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Abstract. In the present paper we study the behaviour as p goes to 1 of the weak
solutions to the problems



−div

(|∇up|p−2∇up

)
= f in Ω

up = 0 on ∂Ω,

where Ω is a bounded open set of RN (N ≥ 2) with Lipschitz boundary and p > 1.
As far as the datum f is concerned, we analyze several cases: the most general one
is f ∈ W−1,∞(Ω). We also illustrate our results by means of remarks and examples.

Key words: Nonlinear elliptic equations, 1–Laplace operator.

2000 Mathematics Subject Classification: 35J20, 35J70

1. Introduction

In the present paper we study the behaviour, when p goes to 1, of the solutions
up ∈ W 1,p

0 (Ω) to the problems

(1.1)




−div

(|∇up|p−2∇up

)
= f in Ω

up = 0 on ∂Ω,

where p > 1 and Ω is a bounded open set of RN (N ≥ 2) with Lipschitz boundary.
We analyze the case where Ω is a ball and the datum f is a non–negative radially
decreasing function belonging to the Lorentz space LN,∞(Ω) and the case where the
datum f belongs to the dual space W−1,∞(Ω).

We are interested in finding the pointwise limit of up as p goes to 1 and in proving
that such a limit is a solution to the “limit equation” of (1.1), namely:

(1.2) −div

(
Du

|Du|
)

= f in Ω

with homogeneous Dirichlet boundary condition. Hence, firstly we study the behaviour
of up when p goes to 1, finding a limit function u, and secondly we prove that such a
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València, Spain; e-mail: Sergio.Segura@uv.es

1



2 A MERCALDO 1, S. SEGURA DE LEÓN2 AND C. TROMBETTI1

limit function u is a solution to (1.2). Both aspects of our study have been investigated
by several authors. The interest in studying such a case comes from an optimal design
problem in the theory of torsion and related geometrical problems (see also [17]). The
behaviour of up in the case where the datum f is constant has been studied in [16] by
Kawohl, where the author proved that under a suitable smallness assumption on the
domain, it results

(1.3) lim
p→1

up = 0,

while under the assumption that the domain is large enough one has

(1.4) lim
p→1

up = +∞ .

The behaviour of up in the case where f is not constant and it belongs to the Lebesgue
space LN(Ω) (or to the Lorentz space LN,∞(Ω)) is studied in [10]. In such a paper the
authors prove again (1.3) under the assumption that the LN(Ω)–norm (or LN,∞(Ω)–
norm) of the datum f is small enough.

As just pointed out, the second aim of our study consists in proving that the limit
function u = limp→1 up is a solution to problem (1.2). Notions of solution to the limit
equation (1.2) have been introduced by various authors (see for instance [5], [6], [9],
[11], [12] and references there in). Motivations for such an interest are found in the
variational approach to image restoration introduced by L. Rudin, S. Osher and E.
Fatemi1. The definitions of solutions to equation (1.2) typically consider a datum in
LN(Ω) or LN

loc(Ω); moreover such solutions are functions belonging to the space BV (Ω),
which guaranties the existence of a distributional gradient, well defined as a Radon

measure. In order to give a meaning to
Du

|Du| in the limit equation, any definition of

solution to (1.2) relies on the existence of a vector field z : Ω → RN , which belongs
to L∞(Ω;RN), with ‖z‖∞ ≤ 1. Moreover z satisfies the equation −div z = f in the
distributional sense and z ·Du = |Du|. The boundary condition may be included as
z ·ν ∈ sign (−u) a.e. on ∂Ω. The expressions z ·Du and z ·ν have sense thanks to the
Anzellotti theory (see [4] or [7]) which defines a Radon measure (z, Du), provides the
definition of a weakly trace on ∂Ω to the normal component of z, denoted by [z, ν],
and guaranties a Green’s formula. Roughly speaking, z plays the role of Du

|Du| .
In this paper we consider problem (1.2) with data belonging to the Lorentz space

LN,∞(Ω) and to the dual space W−1,∞(Ω). Let us now explain the reason for which
we consider such types of data. The embedding W−1,∞(Ω) ↪→ W−1,p′(Ω) for all p > 1
ensures the existence of an unique weak solution up ∈ W 1,p

0 (Ω) to problem (1.1) (see
[18]). Smallness assumption on the data allows us to prove the existence a limit
function u = limp→1 up which belongs to the space BV (Ω). On the other hand, we
prove the existence of a vector field z ∈ L∞(Ω,RN) satisfying − div z = f in the sense
of distributions. This implies that

|< f , ϕ >| =
∣∣∣∣
∫

Ω

z · ∇ϕ dx

∣∣∣∣ ≤ ‖z‖∞
∫

Ω

|∇ϕ| dx

1For a review on the development of variational models in image processing and a deep study of
the Minimizing Total Variation Flow, see [7].
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for all ϕ ∈ C∞
0 (Ω), and hence f ∈ W−1,∞(Ω).

Observe that we take a datum belonging to W−1,∞(Ω) and we find a solution in
BV (Ω), even if W−1,∞(Ω) is not the dual space of BV (Ω). This fact yields some
difficulties which we completely solve only in the case where the datum f belongs to
specific subspaces of W−1,∞(Ω).

Let us observe that, by the improvement of Sobolev embedding (see for example
[4]) and duality arguments, the Lorentz space LN,∞(Ω) is a subset of the dual space
W−1,∞(Ω). We will consider data belonging to LN,∞(Ω) which are radially symme-
tric, without smallness assumptions. Indeed such symmetries allow us to write the
expression of the solutions up and to handle it in order to study the behaviour of up.

The case where the data do not belong to W−1,∞(Ω) have been considered in [5],
[6], [9]. However, in such papers the solutions to the “limit equation” equation (1.2)
are not obtained as limit of up, except in the case where the data are smooth enough,
and the methods employed do not apply in our framework. We explicitly remark that
the asymptotic behaviour of up when the datum f belongs to L1(Ω) will be studied by
the authors in the forthcoming paper [19], where a notion of solution to the equation
(1.2) is introduced.

