still an open
problem. Using the same arguments from (Aubert and Aujol,
2008) and some properties of the modified Bessel Functions,
a comparison result for the solutions of the minimization
problem is stated in (Getreuer et al, 2011a, Theorem 2) and
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proved in (Getreuer et al, 2011b; Tong, 2012). This com-
parison result establishes that given 0 < f1 < f2 a.e. x ∈Ω ,
then u1 ≤ u2 a.e. x ∈ Ω , with u1, u2 being minimizers of
(8) for f = f1, f = f2 respectively. Since f1 and f2 must be
different, it does not imply uniqueness. Some partial results
about uniqueness of non trivial solutions shall be presented
in section 4.2

The existence result in Theorem 1 will be proved by
approximating our functional through functionals defined on
the Sobolev space W 1,p(Ω) and having p–growth (with p >

1). The main advantage of these approximating functionals
is their differentiability (in contrast with E1, which is not
differentiable). So, we introduce, for subsequent analysis, the
(differentiable) energy

Ep(u) = Jp(u)+H(u, f ) (9)

=
1
p

∫
Ω

|∇u|p dx+λ

∫
Ω

u2

2σ2 −λ log I0

(
u f
σ2

)
dx .

Notice that Ep(0) = 0 for any p > 1, and also E1(0) = 0. The
weak (distributional) solutions of (5) formally coincide with
the critical points of (8). The crucial point is that these ener-
gies (including (9) for p > 1) may be non–convex depending
on the datum f and the (estimated) parameter σ2. This fact
does not depend on the regularizer but it is a feature of the
Rician likelihood function. To explore further this point we
analyse the behaviour of the Bessel ratio function defined
in (4) which governs the qualitative properties of the ener-
gies (8) and (9). This leads to show the coercitiveness of the
functional in section 2.3, implying the existence result for
the p-approximating problems in section 2.4.

2.2 A Non–Convex Semi–Linearity

The characterization of the model semilinearity h(x,u) leads
to the study of the properties of the modified Bessel functions
of the first kind. Our results are founded on some fundamen-
tal inequalities regarding the ratio function r(x,u) and its
derivative which can be found in (Amos, 1974). These results
will allow to characterize suitable growth conditions related
to the Rician statistics. Moreover we shall prove that, depend-
ing on the data and parameters of the problem, h

′′
(x,u) is

negative near u = 0 and hence h′ is non–monotone and h is
non–convex.

Lemma 1 Let h′ be defined as in (3) with datum f (x) ≥ 0
and fixed parameters λ > 0 and σ2 6= 0. Then

|h(x,u)| ≤ λ

2σ2 u2 +
λ

σ2 |u| f (x), a.e.x ∈Ω . (10)

|h′(x,u)| ≤
(

λ

σ2

)
(|u|+ f (x)), a.e.x ∈Ω . (11)

and(
λ

σ2

)(
1− f 2

2σ2

)
≤ h

′′
(x,u)≤

(
λ

σ2

)
, a.e.x∈Ω . (12)

Moreover

lim
u→0+

h
′′
(x,u) = h

′′
(x,0) =

(
λ

σ2

)(
1− f 2

2σ2

)
, (13)

and

lim
u→∞

h
′′
(x,u) =

λ

σ2 , a.e.x ∈Ω . (14)

PROOF: In order to simplify the notation when using
the results of (Amos, 1974), we define s = u(x) f (x)/σ2 for
fixed x ∈ Ω and denote the ratio function r(x,u) = r(s) =
I1(s)/I0(s), s ≥ 0. Please notice that r′(x,u) is the Gateaux
derivative while r′(s) is the derivative w.r.t the real, non-
negative parameter s.

By definition and the monotonicity properties of the mod-
ified Bessel functions 0≤ r(s)< 1 for any s> 0 and r(s)→ 1
when s→ ∞. The first inequality is then straightforward. We
simply use definition (3), the fact that 0 ≤ r(x,u) < 1 and
the triangle inequality to deduce that h′ verifies the sublinear
growth condition (11) for a.e x ∈Ω .

As a consequence, we obtain (10). Indeed,

|h(x,u)| ≤
∫ |u|

0
|h′(x, t)|dt

≤ λ

σ2

∫ |u|
0

(|t|+ f (x))dt ≤ λ

σ2

(u2

2
+ |u| f (x)

)
.

In order to show (12) we compute the second derivative of
h(x,u) with respect to u which reads

h
′′
(x,u) =

(
λ

σ2

)
[1− r′(x,u) f (x)] (15)

=
λ

σ2

1−
(

f 2

2σ2

)1+
I2

(
u f
σ2

)
I0

(
u f
σ2

) −2
I2
1

(
u f
σ2

)
I2
0

(
u f
σ2

)



where we used that I
′′
0 (s) = I

′
1(s) = (1/2)[I2(s)+ I0(s)], ∀s≥

0 (Amos, 1974).
Reasoning as in (Amos, 1974) and using its formulas 11,

12, 15, pg.242, the following bounds hold:

0≤ s

1+
√

s2 +1
≤ r(s)≤ s√

s2 +4
< 1, s≥ 0.

Using that r′(s) = 1− r(s)
s
− r2(s), s > 0, and inequalities

0 < r′(s)<
r(s)

s
, s > 0 (formula 15 in (Amos, 1974)) we get

the improved bounds

0 < r′(s)<
1

1+
√

s2 +1
<

r(s)
s

<
1√

s2 +4
<

1
2
, (16)
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for all s > 0.
To show (12) we derive with respect to u the relationship

r(x,u) = r(s) to have

f (x)r′(s) = σ
2r′(x,u)

and

0≤ σ
2r′(x,u) = f (x)r′(s)<

f (x)
2

, a.e. x ∈Ω

because r′(s)<
1
2

for any s≥ 0 by (16). Using (15) the above
inequality implies:(

λ

σ2

)[
1−
(

f 2

2σ2

)]
≤ h

′′
(x,u) =

=

(
λ

σ2

)[
1− r′(x,u) f (x)

]
≤ λ

σ2

and (12) holds true. Finally (13) is checked using (15) and
I0(0) = 1, Iν(0) = 0 for any ν > 0. Because of I2(s)/I0(s)→
1, I1(s)/I0(s)→ 1 when s→ ∞ we deduce (14).

Fig. 1: The profile of h
′′
(x,u) is computed for constant data

f = 1 and parametric values f 2/σ2 = 1, f 2/σ2 = 2 and
f 2/σ2 = 3. The values of λ is chosen to get a constant ratio
λ/σ2 = 3. A limit behavior is obtained when f 2/σ2 = 2
(σ = 1/

√
2, in red). For f 2/σ2 ≤ 2 we have uniqueness.

On the other hand, for f 2/σ2 > 2 we have f 2 > 2σ2 and
the corresponding profile is negative in a neighborhood of
s = 0. Some properties of h′′(x,u), (12), (13) and (14), can
be observed in the figure.

As a consequence of the above analysis h
′′
(x,u)> 0 a.e.

in Ω for (uniformly) small data f (x) <
√

2σ2 and then h′

is monotone increasing and uniqueness of the trivial so-
lution can be deduced (see Subsection 4.2 below). Sum-
ming up we have shown (see figure 2) that h

′′
(x,0)> 0 for

f (x)<
√

2σ2, h
′′
(x,0)= 0 for f (x)=

√
2σ2 and h

′′
(x,0)< 0

for f (x)>
√

2σ2. The same fact is true for small u as h′′(x,u)
is continuous with respect to u. These properties character-
ize the local behavior near u = 0 of h(x,u). It turns out that
h
′′
(x,u) is a changing sign function depending on the datum

f and the parameter σ2. Then h(x,u) is possibly non-convex.
This implies that h′(x,u) is non monotone. Multiple solutions
to problem (2) corresponding to critical points of the energy
functional may exist. For f ≡ 0 we have h(u) = (λ/2σ2)u2,
h′(u) = (λ/σ2)u and h

′′
(u) = λ/σ2 > 0. Multiplying (for-

mally) by u in the model equation appearing in (2) and inte-
grating it is easily seen that u≡ 0 is the unique solution. We
shall see in Subsection 4.2 that the same phenomenon is true
when f is small enough.

To get a deep insight into the features of the energy term
related to Rician noisy data, in this subsection, we fix x ∈Ω

and describe the profile of h(x,u) defined in (6). We have:

Lemma 2 Let h be defined as in (6) with datum f (x) ≥ 0,
a.e. x ∈Ω and fixed parameters λ > 0 and σ2 6= 0. Then

lim
t→±∞

h(x, t) = +∞, a.e.x ∈Ω . (17)

Moreover:

1. If f (x)2 ≤ 2σ2 a.e. x ∈ Ω , then the function t 7→ h(x, t)
is convex and its minimum is attained at 0.

2. If f (x)2 > 2σ2 a.e. x ∈Ω , then t 7→ h(x, t) has a unique
positive critical point where it attains a global minimum.

PROOF: We fix x ∈ Ω . When f (x) = 0, the result is

straightforward since then h(x, t) =
(

λ

2σ2

)
t2.