Finally we summarize the contents of the present paper. After introducing our
notation (see Section 2), we begin by studying the case where f is a radially decreasing
function defined in a ball Ω and belonging to LN,∞(Ω), without assuming any smallness
condition on its LN,∞(Ω)–norm (see Section 3). Next we study the case where f
belongs to the dual space W−1,∞(Ω) and we prove that (1.3) holds true under the
assumption ‖f‖W−1,∞(Ω) < 1. We also prove that if ‖f‖W−1,∞(Ω) = 1, then up tends to
a BV–function, and if ‖f‖W−1,∞(Ω) > 1, then there is not any BV–function which is
the pointwise limit of up (see Section 4). In general we are not able to prove that up

tends to a solution to problem (1.2) when ‖f‖W−1,∞(Ω) = 1. In such a case we have to
assume that f belongs to the predual space of BV (Ω) (see Subsection 4.2).

We conclude with few words on the Appendix. First we present some properties of
the predual space of BV (Ω) and we prove that its norm as a subspace of the dual of
BV (Ω) is exactly the same as the norm of W−1,∞(Ω). Secondly, we adapt Anzellotti’s
theory in the framework of the predual of BV (Ω).

2. Notation

In this Section we will introduce some notation which will be used throughout this
paper. We will denote by Ω a bounded open subset of RN with Lipschitz boundary.
Thus there exists a unit vector field (denoted by ν) normal to ∂Ω and exterior to Ω,
defined HN−1–a.e. on ∂Ω. Here HN−1 denotes the (N − 1)–dimensional Hausdorff
measure. Here and in the sequel, |E| denotes the Lebesgue measure of a measurable
subset E of RN .

Let u : Ω → R be a measurable function. We denote by µu the distribution function
of u, that is the function µu : [0, +∞[→ [0, +∞[ defined by

µu(t) = |{x ∈ Ω : |u(x)| > t}| , t ≥ 0 .
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The decreasing rearrangement of u is the function u∗ :]0, |Ω|] → R+ defined by

u∗(s) = sup{t > 0 : µu(t) > s} , s ∈]0, |Ω|].
For 1 < q < ∞, the Lorentz space Lq,∞(Ω), also known as Marcinkiewicz or weak–

Lebesgue, is the space of Lebesgue measurable functions u such that

(2.1) sup
t>0

t µ(t)1/q < +∞ .

It is endowed with the norm

‖u‖q,∞ = sup
0<s<|Ω|

s
1
q u∗∗(s) ,

where u∗∗(s) =
1

s

∫ s

0

u∗(σ) dσ. For 1 < q < ∞, the Lorentz space Lq,1(Ω) is the space

of all Lebesgue measurable functions u such that

(2.2) ‖u‖q,1 =

∫ ∞

0

t
1
q
−1u∗(t) dt < +∞,

endowed with the norm (2.2). It is well–known (cf. [15], [21]) that the following
inclusions hold

Lq+ε(Ω) ↪→ Lq,1(Ω) ↪→ Lq(Ω) ↪→ Lq,∞(Ω) ↪→ Lq−ε(Ω),

for every ε > 0. Finally we recall that the Marcinkiewicz space LN,∞(Ω) is the dual

space of L
N

N−1
,1(Ω).

We define M(Ω) as the space of all Radon measures with bounded total variation
on Ω and we denote by |µ| the total variation of µ ∈M(Ω). The space of all functions
of finite variation, that is the space of those u ∈ L1(Ω) whose distributional gradient
belongs to M(Ω), is denoted by BV (Ω). It is endowed with the norm defined by

‖u‖BV (Ω) =

∫

Ω

|u| dx + |Du|(Ω), for any u ∈ BV (Ω). Since Ω has Lipschitz boundary,

if u belongs to BV (Ω), then the function

u0 =





u, in Ω;

0, in RN \ Ω;

belongs to BV (RN) and |Du0|(RN) =
∫

∂Ω
|u| dHN−1 + |Du|(Ω). We explicitly point

out that |Du0|(RN) defines an equivalent norm on BV (Ω), which we will use in the
sequel. Through the paper, with an abuse of notation, we still denote u0 by u.

We will denote by SN,p the best constant in the Sobolev inequality (cf. [22]), that
is,

‖u‖p∗ ≤ SN,p‖∇u‖p , for all u ∈ W 1,p(Ω) .

We will also write SN instead of SN,1. It is well–known (cf. [22]), that

(2.3) lim
p→1

SN,p = SN .
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Sobolev’s inequality can be improved in the context of Lorentz spaces (cf. [1]) and,
furthermore, by an approximation argument may be extended to BV–functions (see
for instance [25]); as a consequence we obtain the continuous embedding

(2.4) BV (Ω) ↪→ L
N

N−1
,1(Ω) .

We will denote by W−1,q′(Ω) the dual space of W 1,q
0 (Ω), 1 ≤ q < ∞. Here we just

recall that the norm in W−1,∞(Ω) is given by

(2.5) ‖µ‖W−1,∞(Ω) = sup

{
< µ,ϕ >W−1,∞(Ω),W 1,1

0 (Ω):

∫

Ω

|∇ϕ| dx ≤ 1

}
.

It is worth pointing out some remarkable subspaces of W−1,∞(Ω). One of these is
M(Ω) ∩W−1,∞(Ω) whose elements are named Guy David measures in [20]. Another
subspace is the so–called predual of BV (Ω). Indeed, the space BV (Ω) is the dual
of a separable space which will be denoted by Γ(Ω); its elements can be written as
f − div F , with (f, F ) ∈ C0(Ω;RN+1) (see [14], and also [20] and [3]). Since the
elements of W−1,∞(Ω) may be written as f − div F , with (f, F ) ∈ L∞(Ω; RN+1), we
deduce that Γ(Ω) ⊂ W−1,∞(Ω). Recall that in the 1–dimensional case we have

W−1,∞(a, b) = {f ′ : f ∈ L∞(a, b) }
M(a, b) ∩W−1,∞(Ω) = {f ′ : f ∈ BV (a, b) }

Γ(a, b) = {f ′ : f ∈ C(a, b) and f(a) = f(b) = 0 } .