Assuming that f (x)> 0, we begin by showing the limit
behavior. Consider (3) written in form

h′(x,u)+
(

λ

σ2

)
r(x,u) f (x) =

(
λ

σ2

)
u .

As h′(x,u) is the Gateaux derivative of h(x,u) we formally
integrate in (0, |u|) with respect to u to obtain

h(x, |u|)+
(

λ

σ2

)∫ |u|
0

r(x, t) f (x)dt =
(

λ

2σ2

)
|u|2 .

We deduce from the boundedness |r(x, t)| ≤ 1 a.e. in Ω for
any t, the inequality

0≤
(

λ

σ2

)∫ |u|
0

r(x, t) f (x)dt ≤
(

λ

σ2

)
|u| f ,

and owing to the fact that h(x, t) is an even function (because
I0 is even), it yields

h(x,u)+
(

λ

σ2

)
|u| f (x)≥

(
λ

2σ2

)
u2 . (18)

Now, Young’s inequality implies
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(
λ

σ2

)
|u| f (x)≤

(
λ

σ2

)[(
ε

2

)
u2 +

(
1

2ε

)
f (x)2

]
for any ε > 0. Thus, (18) becomes

h(x,u)≥ 1
2

(
λ

σ2

)[(
1− ε

)
u2− 1

ε
f (x)2

]
, (19)

from where (17) follows choosing ε < 1.
To go on, we need to know more features of the function

s 7→ r(s)
s

. Our starting point is (16). Indeed, letting s →

0 in (16), it yields lim
s→0

r(s)
s

=
1
2

and letting s→ +∞, we

deduce lim
s→+∞

r(s)
s

= 0. On the other hand, (16) implies that

the function s 7→ r(s)
s is (strictly) decreasing in [0,+∞[.

Next let w(x) be a positive critical point of

h(x, t) =
(

λ

2σ2

)
t2−λ log I0

(
t f (x)

σ2

)
,

then h′(x,w(x)) = 0 and so w(x) = r
( f (x)w(x)

σ2

)
f (x). In

other words,

σ2

f (x)2 =
r
( f (x)w(x)

σ2

)
f (x)w(x)

σ2

According to (16), it leads to the following dichotomy:

1. If 0 < f (x)2 ≤ 2σ2, then σ2

f (x)2 ≥ 1
2 , so that we cannot

find a positive critical point. In this case h(x, t) is convex
and its minimum is attained at 0.

2. If f (x)2 > 2σ2, then 0 < σ2

f (x)2 < 1
2 . As the function s 7→

r(s)
s is (strictly) decreasing, recall (16), there exists a

unique s f > 0 satisfying

σ2

f (x)2 =
r(s f )

s f
.

Choosing w(x) such that f (x)w(x)
σ2 = s f , we deduce that

w(x) > 0 and h(x, t) has a critical point at t = w(x).
Since h(x, t) is negative in a neighbourhood of 0 (as a
consequence of h′′(x,0) < 0 and h′(x,0) = h(x,0) = 0)
and limt→±∞ h(x, t) = +∞, it follows that h(x, t) has, at
least, a local minimum; wherewith that positive critical
point must be a local minimum. Therefore, h(x, t) is an
even function that, on [0,+∞[, has the following profile:
it is negative and decreasing in [0,w(x)]; it attains a global
minimum at the point w(x); from the point w(x) on, it is
increasing; and goes to +∞ as t→+∞.

Fig. 2: The double–well potential for parametric values λ =

σ2 = 5 is obtained when f 2 > 2σ2 = 10. In the figure above
we represent the profile of function t 7→ h(t) for f 2 = σ2 = 5
(Convex case), f 2 = 2σ2 = 10 (limiting behavior), f 2 =

4σ2 = 20 (double well).

2.3 Coercitiveness and lower bound

In this Subsection we show that the energy minimization
problem related to the (formal) Euler–Lagrange equation
in (2) is coercive in BV (Ω)∩ L2(Ω) because the energy
H(u, f ) defined in (7) is coercive in L2(Ω). This shall be
used to show that the energy E1(u) has, at least, a positive,
non trivial minimum (provided that the datum is big enough).

Integrating (19) in Ω , using definition (7) and noticing
that r(x,0) = 0 we deduce:

H(u, f )≥(1
2
− ε

)(
λ

2σ2

)∫
Ω

u2dx− 1
ε

(
λ

σ2

)∫
Ω

f 2dx ,

where 0 < ε < 1/2, and the functional H(u, f ) is coercive
in L2(Ω). Then the energy functional Ep(u) in (9) is coer-
cive in W 1,p(Ω)∩L2(Ω) and E1(u) (defined in (8)) is coer-
cive in BV (Ω)∩L2(Ω). These energies are also (uniformly)
bounded from below

Ep(u)≥−
1
ε

(
λ

σ2

)
‖ f‖2

2, p≥ 1

2.4 Existence Result for the Approximating problems

The analysis of problem (2) begins with the consideration of
problems involving the p−Laplacian:
−div

(
|∇u|p−2

∇u
)
+h′(x,u) = 0, inΩ ,

(
|∇u|p−2

∇u
)
·n = 0, on∂Ω .

(20)
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Since we want let p→ 1, it is enough to take 1 < p < 2. For
such p, the existence of a solution to (20) is a standard result
although we have not found references for this specific prob-
lem; so that we include its proof for the sake of completeness.
We are proving the following adaptation of Theorem 1.

Proposition 1 Let 1 < p < 2 and λ > 0, σ2 6= 0 be given
real parameters.

For every non–negative f ∈ L2(Ω), there exists a non–
negative u∈W 1,p(Ω)∩L2(Ω) which is a solution to problem
(20) and it is a global minimum of functional Ep.

PROOF: Consider the functional, written in terms of (6),

Ep(u) =

1
p

∫
Ω

|∇u|p dx+
λ

2σ2

∫
Ω

u2dx−λ

∫
Ω

log I0

(u f
σ2

)
dx .

Since the Euler–Lagrange equation corresponding to the func-
tional Ep is (20) and Ep is differentiable, it is enough to find a
nonnegative minimizer of Ep in the space W 1,p(Ω)∩L2(Ω).

The weakly lower–semicontinuity of Ep can be obtained
as follows. If (un)n is a sequence in W 1,p(Ω)∩L2(Ω) such
that

un ⇀ u , weakly in L2(Ω) ;

∇un ⇀ ∇u , weakly in Lp(Ω ;RN) ;

then, due to the lower semicontinuity of the p–norm and the
2–norm, it yields∫

Ω

|∇u|p ≤ liminf
n→∞

∫
Ω

|∇un|p∫
Ω

u2 ≤ liminf
n→∞

∫
Ω

u2
n .

To pass to the limit in the remainder term, another conse-
quence is in order, namely: the sequence ( f un)n is weakly
convergent in L1(Ω), so that it is equi–integrable. Thus, it
follows from the estimate

λ log I0

(un f
σ2

)
≤ λ

σ2 f |un|

that the sequence
(

λ log I0

(
un f
σ2

))
n

is equi–integrable as

well. Moreover, applying the compact embedding of W 1,p(Ω)

into L1(Ω), we will assume that

un(x)→ u(x) , pointwise a.e. in Ω .

This fact implies

λ log I0

(un(x) f (x)
σ2

)
→ λ log I0

(u(x) f (x)
σ2

)
, a.e. in Ω .

By Vitali’s Theorem we conclude that

Ep(u)≤ liminf
n→∞

Ep(un) .

On the other hand, we have already prove the coerciveness
of Ep previously in subsection 2.3. Therefore, there exists
u ∈W 1,p(Ω)∩L2(Ω) which minimizes Ep.

Moreover, we may choose u to be nonnegative. This
feature is a consequence of being h(x,s) an even function
with respect to s, since this fact induces Ep(|u|) = Ep(u) and
so |u| is a minimizer of Ep as well.

Remark 4 Regarding uniqueness of problem (20), we point
out that there always exists the trivial solution u ≡ 0. This
solution may be unique if the datum is small enough (see
section 4 below).

Nevertheless, we are interested in uniqueness of positive
solutions. When p = 2, we may invoke the results in (Brezis

and Oswald, 1986) and, noting that the function u 7→ r(x,u)
u

is decreasing, deduce that the positive solution to (20) must

be unique. Since u 7→ r(x,u)
up−1 is not decreasing, this argument

does not hold for p < 2, so that we cannot presume that the
positive solution we have found be unique.

3 Solving the model problem

In this section we write rigorously the model equation for-
mally introduced in (2). We shall prove the existence of a
weak (distributional) solution which is a global minimum of
the energy functional E1(u) in (8).

3.1 Definition of solution for the model problem

We shall say that u ∈ BV (Ω)∩L2(Ω) is a weak solution of
problem (2) if h′(x,u) ∈ L2(Ω) and there exists a vector field
z ∈ L∞(Ω ,RN), with ‖z‖∞ ≤ 1, such that

1. −div(z)+h′(x,u) = 0 in D ′(Ω)

2. the equality (z,Du) = |Du| holds in the sense of measures
3. [z,n] = 0, H N−1–a.e. on the boundary ∂Ω .

Roughly speaking, z plays the role of Du
|Du| . The expres-

sions (z,Du) and [z,n] have sense thanks to the Anzellotti
theory (see (Anzellotti, 1983) or (Andreu et al, 2004a, Ap-
pendix C)) which defines a Radon measure (z,Dw), when
w ∈ BV (Ω)∩L2(Ω) and div(z) ∈ L2(Ω), and provides the
definition of a weakly trace on ∂Ω to the normal component
of z, denoted by [z,n]. That Radon measure is defined, as a
distribution, by the expression

〈(z,Dw),ϕ〉=−
∫

Ω

wϕ div(z)dx−
∫

Ω

wz ·∇ϕ dx , (21)

and its total variation satisfies the fundamental inequality

|(z,Dw)| ≤ ‖z‖∞|Dw| . (22)
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Furthermore, this theory also guarantees a Green’s formula
that relates the function [z,n] and the measure (z,Dw):∫

Ω

w div(z) dx+
∫

Ω

(z,Dw) =
∫

∂Ω

[z,n]w dH N−1 .

Using this Green formula, we deduce a variational for-
mulation of the solution to problem (2), namely∫

Ω

|Du|−
∫

Ω

(z,Dv)+
∫

Ω

h′(x,u)(u− v) = 0 , (23)

for all v ∈ BV (Ω)∩L2(Ω).
This formulation allows us to show in which sense so-

lutions to problem (2) are critical points of the functional
E1 = J1 +H. In fact, it follows from (23) that

−
∫

Ω

h′(x,u)(v−u) =
∫

Ω

(z,Dv)−
∫

Ω

|Du|

≤
∫

Ω

|Dv|−
∫

Ω

|Du|

for all v ∈ BV (Ω)∩L2(Ω). Hence,

−h′(x,u) ∈ ∂J1(u) .

Remark 5 Observe that if we denote F(u)= λ log
(

I0

( f u
σ2

))
,

then we get that F ′(u) lies in the subdifferential at u of the

convex functional defined by v 7→ λ

2σ2

∫
Ω

v2 +
∫

Ω

|Dv|.

3.2 A priori estimates

We are proving that problem (2) has a solution u for each
f ∈ L2(Ω). Moreover, we are getting u≥ 0.

For 1 < p < 2, consider up ∈W 1,p(Ω)∩L2(Ω) a non-
negative solution to the approximating problem
−div

(
|∇up|p−2

∇up
)
+h′(x,up) = 0, inΩ ,

(
|∇up|p−2

∇up
)
·n = 0, on∂Ω .

(24)

The weak (variational) formulation of the boundary value
problem (24), written in terms of (3) and (4), is:

λ

σ2

∫
Ω

upvdx+
∫

Ω

(|∇up|p−2
∇up) ·∇vdx

=
λ

σ2

∫
Ω

r(x,up) f vdx , (25)

for all v ∈W 1,p(Ω)∩L2(Ω). Choosing v = 1 we have the
compatibility integral condition∫

Ω

h′(x,up)dx = 0 (26)

i.e., h′(x,up) has mean zero and we easily deduce a first
estimate:

‖up‖1 =
∫

Ω

updx =
∫

Ω

r(x,up) f dx≤
∫

Ω

f dx = ‖ f‖1 = M1 .

We now use v = up as a test function in the variational for-
mulation obtaining

λ

σ2

∫
Ω

u2
pdx+

∫
Ω

|∇up|pdx

=
λ

σ2

∫
Ω

r(x,up) f updx≤ λ

σ2

∫
Ω

f up dx

≤ λ

2σ2

(∫
Ω

f 2dx+
∫

Ω

u2
pdx
)
,

hence the uniform estimate

λ‖up‖2
2 +2σ

2‖∇up‖p
p ≤ λ‖ f‖2

2 = M2 .

It follows now from Young’s inequality that

‖up‖2
2 +‖∇up‖1 ≤ ‖up‖2

2 +
1
p
‖∇up‖p

p +
p−1

p
|Ω | ≤

≤
(

1
λ
+

1
2σ2

)
M2 + |Ω |= M3 .

Thus, (up)p is bounded in BV (Ω)∩L2(Ω) and there exist
u ∈ BV (Ω)∩L2(Ω) and a subsequence, still denoted by up,
satisfying

∇up ⇀ Du , *–weakly as measures

up(x)→ u(x) , a.e. in Ω

up ⇀ u , weakly in L2(Ω)

up→ u , strongly in Lr(Ω) ∀1≤ r < 2 (27)

We point out that u≥ 0 due to being a pointwise limit of non-
negative functions. We deduce from u∈ L2(Ω) that h′(x,u)=
(λ/σ2)[u− r(x,u) f ] ∈ L2(Ω) since r(x,u) is bounded. The
boundedness of (up)p in BV (Ω) also implies that for every
q, 1≤ q < p′, we have

∫
Ω

|∇up|(p−1)q dx≤
(∫

Ω

|∇up|p dx
)(p−1)q/p

|Ω |1−
(p−1)q

p

≤M
(p−1)q

p
3 |Ω |1−

(p−1)q
p ≤M3 + |Ω | . (28)

So, for any q> 1 fixed, the sequence |∇up|p−2∇up is bounded
in Lq(Ω ;RN) and then there exists zq ∈ Lq(Ω ;RN) such that,
up to subsequences,

|∇up|p−2
∇up ⇀ zq in Lq(Ω ;RN) for all 1≤ q <+∞ .

Moreover, by a diagonal argument we can find a limit z that
does not depend on q, that is

|∇up|p−2
∇up ⇀ z in Lq(Ω ;RN) for 1≤ q <+∞ . (29)

Now by (28) we deduce

‖|∇up|p−2
∇up‖Lq(Ω ;RN) ≤ (M3 + |Ω |)1/q
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for 1≤ q <+∞ and for p ∈]1,q′[ . Therefore, by lower semi-
continuity of the norm, we have

‖z‖Lq(Ω ;RN) ≤ (M3 + |Ω |)1/q for all 1≤ q <+∞ .

Letting q→ ∞, we get that z ∈ L∞(Ω ;RN) and

‖z‖L∞(Ω ;RN) ≤ 1 .

3.3 Checking that function u is a solution to the model
problem (2)

We have to see that u satisfies the requirements of our defini-
tion (see Subsection 3.1 above).

Taking v=ϕ ∈C∞
0 (Ω) in (25) and letting p→ 1, it yields

λ

σ2

∫
Ω

uϕdx+
∫

Ω

z ·∇ϕdx =
λ

σ2

∫
Ω

r(x,u) f ϕdx ,

so that our equation holds in the sense of distributions.
Once we have proved 1 in the definition of solution, we

proceed to see 2 and 3. To begin with 2, consider ϕ ∈C∞
0 (Ω)

such that ϕ ≥ 0. Taking upϕ as test function in (25), we
obtain

λ

σ2

∫
Ω

u2
pϕdx+

∫
Ω

ϕ|∇up|pdx (30)

+
∫

Ω

up|∇up|p−2
∇up ·∇ϕdx =

λ

σ2

∫
Ω

r(x,up) f upϕdx .

We are studying each term in (30) to let p→ 1. We apply Fa-
tou’s Lemma in the first term. In the second, we use Young’s
inequality and the lower semicontinuity of the total variation
as follows:∫

Ω

ϕ|∇up| ≤ liminf
p→1

∫
Ω

ϕ|∇up|dx

≤ liminf
p→1

( 1
p

∫
Ω

ϕ|∇up|pdx+
p−1

p

∫
Ω

ϕ dx
)

= liminf
p→1

∫
Ω

ϕ|∇up|pdx .

Third term is handled using (27) and (29). In the right hand
side is enough to have in mind that r is bounded. Therefore,
(30) becomes

λ

σ2

∫
Ω

u2
ϕdx+

∫
Ω

ϕ|Du|+
∫

Ω

uz ·∇ϕdx

≤ λ

σ2

∫
Ω

r(x,u) f uϕdx .

Taking into account that our equation holds in the sense of
distributions and simplifying, we may write this inequality as∫

Ω

ϕ|Du|+
∫

Ω

uz ·∇ϕ dx≤−
∫

Ω

uϕ divzdx .

By (21), this is just∫
Ω

ϕ|Du| ≤ 〈(z,Du),ϕ〉 ,

that is, |Du| ≤ (z,Du) as measures. The reverse inequality is
a consequence of (22). Hence, 2 is seen.