So that it is easy to find examples in any dimension that show all these spaces are
different.

Moreover, we will denote by BV (Ω)∗ the dual space of BV (Ω). The norm in BV (Ω)∗

is given by

||µ||BV (Ω)∗ = sup{< µ, ϕ >BV (Ω)∗,BV (Ω): |Dϕ|(Ω) +

∫

∂Ω

|ϕ| dHN−1 ≤ 1} .

Of course, Γ(Ω) ↪→ BV (Ω)∗; we will prove in Appendix below that in the space Γ(Ω)
the norms as subset of BV (Ω)∗ and as subset of W−1,∞(Ω) coincide.

Finally we recall that a sequence (µn)n in M(Ω) weakly* converges to µ if

lim
n→∞

∫

Ω

f dµn =

∫

Ω

f dµ

for every f ∈ C0(Ω). We will say that a sequence (un)n weakly* converges to u in
BV (Ω) if it strongly converges in L1(Ω) and (Dun)n weakly* converges to Du inM(Ω).
At least for sufficiently regular domains, this notion corresponds to weak* convergence
in the usual sense: that is with respect to σ(Γ(Ω), BV (Ω)).

3. The radial case

In this Section we consider problem (1.1) in the case where the domain Ω is a ball
centered at the origin, i.e. Ω ≡ BR = {x ∈ RN : |x| < R} and the datum f is a
nonnegative radially decreasing function belonging to the Lorentz space LN,∞(BR).
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Since both the domain and the datum are radially symmetric, it is well–known (see
for instance [23]) that the weak solution up is given by

(3.1) up(x) =
1

Np′C
p′/N
N

∫ CNRN

CN |x|N
s

p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds,

for almost every x ∈ BR.
Our aim is to describe the behaviour of up and the behaviour of |∇up|p−2∇up as p

goes to 1.
We begin by introducing some notation. In what follows we will denote by

(3.2) ‖f‖s = sup
s≤σ<CNRN

σ
1
N f ∗∗(σ), for every s ∈ [0, CNRN [.

Clearly ‖f‖0 ≡ ||f ||LN,∞ . Moreover we will denote by

(3.3) s1 = inf{s ≥ 0 : ‖f‖s ≤ NC
1
N
N }, s2 = inf{s ≥ 0 : ‖f‖s < NC

1
N
N },

and by r1 and r2 the radii of the balls centered in the origin having measure s1 and s2

respectively:
CNrN

1 = s1 and CNrN
2 = s2.

We set s1 = CNRN if the set {s ≥ 0 : ‖f‖s ≤ NC
1
N
N } is empty, and s2 = CNRN if

{s ≥ 0 : ‖f‖s < NC
1
N
N } is empty. We explicitly remark that it results s1 ≤ s2 and

hence r1 ≤ r2 ≤ R. Therefore the balls Br1 and Br2 centered at the origin and radii
r1 and r2 respectively are both contained in BR.

In general the limit of solutions up, as p goes to 1, is finite a.e. in Ω when the datum
f is small enough. For instance, if the datum f is constant, that is f ∗(s) = λ > 0,
then

lim
p→1

up = 0 , if λ ≤ N

R
;

lim
p→1

up = +∞ , if λ >
N

R
;

(cf. [16]). In this section we analyze the behaviour of up in a more general case, where
f is not constant, without any dependence on the smallness of the datum. Indeed
Theorem 3.1 below states that, as p goes to 1, up diverges in the ball Br1 , that it has a
finite non–negative limit (for which we give an upper bound) in the annulus Br2\Br1

of radii r1 and r2 and finally that it converges to zero in the annulus BR\Br2 of radii
r2 and R.

Theorem 3.1. Let up be the solution to problem (1.1). Then

(3.4) lim
p→1

up(x) = +∞, for almost all x ∈ Br1 ,

(3.5) 0 ≤ lim
p→1

up(x) ≤ R− |x| for almost all x ∈ Br2\Br1 ,

(3.6) lim
p→1

up(x) = 0, for almost all x ∈ BR\Br2 .
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Remark 3.1. We explicitly observe that Theorem 3.1 improves the result proved in
[10] where the behaviour of up is studied just under a smallness assumption on f , i.e.

||f ||LN,∞ ≤ NC
1/N
N . Indeed if ||f ||LN,∞ < NC

1/N
N , then s1 = s2 = 0 and therefore we

deduce that

lim
p→1

up(x) = 0 a.e. in BR;

if ||f ||LN,∞ = NC
1/N
N , then s1 = 0 and hence the limit function is a.e. finite in BR, as

in [10]. ¤

Remark 3.2. We point out that the values r1 and r2 (or equivalently s1 and s2) may
be different. Indeed consider the function f : BR → R defined by f(x) = N−1

|x| . Then

we have f ∗(σ) = C
1/N
N (N − 1)σ−1/N and f ∗∗(σ) = NC

1/N
N σ−

1
N for all σ ∈]0, CNRN [.

Consequently ‖f‖s = NC
1
N
N for every s ∈]0, CNRN [; therefore, s1 = 0 and s2 = CNRN .

This example allows also to show that the value R− |x| in (3.5) may be attained, i.e.
then limp→1 up(x) = R− |x| (see Remark 3.2 in [10]). ¤

Proof of Theorem 3.1: From (3.1) we can write, almost everywhere in Br1 ,

(3.7) up(x) = Up(x) + I,

where

(3.8) Up(x) =
1

Np′C
p′/N
N

∫ CNrN
1

CN |x|N
s

p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds, a.e. x ∈ Br1 ,

(3.9) I =
1

Np′C
p′/N
N

∫ CNRN

CNrN
1

s
p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds.

Since I is a nonnegative constant, by (3.7) it follows that

(3.10) up(x) ≥ Up(x),

for almost all x ∈ Br1 .
Now we evaluate Up(x), for almost every fixed x ∈ Br1 . Denote by

σx = CN |x|N .

Since |x| < r1, it follows that σx < s1. Thus, by definition (3.3) of s1, we deduce that

‖f‖σx > NC
1
N
N .