It only remains to prove 3. To this end, consider v ∈
W 1,2(Ω) in (25) and take limits as p goes to 1. It yields

λ

σ2

∫
Ω

uvdx+
∫

Ω

z ·∇vdx =
λ

σ2

∫
Ω

r(x,u) f vdx .

Using the equality
λ

σ2 (u− r(x,u) f ) = div z, it follows that∫
Ω

vdiv zdx+
∫

Ω

z ·∇vdx = 0 ,

so that Green’s formula implies∫
∂Ω

v[z,n]dH N−1 = 0 .

By a density argument, this leads to [z,n] = 0 H N−1–a.e. on
∂Ω .

Remark 6 We explicitly point out that the compatibility con-
dition (26) also holds for the solution u to problem (2). To
check this fact, it is enough to multiply

−div (z)+h′(x,u) = 0

by a constant function and apply Green’s formula. Then we
get∫

Ω

h′(x,u)dx = 0 .

The same condition can be deduced letting p→ 1 in (26)
since |h′(x,up)| ≤C(|up|+ f ) and up→ u strongly in L1(Ω).

3.4 Function u is a global minimizer of functional E1

We will prove that the nonnegative function u considered
in Subsection 3.2, which we have shown is a solution to
problem (2) in Subsection 3.3, satisfies

E1(u)≤ E1(v) , for all v ∈ BV (Ω)∩L2(Ω) .

To see it, we use several stages.
Step 1.- To begin with, assume that v ∈W 1,2(Ω). Ob-

serve first that the interpolation inequality implies

1
p

∫
Ω

|∇v|p dx≤ 1
p
‖∇v‖2(p−1)

2 ‖∇v‖p−2(p−1)
1

for all 1 < p < 2. Thus,

limsup
p→1

1
p

∫
Ω

|∇v|p dx≤
∫

Ω

|∇v|dx .

On the other hand, as a consequence of Young’s inequality,
we have∫

Ω

|∇v|dx≤ 1
p

∫
Ω

|∇v|p dx+
p−1

p
|Ω | ,
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for all 1 < p < 2; so that∫
Ω

|∇v|dx≤ liminf
p→1

1
p

∫
Ω

|∇v|p dx .

Hence, the conclusion is∫
Ω

|∇v|dx = lim
p→1

1
p

∫
Ω

|∇v|p dx ,

that is

E1(v) = lim
p→1

Ep(v) . (31)

Since up is a minimizer of Ep and v ∈W 1,p(Ω)∩L2(Ω),
we obtain

Ep(up)≤
1
p

∫
Ω

|∇v|p dx+
∫

Ω

h(x,v)dx ,

for all 1 < p < 2. On account of (31), using the lower–
semicontinuity of functional E1 and Young’s inequality we
deduce that

E1(u) ≤ liminf
p→1

E1(up)≤ liminf
p→1

(
Ep(up)+

p−1
p
|Ω |
)

≤ lim
p→1

Ep(v) = E1(v) .

Step 2.- Assume now that v ∈W 1,1(Ω)∩L2(Ω) satisfies
v
∣∣
∂Ω
∈W 1/2,2(∂Ω). Then there exists w ∈W 1,2(Ω) such

that v
∣∣
∂Ω

= w
∣∣
∂Ω

and so v−w ∈W 1,1
0 (Ω)∩L2(Ω). Thus,

there exists a sequence (vn)n in C∞
0 (Ω) such that

vn +w→ v , strongly in W 1,1(Ω) ;

vn +w→ v , strongly in L2(Ω) .

Since Step 1 provides us

E1(u)≤ E1(vn +w) , for all n ∈ N ,

it follows that

E1(u)≤ E1(v) .

Step 3.- Consider the general case: v ∈ BV (Ω)∩ L2(Ω).
Some approximation sequences of v are in order. First (see
(Ambrosio et al, 2000, Theorem 3.9) and (Giusti, 1984,
Remark 2.12)) there exists a sequence (vn)n in C∞(Ω)∩
W 1,1(Ω)∩L2(Ω) such that

vn→ v , strongly in L2(Ω) ,∫
Ω

|∇vn| →
∫

Ω

|Dv| ,

vn
∣∣
∂Ω

= v
∣∣
∂Ω

, for all n ∈ N .

On the other hand, given v
∣∣
∂Ω
∈ L1(∂Ω), we may find a

sequence (ϕn)n in W 1/2,2(∂Ω) satisfying

ϕn→ v
∣∣
∂Ω

, strongly in L1(∂Ω) .

For each n ∈ N, we apply (Anzellotti, 1983, Lemma 5.5)
to get wn ∈C(Ω)∩W 1,1(Ω)∩L2(Ω) such that∫

Ω

|∇wn|dx <
∫

∂Ω

|ϕn− v|dH N−1 +
1
n
,∫

Ω

|wn|2 dx <
1
n
,

wn
∣∣
∂Ω

= ϕn− v
∣∣
∂Ω

, for all n ∈ N .

Summing up, we have

1. wn + vn ∈C(Ω)∩W 1,1(Ω)∩L2(Ω) for all n ∈ N;
2. wn + vn→ v, strongly in L2(Ω);
3. (wn + vn)

∣∣
∂Ω

= ϕn ∈W 1/2,2(∂Ω) for all n ∈ N.

Moreover, since∫
Ω

|∇(wn + vn)|dx≤
∫

Ω

|∇wn|dx+
∫

Ω

|∇vn|dx

<
∫

∂Ω

|ϕn− v|dH N−1 +
1
n
+
∫

Ω

|∇vn|dx

and ϕn→ v
∣∣
∂Ω

strongly in L1(∂Ω), it follows that

limsup
n→∞

∫
Ω

|∇(wn + vn)|dx≤
∫

Ω

|Dv| .

The lower semicontinuity of the total variation now leads to

lim
n→∞

∫
Ω

|∇(wn + vn)|dx =
∫

Ω

|Dv| .

Therefore,

E1(wn + vn)→ E1(v) .

Finally, by Step 2, we already get

E1(u)≤ E1(wn + vn) , for all n ∈ N .

Letting n go to ∞, we see that E1(u)≤ E1(v). Since this fact
holds for all v ∈ BV (Ω)∩L2(Ω), we are done.

4 Remarks and Properties of the Problem

4.1 Summability of the solutions

We are interested in dealing with bounded data f . In this
case, the solution we find is also bounded. More generaly,
we will see in this remark that if f ∈ Lq(Ω), with q > N,
then the solution u is bounded. It is enough to check that an
L∞–estimate holds on the approximate solutions up. Since
q > N, then N

q′(N−1) > 1. Fix p0, such that 1 < p0 <
N

q′(N−1) ,
and take p such that 1 < p≤ p0. For any k > 0 consider the
real function Gk(s) := (s−k)+, s≥ 0. Taking Gk(up) as test
function in (25), we get

λ

σ2

∫
Ω

upGk(up)dx+
∫

Ω

|∇Gk(up)|p dx

≤ λ

σ2

∫
Ω

f r(x,up)Gk(up)dx .
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Disregarding a nonnegative term and applying r(x,up)≤ 1,
Hölder’s inequality leads to∫

Ω

|∇Gk(up)|p dx ≤ λ

σ2

∫
Ω

f Gk(up)dx

≤ ‖ f‖q

(∫
Ω

|Gk(up)|q
′
dx
)1/q′

.

This is the starting point for using the Stampacchia technique
and get an L∞–estimate. Just be careful to check that the
various constants appearing in the calculations do not depend
on p. Details can be found at (Mazón and Segura de León,
2013, Theorem 3.5, Step 3).

Furthermore, if f ∈ L∞(Ω), we may clarify a little more
the situation by seeing the estimate ‖u‖∞ ≤ ‖ f‖∞. This in-
equality makes explicit and extends the statement 8 of (Ge-
treuer et al, 2011a, Theorem 1).

Taking uq
p, with q > 1 large enough, as test function and

dropping a nonnegative term, we obtain

λ

σ2

∫
Ω

uq+1
p dx≤ λ

σ2

∫
Ω

f r(x,up)uq
p dx≤ λ

σ2

∫
Ω

f uq
p dx .

It follows from Hölder’s inequality that∫
Ω

uq+1
p dx ≤

∫
Ω

f uq
p dx

≤
(∫

Ω

f q+1 dx
)1/(q+1)(∫

Ω

uq+1
p dx

)q/(q+1)
,

and so(∫
Ω

uq+1
p dx

)1/(q+1)
≤
(∫

Ω

f q+1 dx
)1/(q+1)

.

Letting q→∞, it yields ‖up‖∞ ≤ ‖ f‖∞ for all 1 < p < 2, and
recalling that u is the pointwise limit of up, we are done.