By (3.2), there exists a constant σ̂x such that

0 < σx ≤ σ̂x < CNRN

and

σ̂
1
N
x f ∗∗(σ̂x) > NC

1
N
N .
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Note also that (3.3) implies σ̂x < s1. Hence, by the continuity of the function g(σ) =

σ
1
N f ∗∗(σ) and by g(σ̂x) > NC

1
N
N , it yields

(3.11) g(s) = s
1
N f ∗∗(s) > NC

1
N
N ,

for every s ∈]σ̂x − δ, σ̂x + δ[, for a suitable δ > 0.
Therefore,

(3.12)

Up(x) =
1

Np′C
p′/N
N

∫ σ̂x

CN |x|N
s

p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds+

+
1

Np′C
p′/N
N

∫ σ̂x+δ

σ̂x

s
p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds+

+
1

Np′C
p′/N
N

∫ CNrN
1

σ̂x+δ

s
p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds.

Since the first and the third integral in (3.12) are non–negative, we obtain

(3.13)

Up(x) ≥ 1

Np′C
p′/N
N

∫ σ̂x+δ

σ̂x

s
p′
N
−p′

(∫ s

0

f ∗(σ)dσ

) 1
p−1

ds

=
1

NC
1/N
N

∫ σ̂x+δ

σ̂x

s
1
N
−1

(
1

NC
1/N
N

s
1
N
−1

∫ s

0

f ∗(σ)dσ

) 1
p−1

ds.

By (3.11) and definition of f ∗∗, we have

1

NC
1/N
N

s
1
N
−1

∫ s

0

f ∗(σ)dσ > 1, ∀s ∈]σ̂x, σ̂x + δ[ .

Thus, the right–hand side of (3.13) tends to +∞ when p goes to 1 and by (3.10) we
deduce (3.4)

Now we prove (3.5). Using (3.1), we have

(3.14) up(x) =
1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1

(
s

1
N
−1

NC
1/N
N

∫ s

0

f ∗(σ)dσ

) 1
p−1

ds ,

for almost all x ∈ Br2\Br1 , where, by (3.3),

(3.15)
s

1
N
−1

NC
1/N
N

∫ s

0

f ∗(σ)dσ ≤ ‖f‖s

NC
1/N
N

≤ 1 s ∈ [CN |x|N , CNRN [.

Hence immediately follows that up is nonincreasing with respect to p; then limp→1 up

exists and it is non–negative. Furthermore, by (3.14) and (3.15), we get

up(x) ≤ 1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1

(
‖f‖s

NC
1/N
N

) 1
p−1

ds ≤ 1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1 ds .

Therefore limp→1 up(x) ≤ R− |x|, which gives (3.5).
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Now we prove (3.6). By the definition of s2 in (3.3) we deduce that

‖f‖s < NC
1
N
N , ∀s ∈]s2, CNRN [.

Let ŝ ∈]s2, CNRN [ be fixed. Since ‖f‖ŝ < NC
1/N
N , we may write ‖f‖ŝ = (1− ε)NC

1/N
N

for some ε > 0. Thus,

s
1
N
−1

∫ s

0

f ∗(σ) dσ ≤ (1− ε)NC
1/N
N ,

for all s ∈ [ŝ, R[. Therefore by (3.1), we have

up(x) ≤ ((1− ε)NC
1/N
N )

1
p−1

Np′C
p′/N
N

∫ CNRN

CN |x|N
s

1
N
−1ds =

(1− ε)
1

p−1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1ds,

for almost every x ∈ Bŝ. Since

lim
p→1

(1− ε)
1

p−1

NC
1/N
N

= 0,

we deduce that limp→1 up(x) = 0 uniformly on Bŝ. Thus (3.6) holds true. ¤

Next we turn to describe the behaviour of |∇up|p−2∇up as p goes to 1.

Proposition 3.1. Let up be the solution to problem (1.1). Denote by z the vector field

(3.16) z = −f ∗∗(CN |x|N)

N
x .

Then we have

(3.17) |∇up(x)|p−2∇up(x) = z(x) , for every p > 1 and for almost every x ∈ BR.

Moreover it results

(3.18) ‖z‖L∞(Br1 ;RN ) > 1 ,

(3.19) ‖z‖L∞(Br2\Br1 ;RN ) ≤ 1 ,

(3.20) ‖z‖L∞(BR\Br2 ;RN ) < 1 .

Proof: By (3.1) it follows that, for almost every x ∈ BR,

(3.21)

∇up(x) = −
(
|x|
N

1

CN |x|N
∫ CN |x|N

0

f ∗(σ)dσ

) 1
p−1

x

|x|

= −
( |x|

N
f ∗∗(CN |x|N)

) 1
p−1 x

|x| .

Hence, the vector field

(3.22) |∇up(x)|p−2∇up(x) = −|x|
N

f ∗∗(CN |x|N)
x

|x| ,
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does not depend on p and this implies (3.17). Moreover, since

z(x) = −(CN |x|N)1/N

NC
1/N
N

f ∗∗(CN |x|N)
x

|x| ,

(3.18), (3.19) and (3.20) follow in a straightforward way from (3.2) and (3.3). ¤

Remark 3.3. Let us point out that in the above proof, we have obtained

‖z‖L∞(BR\Br;RN ) =
‖f‖CNrN

NC
1/N
N

, for all r ∈]0, R[ .

Therefore we deduce

(3.23) ‖z‖∞ = sup
0≤σ<CNRN

σ1/N

NC
1/N
N

f ∗∗(σ) =
‖f‖N,∞

NC
1/N
N

. ¤

Remark 3.4. As a straightforward consequence of the definition of z, (3.1) becomes

up(x) =
1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1

∣∣∣z
( s1/N

C
1/N
N

)∣∣∣
1

p−1
ds

for almost all x ∈ BR. Thus, if ‖f‖LN,∞(Ω) ≤ NC
1/N
N , then

lim
p→1

up(x) =
1

NC
1/N
N

∫ CNRN

CN |x|N
s

1
N
−1χ{|z(s1/N/C

1/N
N )|=1}(s) ds

and, changing the integration variable, we finally obtain that the above limit is equal
to the measure of the set { |z(x)| = 1 } ∩ [ |x|, R ]. ¤

The above results, Theorem 3.1 and Proposition 3.1, allow to prove a stability type
result for the “limit equation” (1.2). More precisely we will prove that if the norm of f
satisfies suitable smallness assumptions, then u = lim

p→1
up is a solution to the following

“limit problem” in the sense of the definition given in [5], [6], [7].