4.2 Uniqueness

We will prove that if the function t 7→ h′(x, t) is increasing,
then there exists at most a solution to (2).

PROOF: Assume, to get a contradiction, that u1 and u2
are two solutions to (2) in the sense of the definition stated
in Subsection 3.1 above. Denote by z1 and z2 the respective
vector fields. It follows that

−div zi +h′(x,ui) = 0 , i = 1,2;

in the sense of distributions. Multiply both equations by
u1−u2, use Green’s formula, recall the second condition in
the Definition of solution to problem (2) and substract one
expresion from the other to obtain∫

Ω

|Du1|− (z2,Du1)+
∫

Ω

|Du2|− (z1,Du2)

+
∫

Ω

(h′(x,u1)−h′(x,u2))(u1−u2)dx = 0 .

Fig. 3: Profile of h
′
(x,u) for fixed x ∈Ω and the parametric

values λ = 10, σ2 = 10 for different, constant values of the
data: f = 2, f = f ∗ =

√
20 and f = 10. A limit behavior

is obtained when f = f ∗ =
√

20 =
√

2σ2. For f ≤ f ∗ we
have uniqueness of the trivial solution. For f > f ∗ we have
f 2 > 2σ2 and the corresponding profile is negative in a neigh-
borhood of s = 0. Notice that when u is small, h′ < 0 and h′

behaves as a reactive term (a source) in the Euler-Lagrange
equation. When u is sufficiently big h′ > 0 and h′ define an
absorption term (a sink) in the equation.

The three terms are nonnegative since (zi,Du j)≤‖zi‖∞|Du j| ≤
|Du j|, for i, j = 1,2, and the function t 7→ h′(x, t) is increas-
ing. Hence, they must vanish; in particular,∫

Ω

(h′(x,u1)−h′(x,u2))(u1−u2)dx = 0

and h′ increasing implies u1 ≡ u2, as desired.

4.3 Non trivial solutions

We have already commented that there always exists a trivial
solution u≡ 0. On the other hand, 0≤ f ≤

√
2σ2 implies that

h′(x,s) is increasing with respect to s and, as a consequence
of the uniqueness result of the previous subsection, there is
no other solution aside from the trivial one. Nevertheless, we
are interested in the case when f ∈ L∞(Ω) is a.e. above this
threshold and in finding non trivial solutions.

Although constant data are unrealistic, we study them to
get nontrivial solutions. In this Subsection, we are showing
that if the datum is constant f (x) = µ and µ >

√
2σ2, then

the solution is constant and non trivial. It is worth remarking
that we obtain uniqueness of positive solutions for constant
data. In the next Subsection, we will derive a criterion on
the datum to obtain nontrivial solutions.

Considering (6), we define the function

Γ (µ, t) =
(

λ

2σ2

)
t2−λ log I0

( tµ
σ2

)
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which is related to the function h(x,u) setting h(x,u) =
h( f (x),u(x)). Fixed x ∈ Ω we have Γ (µ, t) = h( f (x),u(x))
and we can use the results in the proof Lemma (2), condition
2. Computing its derivative we have, ∀µ > 0, t > 0,

Γµ(µ, t) =−
λ t
σ2

[
I1(tµ/σ2)

I0(tµ/σ2)

]
< 0 (32)

and Γ (µ, t) is decreasing with respect to µ . Owing to µ >√
2σ2, the function Γ (µ, t) attains a negative minimum at a

positive point, say t = γ (see the end of the proof in Lemma
(2) , condition 2). Then, fixed µ , γ = argmin Γ (µ, t) satisfies
Γt(µ, t) = 0 which is

γ =

[
I1(γµ/σ2)

I0(γµ/σ2)

]
µ . (33)

Actually, there is just a positive point γ satisfying (33); to see
this it is enough to check that sµ = µγ

σ2 is the unique solution
to problem

sµ =
I1(sµ)

I0(sµ)

µ2

σ2 = r(sµ)
µ2

σ2

and this fact is a consequence of being the function s 7→ r(s)
s

decreasing in [0,+∞[ (see (16)). Thus γ is given by (33) and
satisfies

Γ (µ,γ)< Γ (µ,0) = 0 and 0 < γ < µ . (34)

Taking u(x) = γ for all x∈Ω , it yields that u is the unique
minimizer of the functional E1. Indeed, if v ∈ BV (Ω) ∩
L2(Ω), then h(x,u)≤ h(x,v) and h(x,u) = h(x,v) only when
v(x) = γ a.e., so that

E1(u) =
∫

Ω

h(x,u)dx≤
∫

Ω

|Dv|+
∫

Ω

h(x,v)dx = E1(v)

and E1(u) = E1(v) only when u = v.

4.4 Comparing with constant functions

Using the same notation of the above subsection, we may
go further and prove that 0 ≤ µ ≤ f (x) implies γ ≤ u(x)
a.e.in Ω , where γ ≥ 0 minimizes Γ (µ, t). We also assume
that µ >

√
2σ2, otherwise γ = 0 and the inequality becomes

obvious.
We begin by claiming that, for almost all x ∈Ω ,

function t 7→ h(x, t) is (strictly) decreasing in [0,γ] (35)

and

function t 7→ h(x, t) is (strictly) increasing in [γ2,+∞[ . (36)

In both cases, we will use that functions

s 7→ sI0(s)
I1(s)

and s 7→ I1(s)
I0(s)

are increasing (37)

and these facts are derived from (16). Notice that, for almost
all x ∈Ω , the positive minimum w(x) of h(x, t) satisfies

w(x) =

[
I1
(

f (x)w(x)/σ2
)

I0 ( f (x)w(x)/σ2)

]
f (x) . (38)

It follows that

s f (x) =
[

I1(s f (x))
I0(s f (x))

]
f (x)2

σ2 ,

where s f (x) =
f (x)w(x)

σ2 . As seen in the previous subsection, a
similar identity holds for the positive minimum γ of Γ (µ, t):

sµ =

[
I1(sµ)

I0(sµ)

]
µ2

σ2 ,

where sµ = µγ

σ2 . Hence, by (37), µ ≤ f (x) implies sµ ≤ s f (x)
a.e. and so µγ ≤ f (x)w(x) a.e. Going back to (38), for almost
all x ∈Ω , we have

w(x)2 =

[
I1
(

f (x)w(x)/σ2
)

I0 ( f (x)w(x)/σ2)

]
f (x)w(x)

≥

[
I1
(

f (x)w(x)/σ2
)

I0 ( f (x)w(x)/σ2)

]
µγ

≥

[
I1
(
µγ/σ2

)
I0 (µγ/σ2)

]
µγ = γ

2 ,

where the last inequality is due to (37). Therefore, we have
seen that w(x)≥ γ a.e. Finally, since h(x, ·) is decreasing in
[0,w(x)] for almost all x ∈Ω , it yields that h(x, ·) is decreas-
ing in [0,γ] for almost all x ∈ Ω and (35) is proved. The
second claim follows using a similar argument.

Now we turn to check that u(x) ≥ γ a.e. Since u is a
global minimizer of functional E1, it follows that∫

Ω

|Du|+
∫

Ω

h(x,u)dx

≤
∫

Ω

|D(u+(γ−u)+)|+
∫

Ω

h(x,u+(γ−u)+)dx

≤
∫

Ω

|Du|+
∫
{u≥γ}

h(x,u)dx+
∫
{u<γ}

h(x,γ)dx .

Simplifying and dropping the nonnegative gradient term, we
obtain∫
{u<γ}

h(x,u)dx≤
∫
{u<γ}

h(x,γ)dx .

Applying now our first claim (35), we deduce that h(x,γ)<
h(x,u) a.e. in {u < γ}. Therefore, |{u < γ}| = 0, that is
u(x)≥ γ a.e. in Ω .

Starting from the inequality∫
Ω

|Du|+
∫

Ω

h(x,u)dx

≤
∫

Ω

|D(u− (u− γ2)
+)|+

∫
Ω

h(x,u− (u− γ2)
+)dx ,
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it follows that∫
{u>γ2}

h(x,u)dx≤
∫
{u>γ2}

h(x,γ2)dx .

and our second claim (36) implies that u(x)≤ γ2 a.e. in Ω .

4.5 The minimum is decreasing with respect to the datum

In this remark we will make explicit the dependence on the
data. To this end, we stand our functional for E f

1 .
Let fi ∈ L2(Ω), i = 1,2, be two data and denote by ui the

corresponding function where the minimum of E fi
1 is attained.

We will show that f1 ≤ f2 implies E f1
1 (u1)≥ E f2

1 (u2).
Since f1(x) ≤ f2(x) implies H(v, f1) ≥ H(v, f2) for all

v ∈ BV (Ω)∩L2(Ω), recall (32), it follows that

E f2
1 (u2) ≤ E f2

1 (u1) =
∫

Ω

|Du1|+H(u1, f2)

≤
∫

Ω

|Du1|+H(u1, f1) = E f1
1 (u1) .