(3.24)





−div

(
Du

|Du|
)

= f in BR,

u ∈ BV (RN),

u = 0 in RN \BR.
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Theorem 3.2. Let f ∈ LN,∞(BR) with ||f ||LN,∞ ≤ NC
1/N
N and let up be the solution

to problem (1.1), for any 1 < p < ∞. Then up converges a.e. in BR to a function

u ∈ W 1,1
0 (BR) and there exists a vector field z : BR → RN such that

z ∈ L∞(BR;RN) with ‖z‖∞ ≤ 1;

−divz = f in D′(BR);

z · ν ≤ 0 HN−1–a.e on ∂BR,

where ν denotes the outer normal to ∂BR;

z · ∇u = |∇u| as measures in BR.

Remark 3.5. We explicitly observe that the function u given by Theorem 3.2 is a
solution to (3.24) in the sense of the definition given in [5], [6], [7] (see Definition 4.1
and Remark 4.3 below). ¤

Proof of Theorem 3.2: Since ‖f‖s ≤ NC
1/N
N for all s ∈]0, CNRN [, we have r1 = 0

and by Theorem 3.1 we have

(3.25) 0 ≤ u(x) = lim
p→1

up(x) ≤ R− |x|, a.e. in BR.

Moreover, from Proposition 3.1, we deduce that the vector field z defined in (3.16)
satisfies the conditions ‖z‖∞ ≤ 1 and∫

BR

|∇up|p dx ≤
(‖f‖N,∞

NC
1/N
N

)p′

|BR|.

Since ‖f‖N,∞ ≤ NC
1/N
N , Sobolev’s inequality for BV –functions implies that

∇up ⇀ Du weakly* in the sense of measures.

On the other hand, by (3.16), (3.21) and (3.25), we have u ∈ W 1,1
0 (BR) and

∇u(x) = 0, if |z(x)| < 1 ,

∇u(x) = z(x) = − x
|x| if |z(x)| = 1.

Moreover from (3.17), since up is a solution to problem (1.1), it follows that −div z =
f in D′(BR). Furthermore, by definition of z, it results

z(x) = −|z(x)| x

|x| .

If |x| = R, then

z · ν(x) = −|z(x)| x
R
· x

R
= −|z(x)| < 0.

Finally, a straightforward calculation shows that, for every Borel set B ⊂ BR,∫

B

z · ∇u =

∫

{|z(x)|=1}∩B

z · ∇u = |{|z(x)| = 1} ∩B| =
∫

B

|∇u|.

This yields the conclusion. ¤
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Remark 3.6. One could think from the results in this Section that the set where
|z| ≤ 1 is the same as the set where |u| < +∞; this is not the case as the following
example shows.
Consider problem (1.1) with datum f(CN |x|N) defined by

(3.26) f(s) =





0, if 0 ≤ s ≤ CN

(
R
2

)N
;

λ
s1/N , if CN

(
R
2

)N
< s < CNRN .

It is not difficult to check that the solution is given by

(3.27) up(x) =
1

NC
1/N
N

∫ CNRN

CN max{|x|, R
2
}N

s
1
N
−1g(s)

1
p−1 ds ;

with

g(s) =
λ

(N − 1)C
1/N
N

(
1−

(CNRN

s2N

)1− 1
N

)
, CN

RN

2N
< s < CNRN .

Observe that g is an increasing function; thus, if λ ≤ (N − 1)C
1/N
N 2N−1

2N−1 − 1
, then

g(s) < 1 for all s < CNRN and so up(x) → 0 everywhere in BR. On the other hand, if

λ >
(N − 1)C

1/N
N 2N−1

2N−1 − 1
, then g(s) > 1 in an interval ]s0, CNRN [, so that up(x) → +∞

everywhere.
Let us compute the vector field z: Since

∇up(x) =





0, if 0 ≤ |x| ≤ R
2

;

− x
|x|g(CN |x|N)1/(p−1), if R

2
< |x| < R ;

and so |∇up|p−2∇up does not depend on p, it follows that

z(x) =





0, if 0 ≤ |x| ≤ R
2

;

− x
|x|g(CN |x|N), if R

2
< |x| < R ;

If λ ≤ (N − 1)C
1/N
N 2N−1

2N−1 − 1
, then |z| < 1 everywhere while if λ >

(N − 1)C
1/N
N 2N−1

2N−1 − 1
,

then |z| > 1 only in a neighborhood of the boundary that does not intersect BR/2(0).

Hence, BR/2(0) ⊂ {|z| ≤ 1} but {|u| < +∞} = ∅ for all λ >
(N−1)C

1/N
N 2N−1

2N−1−1
.

Therefore, {|u| < +∞}  {|z| ≤ 1} for these values. Finally, we observe that when
the limit function blows up at the boundary, it blows up everywhere. ¤
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4. Stability results with W−1,∞(Ω) data

Consider the nonlinear elliptic problems

(4.1)




−div

(|∇up|p−2∇up

)
= µ , in Ω ;

up = 0 , on ∂Ω .

where p > 1 and the datum µ belongs to W−1,∞(Ω). Since by duality arguments,
W−1,∞(Ω) is included in W−1,p′(Ω) for every p > 1, then the existence and uniqueness
of the solution up ∈ W 1,p

0 (Ω) to problem (4.1) can be proved by classical methods
(see, for instance, [18]). In this Section we will study the behaviour, as p goes to 1,
of these solutions up to problems (4.1). We prove that, if the norm in W−1,∞(Ω) of
the datum µ is less than 1, then up converges to the function u ≡ 0; if the norm in
W−1,∞(Ω) of the datum µ is equal to 1, then up converges to a function u belonging
to BV (Ω). Moreover we prove that up does not converge to any BV –function if the
norm in W−1,∞(Ω) of the datum µ is greater than 1 (see Subsection 4.1 below). As
in the previous Section, we deduce a stability result for the limit problem (1.2) when
the norm in W−1,∞(Ω) of the datum µ is less than or equal to 1. Actually we does
not give a stability result in the case where ‖µ‖W−1,∞(Ω) = 1 for all µ ∈ W−1,∞(Ω).
We study such a case when µ belongs to a subspace of W−1,∞(Ω), namely Γ(Ω), the
predual space of BV (Ω) (see Subsection 4.2 below).

From now on, abusing of the terminology, we will say that up is a sequence and we
will consider subsequences of it, as p goes to 1.

4.1. General data in W−1,∞(Ω)

The main Theorem of this Subsection is the following.

Theorem 4.1. Let up be the solution to problem (4.1).
If ‖µ‖W−1,∞(Ω) < 1, then, as p goes to 1, up converges to 0 in Lq(Ω), with q < N

N−1
.

If ‖µ‖W−1,∞(Ω) = 1, then, up to a subsequence, up converges in Lq(Ω), with q < N
N−1

.
If ‖µ‖W−1,∞(Ω) > 1, then

lim
p→1

∫

Ω

|∇up| dx = +∞ ,

and hence there is not any u ∈ BV (Ω) which is the weak∗ limit of up.

Proof: Since up is a weak solution to problem (4.1), the following inequalities hold
true

(4.2)

∫

Ω

|∇up|pdx =< µ, up >W−1,∞(Ω),W 1,1
0 (Ω)≤ ‖µ‖W−1,∞(Ω)

∫

Ω

|∇up|dx ≤

≤ ‖µ‖W−1,∞(Ω)|Ω|1/p′
( ∫

Ω

|∇up|pdx
)1/p

.

Therefore, one always has

(4.3)

∫

Ω

|∇up|pdx ≤ ‖µ‖p′
W−1,∞(Ω)|Ω| .
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Assume first that ‖µ‖W−1,∞(Ω) < 1. Thus, we can write ‖µ‖W−1,∞(Ω) = 1 − ε, for a
suitable ε > 0. By Young inequality, we have

(4.4)

∫

Ω

|∇up| dx ≤
[
1

p
(1− ε)

p
p−1 +

p− 1

p

]
|Ω| ≤ |Ω|.

This estimate implies that there exists u ∈ BV (Ω) and a subsequence, still denoted
by up, satisfying up → u in Lq(Ω), with q < N

N−1
, and

|Du|(Ω) +

∫

∂Ω

|u| dHN−1 ≤ lim inf
p→1

∫

Ω

|∇up| dx .

By (4.4), letting p → 1, we obtain

|Du|(Ω) +

∫

∂Ω

|u| dHN−1 = 0,

and therefore u = 0. Since u ≡ 0 is the unique limit point, by Sobolev inequality, we
actually obtain that limp→1 up = 0 in Lq(Ω), with q < N

N−1
.

Let us now assume that ‖µ‖W−1,∞(Ω) = 1. Then (4.3) becomes

∫

Ω

|∇up|p dx ≤ |Ω|
and by Young’s inequality we obtain

(4.5)

∫

Ω

|∇up| dx ≤ |Ω| .
So that from Sobolev’s inequality for BV –functions we deduce the existence of a
function u ∈ BV (Ω) such that, up to subsequences,




∇up ⇀ Du weakly* in the sense of measures,

up → u strongly in Lq(Ω) , 1 ≤ q < N
N−1

,

up → u a.e. in Ω .
.

Finally let us assume that ‖µ‖W−1,∞(Ω) > 1. Since ‖µ‖W−1,∞(Ω) = limp→1 ‖µ‖W−1,p′ (Ω),

we may take ε > 0 and p0 > 1 such that ‖µ‖W−1,p′ (Ω) > 1 + ε, for all p ≤ p0.

On the other hand, if ϕ ∈ W 1,p
0 (Ω) with ‖∇ϕ‖Lp(Ω;RN ) ≤ 1, then

(4.6) < µ,ϕ >W−1,p′ (Ω),W 1,p
0 (Ω)=

∫

Ω

|∇up|p−1∇up · ∇ϕdx ≤
( ∫

Ω

|∇up|p dx

) p−1
p

.

Since by definition we have

‖µ‖W−1,p′ (Ω) = sup
{

< µ,ϕ >W−1,p′ (Ω),W 1,p
0 (Ω):

∫

Ω

|∇ϕ|p dx ≤ 1
}

,

then (4.6) implies

‖µ‖
p

p−1

W−1,p′ (Ω)
≤

∫

Ω

|∇up|p dx.

Therefore,

(1 + ε)
p

p−1 ≤
∫

Ω

|∇up|p dx
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for p ≤ p0. This implies

lim
p→1

∫

Ω

|∇up|p dx = +∞.

Since for a suitable g ∈ L∞(Ω), we have µ = div g, the conclusion follows from∫

Ω

|∇up|p dx =< µ, up >W−1,∞(Ω),W 1,1
0 (Ω)=

∫

Ω

g · ∇up ≤ ‖g‖∞
∫

Ω

|∇up| dx . ¤

Let us prove the following result which describes the behaviour of |∇up|p−2∇up

Proposition 4.1. Let up be the solution to problem (4.1), then there exists a vector
field z ∈ L∞(Ω;RN) such that, up to subsequences,

(4.7) |∇up|p−2∇up ⇀ z weakly in Lq(Ω) for all 1 ≤ q < +∞ ,

(4.8) −div z = µ in D′(Ω) ,

(4.9) ‖z‖∞ = ‖µ‖W−1,∞(Ω) .