Combining this fact with the previous subsection and
having in mind (34), we get that f (x)≥ µ >

√
2σ2 implies

E f
1 (u)≤ Eµ

1 (γ) = Γ (µ,γ)|Ω |< 0 .

4.6 Resolvents of the subdifferential

With a view to the numerical resolution of problem (2), we
now consider some properties of the resolvents of the sub–
differential of a (possibly) quadratically perturbed Total Vari-
ation energy functional.

It is well–known that subdifferentials of convex functions
have nonexpansive resolvents. Thanks to the characterization
of the subdifferential of the Total Variation appearing in
(Andreu et al, 2004a), we may make explicit this feature in
our case. Indeed, fix α ≥ 0 and set

G1(u) =


∫

Ω

|Du|+α‖u‖2
2 , if u ∈ BV (Ω)∩L2(Ω) ;

+∞ , if u ∈ L2(Ω)\BV (Ω) .

(39)

Using (Andreu et al, 2004a, Lemma 2.4), it yields that u ∈
(I+c∂G1)

−1( f ), with c > 0, if and only if u is a solution to
u+ cαu− cdiv

( Du
|Du|

)
= f , in Ω ;

( Du
|Du|

)
·n = 0 , on ∂Ω .

(40)

We point out that this problem has a unique solution (just
follow the arguments in subsection 4.2).

Consider now ui solution to problem (40) with datum
fi, i = 1,2. In other words, we have ui = (I + c∂G1)

−1( fi),

i = 1,2. Then there exist zi ∈ L∞(Ω ;RN) satisfying the re-
quirements of Section 3. Take u1−u2 as test function in each
equation (40) (that with datum f1 and that with datum f2)
and subtract them. Then we get∫

Ω

(u1−u2)
2dx+ cα

∫
Ω

(u1−u2)
2dx

+ c
∫

Ω

(z1− z2,D(u1−u2)) =
∫

Ω

( f1− f2)(u1−u2)dx .

Dropping a nonnegative term and applying Hölder’s inequal-
ity, it follows that

(1+ cα)
∫

Ω

(u1−u2)
2dx≤ ‖ f1− f2‖2‖u1−u2‖2 ,

from where we conclude

‖u1−u2‖2 ≤
1

1+ cα
‖ f1− f2‖2 .

Therefore, if α > 0, then the Lipschitz constant satisfies
1

1+cα
< 1 and so each resolvent is actually a contraction.

Similar, simpler arguments show that the same result is true
for 1 < p < 2:

Gp(u) =


‖∇u‖p

p +α‖u‖2
2 , if u ∈W 1,p(Ω)∩L2(Ω) ;

+∞ , if u ∈ L2(Ω)\W 1,p(Ω) .

(41)

5 Numerical Resolution

In this section we shall exploit the underlying structure of
the minimization problem to write the corresponding energy
functional as the difference of convex functions. For this we
consider functionals (8) and (9) defined as E1(u) = J1(u)+
H(u, f ) and Ep(u) = Jp(u)+H(u, f ). Using (39) and (41)
we can decompose them in form E1(u) = G1(u)−F(u, f )
and Ep(u) = Gp(u)−F(u, f ) where (compare with (7))

F(u, f ) = λ

∫
Ω

log I0

(
u f
σ2

)
dx . (42)

The fundamental point is that the energy in (42) is convex.
As a consequence (8) and (9) are difference of convex energy
functionals.

We now introduce a 2D discrete setting in which the
functionals can be minimized by a convergent Proximal Point
algorithm, in which a primal-dual method is used to solve the
proximal operator for (39) and (41) together with an ascent
gradient step for (42). The generalization to 3D (volumetric)
data sets is straightforward.



On 1–Laplacian Elliptic Equations Modeling MRI Rician Denoising 15

5.1 Discrete Framework

Let Ω ⊂ R2 be an ideally continuous rectangular image do-
main and consider a discretization in terms of a regular Carte-
sian grid Ωh of size N×M: (ih, jh), 1 ≤ i ≤ N, 1 ≤ j ≤M
where h denotes the size of the spacing. The matrix (uh

i, j)

represents a discrete image where each pixel ui, j is located
in the correspondent node (ih, jh). In what follows, we shall
choose h = 1 because it only causes a rescaling of the energy
through the λ parameter. Henceforth we shall drop the de-
pendence of the mesh size and denote uh = u. Let X =RN×M

be the space of solutions. We introduce the discrete gradient
∇ : X→Y = X×X , defined as the forward finite differences
operator:

(∇u)i, j =

(
(∇u)x

i. j
(∇u)y

i. j

)
=

(
ui+1, j−ui, j
ui, j+1−ui, j

)
(43)

except for (∇u)x
N, j = 0, and (∇u)y

i,M = 0. The discrete p-norm
of the gradient for 1≤ p < 2 is:

‖∇u‖p
p = ∑

i. j
|(∇u)i. j|p, with

|(∇u)i. j|=
√
((∇u)x

i. j)
2 +((∇u)y

i. j)
2

which for p = 1 is the discrete version of the isotropic TV
operator (1) and for 1 < p < 2, is the discrete version of
the Jp(u) term of the energy (9). The discrete energy for the
functionals defined in (8) and (9) reads as:

Ep(u)=
1
p ∑

i. j
|(∇u)i. j|p+

λ

2σ2 ∑
i. j

u2
i, j−λ ∑

i. j
log I0

(
ui, j fi, j

σ2

)
,

(44)

where the matrix ( fi, j) represents the discrete noisy image,
with each pixel fi, j located at the node (i, j).

Endowing the spaces X and Y with the standard Eu-
clidean scalar product, the adjoint operator of the discrete
gradient (43) is ∇∗ =−div. Given p = (px, py) ∈Y , we have

(div p)i, j = (px
i, j− px

i−1, j)+(py
i, j− py

i, j−1)

for 2≤ i, j ≤ N−1. The term (px
i, j− px

i−1, j) is replaced with
px

i, j if i = 1 and with −px
i−1, j if i = N, while the term (py

i, j−
py

i, j−1) is replaced with py
i, j if j = 1 and with−py

i, j−1 if j =N.

5.2 A Proximal Point Algorithm for Rician Denoising

In this section we address the numerical resolution of the
non-smooth non-convex minimization problem associated
to the energy functional (8) (p = 1) and the smooth non-
convex approximating minimization problems related to the
differentiable energy (9) (1 < p < 2). To this end, we shall
adapt a general proximal point algorithm for the minimization

of the difference of convex (DC) functions proposed in (Sun
et al, 2003). A decomposition of the energy functional as a
difference of convex (DC) functions is then proposed. This
is based on the fact that I0(s) is strictly log-convex which
means that log I0(s) is strictly convex and so is the energy
term defined in (42).

In the discrete setting introduced before we can then write
the Rician denoising functional (44) as follows. Given f , let
F : X → R and Gp : X → R be the discretized analogue of
functionals (42) and (39) (p = 1), (41) (1 < p < 2):

F(u) = λ ∑
i. j

log I0

(
ui, j fi, j

σ2

)
, and

Gp(u) =
1
p ∑

i. j
|(∇u)i. j|p +

λ

2σ2 ∑
i. j

u2
i, j, 1≤ p < 2

The functional in (44) can be seen as the difference of two
strictly convex proper l.s.c functions Gp(u) and F(u):

Ep(u) = Gp(u)−F(u), 1≤ p < 2

Notice that Gp(u)≥ 0, F(u)≥ 0 and F is differentiable with
Frechet derivative F ′(u).

Then we can find a global minimizer of Ep(u) by apply-
ing the following Proximal Point algorithm:

– Given an initial point u0 = f , let ck = c,∀k and set k = 0
and ε = 10−6.
1. Compute wk = F ′(uk).
2. Set yk = uk + ckwk .
3. Compute uk+1 = (I + ck ∂Gp)

−1(yk)

4. If ‖uk+1−uk‖2/‖uk‖2 < ε stop. Otherwise k = k+1
and return to step 1.

Notice that we can write Steps 1-3 as

uk+1 = (I + ck ∂Gp)
−1(uk + ckF ′(uk))

= ProxckGp(uk + ckF ′(uk))

= ProxckGp(uk− ck∂ (−F(uk)))

which is a forward-backward splitting algorithm (see for
example (Zhang et al, 2010)).