Proof:
Step 1: Proof of (4.7)
Arguing as in the proof of Theorem 4.1, we obtain inequality (4.3). Then for every

q, 1 ≤ q < p′, we have

(4.10)

∫

Ω

|∇up|(p−1)q ≤
( ∫

Ω

|∇up|p
)(p−1)q/p

|Ω|1− (p−1)q
p

≤ |Ω| (p−1)q
p ‖µ‖p′ (p−1)q

p

W−1,∞(Ω)|Ω|1−
(p−1)q

p

= |Ω|‖µ‖q
W−1,∞(Ω) .

It yields that, for any q fixed, the sequence |∇up|p−2∇up is bounded in Lq(Ω;RN)
and then there exists zq ∈ Lq(Ω;RN) such that, up to subsequences,

|∇up|p−2∇up ⇀ zq in Lq(Ω) for all 1 ≤ q < +∞ .

Moreover, by a diagonal argument we can find a limit z that does not depend on q,
that is

(4.11) |∇up|p−2∇up ⇀ z in Lq(Ω) for all 1 ≤ q < +∞ .

Now by (4.10) we deduce

‖|∇up|p−2∇up‖q ≤ |Ω|1/q‖µ‖W−1,∞(Ω) for 1 ≤ q < +∞ and for p ∈]1, q′[ .

Therefore, by lower semicontinuity of the norm, we have

(4.12) ‖z‖q ≤ |Ω|1/q‖µ‖W−1,∞(Ω) for all 1 ≤ q < +∞ .

Step 2: Proof of (4.8)
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Since up is a distributional solution to problem (4.1), it follows that
∫

Ω

|∇up|p−2∇up · ∇ϕdx =< µ, ϕ >W−1,∞(Ω),W 1,1
0 (Ω), ∀ϕ ∈ C∞

0 (Ω) .

Hence, using (4.11) we obtain∫

Ω

z · ∇ϕdx =< µ, ϕ >W−1,∞(Ω),W 1,1
0 (Ω) , ∀ϕ ∈ C∞

0 (Ω) ,

that is (4.8).
Step 3: Proof of (4.9)

For any fixed h > 0 and p > 1, we denote

Dp,h = {x ∈ Ω : |∇up(x)|p−1 > h}.
By (4.10) for q = 1, as p goes to 1 we have

(4.13) |∇up|p−2∇upχDp,h
⇀ gh weakly in L1(Ω;RN) ,

(4.14) |∇up|p−2∇upχΩ\Dp,h
⇀ fh weakly in L1(Ω;RN) ,

for some gh ∈ L1(Ω) and fh ∈ L1(Ω). On the other hand by (4.10) with q = 1

(4.15) |Dp,h| ≤ 1

h

∫

Ω

|∇up|p−1 ≤ |Ω| ‖µ‖W−1,∞(Ω)

h
.

Therefore by Hölder’s inequality and (4.15) for every fixed Φ ∈ L∞(Ω;RN), with
||Φ||∞ ≤ 1, we have

(4.16)

∣∣∣
∫

Dp,h

|∇up|p−2∇up · Φ
∣∣∣ ≤ ‖Φ‖∞

∫

Dp,h

|∇up|p−1

≤ |Dp,h|1−
1
q

( ∫

Ω

|∇up|(p−1)q
) 1

q

≤ 1

h
1− 1

q
|Ω|1− 1

q ‖µ‖1− 1
q

W−1,∞(Ω)|Ω|
1
q ‖µ‖W−1,∞(Ω)

≤ 1

h
1− 1

q
|Ω| ‖µ‖2− 1

q

W−1,∞(Ω) .

By (4.13) and (4.16), for any fixed h > 0 we deduce
∣∣∣
∫

Ω

gh · Φ
∣∣∣ ≤ 1

h1− 1
q

|Ω| ‖µ‖2− 1
q

W−1,∞(Ω),

for every Φ ∈ L∞(Ω;RN) such that ||Φ||∞ ≤ 1. By duality we deduce the following
estimate for gh ∫

Ω

|gh| ≤ 1

h1− 1
q

|Ω| ‖µ‖2− 1
q

W−1,∞(Ω) ,

for any fixed h > 0. Moreover by definition of the set Dp,h,

|χΩ\Dp,h
|∇up|p−2∇up| ≤ h, a.e. in Ω.
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This implies, using the inequality contained in [24], p. 337, the following pointwise
estimate for fh

|fh| ≤ h, a.e. in Ω,

for any fixed h > 0. Therefore fh ∈ L∞(Ω;RN). Applying once again (4.10), we have∫

Ω\Dp,h

|∇up|q(p−1) ≤
∫

Ω

|∇up|q(p−1) ≤ |Ω| ‖µ‖q
W−1,∞(Ω) ,

that is, for some q0,

‖χΩ\Dp,h
|∇up|p−2∇up‖q ≤ |Ω|1/q ‖µ‖W−1,∞(Ω) ≤ 2‖µ‖W−1,∞(Ω) for all q ≥ q0.

This implies
‖fh‖q ≤ 2‖µ‖W−1,∞(Ω) for all q ≥ q0.

Since fh ∈ L∞(Ω;RN), it yields

‖fh‖∞ ≤ 2‖µ‖W−1,∞(Ω).

Therefore, for every h > 0, we have

z = fh + gh,

with ∫

Ω

|gh| ≤ Cq

h1− 1
q

and
‖fh‖∞ ≤ 2‖µ‖W−1,∞(Ω).

The above condition on gh gives

lim
h→∞

gh = 0 in L1(Ω)

and hence
lim

h→∞
fh = lim

h→∞
z − gh = z in L1(Ω).

Since ‖fh‖∞ ≤ 2‖µ‖W−1,∞(Ω) for all h > 0, we obtain that z ∈ L∞(Ω;RN). Then (4.12)
implies

‖z‖∞ ≤ ‖µ‖W−1,∞(Ω) .

From (4.8) and the definition of the norm ‖µ‖W−1,∞(Ω), since we have

< µ, ϕ >W−1,∞(Ω),W 1,1
0 (Ω)=

∫

Ω

z · ∇ϕ ≤ ‖z‖∞
∫

Ω

|∇ϕ| ,

the reverse inequality follows, and therefore (4.9) is proved. ¤

Remark 4.1. In Theorem 4.1, when ‖µ‖W−1,∞(Ω) > 1, we did not state which is the
pointwise limit of up. Nevertheless, an “a posteriori” argument can be done to obtain
some kind of limit of the solutions. In fact, we can prove the following claim.