Step 1 is explicitly given by

wk = F ′(uk) =

(
λ

σ2

) I1

(
uk f
σ2

)
I0

(
uk f
σ2

) f

In Step 2 we set the descent direction for Step 3. Notice
that any ascent direction for F is a descent direction for E.
To compute the proximal operator (I + c∂Gp)

−1 in Step 3
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we need to solve the following strictly convex minimization
problem:

uk+1 = argmin
u∈X

(
Gp(u)+

1
2c
‖u− yk‖2

2

)
= (45)

= argmin
u∈X

(
1
p ∑

i. j
|(∇u)i. j|p +

λ

2σ2 ∑
i. j

u2
i, j

+
1
2c ∑

i. j
(ui, j− yk

i, j)
2

)
(46)

Let Rp(u) =
1
p ∑

i. j
|(∇u)i. j|p, and

S(u) =
λ

2σ2 ∑
i. j

u2
i, j +

1
2c ∑

i. j
(ui, j− yk

i, j)
2

Using Legendre Fenchel’s duality, we write the minimization
problem (45) as a saddle point problem:

argminu∈X (Rp(u)+S(u)) (47)

= argminu∈X

(
max
v∈Y
〈∇u,v〉−R∗p(v)

)
+S(u)

We distinguish two cases. When p= 1, the Fenchel conjugate
R∗p(v) is the indicator function IK of the convex set K = {v ∈
Y : ‖v‖∞ ≤ 1}, i.e IK(v) = 0 if v ∈ K, IK(v) = +∞ if v /∈ K.
In the differentiable case, 1 < p < 2, we have

R∗p′(v) =
1
p′
‖v‖p′

p′ =
1
p′ ∑i. j

|vi, j|p
′

with 1/p+1/p′ = 1. To solve this saddle-point problem (47)
we use the Primal Dual algorithm presented in (Chambolle
and Pock, 2011). This method allows an unified treatment
of (47) for any p, so dealing with the non differentiability of
G1(u). This algorithm performs Step 3 in kth external itera-
tion of the Proximal Point algorithm and reads as follows:

Given u0 = yk, set v0 = 0̄, τd = τp = 1/
√

12 and ū0 = u0.
Iterate until convergence:

(i) vn+1 =
(

I + τd∂R∗p′
)−1

(vn + τd∇ū)

(ii) un+1 = (I + τp∂S)−1(un + τp divvn+1)

(iii) ūn+1 = 2un+1−un

This is an inner loop and the upper index n is the inner itera-
tion counter. Steps (i) and (ii) aim to compute the proximal
operators corresponding to R∗p(u) and S(u) and are defined
by:

Step (i). For p = 1, we compute v̄n = vn + τd∇ūn and the
resolvent operator with respect to R∗1 reduces to pointwise
Euclidean projector onto `2 balls:

vn+1 = (I + τd∂R∗)−1 (v̄n) ⇐⇒ vn+1
i, j =

v̄n
i, j

max(1, |v̄n
i, j|)

For 1 < p < 2, with v̄n = vn + τd∇ūn the computation of
the resolvent operator (I + τd∂R∗)−1 (v̄n) leads to solve the
following strictly convex minimization problem:

vn+1 = argmin
v∈Y

(
1
p′
‖v‖p′

p′ +
1

2τd
‖v− v̄n‖2

2

)
= argmin

v∈Y

(
1
p′ ∑i. j

|vi, j|p
′
+

1
2τd

∑
i. j
(vi, j− v̄i, j)

2

)
The first order necessary (and sufficient) condition for opti-
mality reads:

f n(v) = τd |v|p
′−2v+ v− v̄n = 0

It is easily seen that f n(v) is continuous, monotone increasing
with f n(0) = v̄n and the equation f n(v) = 0 has a unique real
positive solution 0 < |v| ≤ |v̄n| for any p′. For any fixed
internal iteration n we apply the Newton’s method to solve
the nonlinear equation resulting in the following fixed point
iteration: Set j = 0, vk,n+1

j = v j, vk,n+1
j+1 = v j+1 and v0 = vk,n.

Compute, for j = 1,2, ... till convergence

v j+1 = φ(v j) =
τd(p′−2)|v j|p

′−2v j + v̄
τd(p′−1)|v j|p′−2 +1

Step (ii). The resolvent operator with respect to S poses
simple pointwise quadratic problems. The solution is given
by

u = (I + τp∂S)−1(ū) ⇐⇒ ui, j =
σ2 (τpyk + cū)i, j

cτpλ +σ2(c+ τp)

6 Numerical Results

In this section we test the performance of the proposed nu-
merical scheme. We first validate the results of the TV Rician
denoising method using the Proximal Point Algorithm (PPA),
denoted by TV-Rician in the following. We also test the nu-
merical convergence of the p-approximating problems. Then,
we compare TV-Rician with previously proposed methods
for TV Rician-based denoising (Martin et al, 2011; Getreuer
et al, 2011a; Chen and Zeng, 2015) for different images and
noise intensities. Finally we present an application on real
Diffusion Tensor Images (DTI), which is an MRI modality
heavily affected by Rician noise (Basu et al, 2006; Tristán-
Vega and Aja-Fernández, 2010).

6.1 Numerical Scheme Validation

In order to assess the performance of the proposed algorithm
we used a synthetic brain image obtained from the BrainWeb
Simulated Brain Database 1 at the Montreal Neurological In-
stitute (Cocosco et al, 1997). The central slice of the original

1 available at http://www.bic.mni.mcgill.ca/brainweb

http://www.bic.mni.mcgill.ca/brainweb
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Fig. 4: Denoising test on a phantom brain image. At left, the original free-of-noise slice. In the center, the same slice
contaminated with Rician noise for σ = 15. At right, the best denoised image obtained using TV-Rician as measured by PSNR
and SSIM.

Fig. 5: Denoising results of the noisy phantom brain image of Figure 4 using the p-Laplacian for p = 1.75,1.5,1.5,1.1 and 1
(Total Variation).

phantom was extracted and normalized to be between 0 and
255. Finally, the slice was contaminated artificially with Ri-
cian noise for σ = 15. To compute the denoising quality we
use two different measures: the Peak-Signal-to-Noise-Ratio
(PSNR) and the Structural Similarity Index (SSIM) (Wang
et al, 2004).

In Figure 4, we show the denoising results of the TV-
Rician method for λ = 22. This λ value was optimized
to obtain the best PSNR and SSIM with respect to origi-
nal phantom. We can see how in the denoised image (Fig.
4c) most of the noise has been removed while the fine de-
tails are preserved. Using the same regularization parameter,
we repeat this test solving (44) for different values of p,
p = {1.1,1.25,1.5,1.75}, to numerically asses the conver-
gence of the p−sequence of regularizing approximating up
solutions when p→ 1. The up solutions are shown in Fig-
ure 5, where, as expected, the closer p gets to 1, the more
similar the p-Laplacian solution is to the TV image. This p-
convergence can also be observed when plotting the energy

minimization evolution of the Proximal Point Algorithm for
these same values of p and the TV case (see Figure 6).

6.2 Comparison with Other Variational Methods for Rician
Denoising

In order to cope with the difficulties of the non-smooth non-
convex problem (8), several methods have been proposed for
TV-based denoising of Rician contaminated images. The first
of them uses an ε-approximation of the TV term (Martin et al,
2011; Getreuer et al, 2011a) to obtain a smooth minimization
problem. With this regularization, a gradient descent can be
applied to solve the problem. In the following this approach
will be denoted as TVε -Rician. In the work of (Getreuer
et al, 2011a), a convexification of the functional was also
proposed. This new minimization problem is solved by a
Split-Bregman approach (Goldstein and Osher, 2009). We
will refer to this convexification as Getreuer model in the fol-
lowing. Finally, a different convexification of (8) by adding
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Fig. 6: Energy minimization evolution of functional (44) for
p = 1.75,1.5,1.5,1.1 and 1 (Total Variation) for the images
displayed in Fig. 5.

the term 1
σ

∫
Ω
(
√

u−
√

f )2dx) has been recently presented in
(Chen and Zeng, 2015). This new convex problem is then
efficiently solved using a primal-dual algorithm (Chambolle
and Pock, 2011). For the comparisons, we will denote as
Chen-Zeng this method.

All of these approaches rely on approximations of the
problem (8) making it differentiable or convex. Notably, the
proposed algorithm (TV-Rician) based on the PPA scheme
copes with the original non-smooth non-convex functional.
For this comparison we use four images kindly provided
by the authors of (Chen and Zeng, 2015): one natural im-
age Camera man (256×256), and three MR images Lumbar-
Spine (200×200), Brain (217×181) and Liver (214×304).
The images are then corrupted by Rician noise for σ = 20
and σ = 30. For the sake of fairness, all the algorithms were
run until fulfill the same convergence criterium based on
the relative difference between the functional energy in two
consecutive iterations. In our test, we set the tolerance to
1×10−7. TVε -Rician, Getreuer and TV-Rician use a regular-
ization parameter λ which multiplies the data fidelity term,
while the Chen-Zeng algorithm uses a parameter γ = 1/λ

multiplying the TV term. For all tests, the regularization pa-
rameters were separately optimized to get the best PSNR and
to get the best SSIM with respect to the original images. The
results of this comparison are displayed in Table 1. Notice
that the optimal regularization parameter for each case is
displayed in the table as γ .

We see that TV-Rician gets the best results in both PSNR
and SSIM for the Camera man, the Lumbar-Spine and the
Liver images for all levels of noise. The differences with other
methods increase for higher noise level (σ = 30), confirming
that the original problem (8) is best suited than its approxima-
tions for Rician denoising. For the case of the phantom Brain
image, Getreuer model scores the best denoising results. In

order to convexify the Rician data fidelity term the authors
in (Getreuer et al, 2011a) substitute the original functional
for small values of the solution by a linear approximation.
This modified functional drives these values of the solution
closer to 0 than the original Rician functional we considered.
Since the background of the synthetic Brain image is 0, this
model achieves a better solution for this image than the other
methods. This effect can be observed in the other images.
For instance, in Fig. 7h, the error of this model in the upper
corners is considerably higher than in the rest of the algo-
rithms because the background in the noise-free Liver image
is not 0. Nevertheless, the proposed method (TV-Rician) gets
higher PSNR and SSIM than TVε -Rician and Chen-Zeng in
the synthetic Brain image, and it is the best algorithm overall
when computing the averaged PSNR and SSIM.

Moreover, when using the same regularization parameter
for all the methods, the TV-Rician method also achieves a
solution which is a lower minimum of (8). This comparison
is performed for the Liver image and the parameters σ = 20
and γ = 0.035. These results are shown in Figure 7 and Table
2: TV-Rician achieves the best denoising solution in terms of
visual inspection, PSNR and energy minimization.

Table 2: PSNR and energy functional values (see (8)) for the
compared methods for Rician denoising.

σ = 20,γ = 0.035
Image Method PSNR E1 (8)
Liver TVε -Rician 28.98 −1.4183×107

Getreuer 28.84 −1.4184×107

Chen-Zeng 29.18 −1.4180×107

TV-Rician 29.4 −1.4192×107

6.3 Application on Real Diffusion Tensor Imaging of the
Brain

The data we used consist of a Diffusion Weighted Images
(DWI) dataset provided by Fundación CIEN-Fundación Reina
Sofı́a which was acquired with a 3 Tesla General Electric
scanner equipped with an 8-channel coil. The DWI have been
obtained with a single-shot spin-echo EPI sequence (FOV
= 24 cm, TR = 9600 ms, TE = 91.5 ms, slice thickness =
2 mm, spacing = 0.6 mm, matrix size = 128x128, NEX =
1). The DWI data consists on a volume obtained with b=0
s/mm2 and 45 volumes with b=1000 s/mm2 corresponding
with gradient directions that equally divide the 3-D space.
These DWI, which represent diffusion measurements along
multiples directions, are denoised by solving the proposed
minimization problem (8) using the PPA. Then, Diffusion
Tensor Images (DTI) are reconstructed from the original and
denoised DWI data using the 3D Slicer tools2. DTI is one of

2 Freely available in http://www.slicer.org/

http://www.slicer.org/
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Table 1: Comparisons of the best PSNR values and SSIM values by different methods for Rician denoising

σ = 20 σ = 30
Image Method PSNR (γ = 1/λ ) SSIM (γ = 1/λ ) PSNR (γ = 1/λ ) SSIM (γ = 1/λ )
Camera man TVε -Rician 28.12 (0.03) 0.8077 (0.05) 24.81 (0.02) 0.7148 (0.025)

Getreuer 27.83 (0.03) 0.7478 (0.05) 25.58 (0.02) 0.6653 (0.03)
Chen-Zeng 28.44 (0.035) 0.8229 (0.045) 25.69 (0.025) 0.7539 (0.035)
TV-Rician 28.64 (0.03) 0.8272 (0.04) 26.18 (0.025) 0.7655 (0.03)

Lumbar-Spine TVε -Rician 28.27 (0.03) 0.7716 (0.03) 25.28 (0.015) 0.6609 (0.02)
Getreuer 27.66 (0.035) 0.6685 (0.035) 24.81 (0.02) 0.5115 (0.02)
Chen-Zeng 28.35 (0.035) 0.7743 (0.04) 25.53 (0.025) 0.6705 (0.03)
TV-Rician 28.84 (0.03) 0.7892 (0.053) 26.5 (0.02) 0.6998 (0.02)

Liver TVε -Rician 29.06 (0.03) 0.8033 (0.03) 26.61 (0.02) 0.7201 (0.025)
Getreuer 28.84 (0.035) 0.7723 (0.04) 26.75 (0.025) 0.6742 (0.025)
Chen-Zeng 29.25 (0.04) 0.8047 (0.04) 27.03 (0.03) 0.7371 (0.03)
TV-Rician 29.4 (0.035) 0.8088 (0.035) 27.42 (0.025) 0.7452 (0.025)

Brain TVε -Rician 26.7 (0.025) 0.6550 (0.035) 23.67 (0.015) 0.5881 (0.025)
Getreuer 29.41 (0.035) 0.8996 (0.04) 27.03 (0.025) 0.8000 (0.03)
Chen-Zeng 26.63 (0.035) 0.6634 (0.04) 23.79 (0.025) 0.6067 (0.03)
TV-Rician 28.12 (0.03) 0.6780 (0.04) 25.61 (0.02) 0.6165 (0.025)

Average TVε -Rician 28.04 (-) 0.7594 (-) 25.09 (-) 0.6710 (-)
Getreuer 28.43 (-) 0.7721 (-) 26.04 (-) 0.6628 (-)
Chen-Zeng 28.17 (-) 0.7663 (-) 25.51 (-) 0.6921 (-)
TV-Rician 28.75 (-) 0.7758 (-) 26.42 (-) 0.7068 (-)

(a) I (original image) (b) TVε -Rician (c) Getreuer (d) Chen-Zang (e) TV-Rician

(f) f (noisy with σ = 20) (g) | TVε -Rician - I | (h) | Getreuer - I | (i) | Chen-Zang - I | (j) | TV-Rician - I |

Fig. 7: Denoising results on the Liver image (a) for fixed parameters σ = 20, γ = 0.035. In (b)–(e), the images resulting from
applying the compared methods to f (f), the noisy version of I (a), the original image. In the second row, (g)–(j), the absolute
differences between the denoised images and I are shown. Careful inspection reveals a better perfomance of the proposed
method (see (e) and (j)) in areas with lower SNR (dark zones).

the most popular methods for in vivo analysis of the white
matter (WM) structure of the brain, helping to detect WM
alterations that can be found from early stages in some degen-
erative diseases (Gattellaro et al, 2009). The DTI information
is commonly used to generate a tractography of a particular
area of the brain, which is a 3D representation of the fibers of
WM involved. In Figure 8, the tractographies generated from
a seed placed in the corpus callosum are shown. White ar-
rows indicate regions where the noise in the image generated
from the original data (at left) affects to the reconstruction of
specific tracts which are nevertheless recovered in the trac-

tography from the pre-processed data (at right). In order to
highlight the regions where the fibers reconstruction differs
we display the tractographies over a sagital view of the Frac-
tional Anistropy (FA) generated from the same DTI data (Fig.
9). It can be seen how the left arcuate fasciculus can not be re-
constructed from the original data but it is recovered after the
pre-processing. The correct reconstruction of the left arcuate
fasciculus is important since it is involved in important tasks
like language and praxis (Catani and Thiebaut de Schotten,
2008).
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Fig. 8: Tractography generated from a seed placed in the corpus callosum. At left, the tractography generated from the original
DWI (and DTI) data. At right, the tractography generated from the TV-Rician denoised data. Particular areas where the
tractographies are different because of the noise are pointed by white arrows in the image

Fig. 9: Tractography generated from the corpus callosum over a sagital view of the FA image. Notice that after the pre-
processing, the tracts of the left arcuate fasciculus is recovered.

7 Conclusions

In this paper we presented the mathematical analysis of the
quasi-linear elliptic equation for the 1-laplacian operator
which arises from considering the minimization of the Total
Variation based energy functional modeling Rician denoising
for MRI. Theoretical difficulties come from both ingredients
of the model: the TV regularization term, which makes the
problem non–smooth, and the Rician statistics of the noise in
MRI, which yields a non-convex minimization problem. We
provided sufficient conditions on the data for the existence

of a bounded non-trivial BV solution of the elliptic equation
which turns out to be a global minimizer of the associated
energy functional. Several qualitative properties of this solu-
tion have been deduced. The uniqueness of a strictly positive
solution is still an open problem. Extensive numerical exper-
iments not reported here suggest that there exists only one
such solution.

We also proposed and implemented a convergent Proxi-
mal Point Algorithm to solve this non–smooth non–convex
minimization problem. The numerical results demonstrate
the effectiveness of the proposed method compared to previ-
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ous approximations to TV-based Rician denoising. Finally,
we tested our algorithm in in-vivo DTI tractography showing
the benefits of pre-processing DWI data before DTI recon-
struction.
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