There exists a function v satisfying, up to subsequences,

(4.17) |up|p−1 ⇀ v weakly in Lq(Ω) and ‖v‖q ≤ |Ω|1/q‖µ‖W−1,∞(Ω) ,

for all 1 ≤ q < +∞.



18 A MERCALDO 1, S. SEGURA DE LEÓN2 AND C. TROMBETTI1

To prove this claim, we must carefully apply Sobolev’s inequality. It is well–known
(see, for instance, [25] p. 57 or p. 82) that a straightforward argument yields a simple

connection between SN,p and SN , namely: SN,p ≤ (N − 1)p

N − p
SN , (1 ≤ p < N) and so

SN,p ≤ 2(N − 1)SN for 1 ≤ p ≤ 2N

3
.

From (4.10), we deduce

( ∫

Ω

|∇up|q(p−1)
) 1

q(p−1) ≤ |Ω| 1
q(p−1)‖µ‖

1
p−1

W−1,∞(Ω) .

Consider r such that 1 ≤ r(p− 1) ≤ 2N
3

, by applying Sobolev’s inequality, we get

(∫

Ω

(
|up|r(p−1)

) N
N−r(p−1)

)N−r(p−1)
Nr(p−1)

≤ SN,r(p−1)

( ∫

Ω

|∇up|r(p−1)
) 1

r(p−1)

≤ SN,r(p−1)|Ω|
1

r(p−1)‖µ‖
1

p−1

W−1,∞(Ω) .

Since N
N−r(p−1)

> 1, Hölder’s inequality implies

(∫

Ω

|up|r(p−1)

) 1
r(p−1)

≤ |Ω| 1
N

(∫

Ω

(
|up|r(p−1)

) N
N−r(p−1)

)N−r(p−1)
Nr(p−1)

≤ SN,r(p−1)|Ω|
1

r(p−1)
+ 1

N ‖µ‖
1

p−1

W−1,∞(Ω) .

Therefore, taking SN,r(p−1) ≤ 2(N − 1)SN into account, we obtain

‖ |up|p−1‖r ≤
(
2(N − 1)SN |Ω|

1
r(p−1)

+ 1
N

)p−1

‖µ‖W−1,∞(Ω) .

for all r satisfying 1 ≤ r(p− 1) ≤ 2N
3

.

Now let q satisfy 1 ≤ q ≤ 1
p−1

< r and apply Hölder’s inequality, then

‖ |up|p−1‖q ≤ |Ω| 1q− 1
r

( ∫

Ω

|up|r(p−1)
) 1

r ≤ |Ω| 1q
(
2(N − 1)SN |Ω| 1

N

)p−1

‖µ‖W−1,∞(Ω) .

Since p → 1, it follows that we may consider any q such that 1 ≤ q < +∞; moreo-

ver, |up|p−1 is bounded in Lq(Ω) and its bound tends to |Ω| 1q ‖µ‖W−1,∞(Ω) as p → 1.
Therefore, (4.17) is a consequence of a diagonal argument.

We also remark that there is some connection between the functions u = limp→1 up

and v. Indeed, on the set {u = 0} it yields v ≤ lim supp→1 e(p−1) log |up| ≤ 1 a.e., while

on {|u| = +∞} we have v ≥ lim infp→1 e(p−1) log |up| ≥ 1 a.e. Finally, up a null set, we
obtain v = 1 on {0 < |u| < +∞}. ¤
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Remark 4.2. Since the Marcinkiewicz space LN,∞(BR) is included in W−1,∞(BR), if
Ω is the ball BR and the datum µ belongs to LN,∞(BR), then Proposition 4.1 and
Theorem 4.1 holds true. Taking into account Proposition 4.1 and Remark 3.3, we may
deduce that for every f ∈ LN,∞(BR),

‖f‖W−1,∞(BR) = sup
0≤σ<CNRN

σ1/N

NC
1/N
N

f ∗∗(σ) =
‖f‖N,∞

NC
1/N
N

.

Observe that Theorem 3.1 implies the existence of a finite limit if and only if

‖f‖N,∞ = sup
0≤σ<CNRN

σ
1
N f ∗∗(σ) ≤ NC

1
N
N ,

that is, when ‖f‖W−1,∞(BR) ≤ 1. ¤

As in the previous section, the study of the behaviour, as p goes to 1, of up and
|∇up|p−2∇up allows to deduce a stability result to the “limit problem”

(4.18)





−div

(
Du

|Du|
)

= µ in Ω,

u ∈ BV (RN),

u = 0 in RN \ Ω.

Let us begin by recalling the definition of solution to this problem (see [5], [7], [9] and
[12]). To this aim, we need to introduce the following distribution (cf. [4]):

Let u be a function belonging to BV (Ω) and let z be a vector field belonging to
L∞(Ω;RN) such that div z, in the sense of distributions, belongs to BV (Ω)∗, i.e.

< div z, ϕ >= −
∫

Ω

z · ∇ϕdx

for all ϕ ∈ C∞
0 (Ω). Then we define the distribution

(z,Du) : C∞
0 (Ω) → R

by

(4.19) < (z, Du), ϕ >= −
∫

Ω

u z · ∇ϕdx− < div z, u ϕ >BV (Ω)∗,BV (Ω) ,

for every ϕ ∈ C∞
0 (Ω). Since u ∈ BV (Ω) ⊂ LN ′,1(Ω), ϕ ∈ C∞

0 (Ω), z ∈ L∞(Ω;RN) and
div z ∈ BV (Ω)∗, all terms in (4.19) make sense.

Moreover as in [7] (pp. 126–127) we may define the weak trace of the exterior normal
component of z, which will be denoted by [z, ν].

Definition 4.1. A function u : Ω → R is a solution to (4.18) if the following conditions
hold true

u ∈ BV (Ω);
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there exists a vector field z : Ω → RN such that

(4.20) z ∈ L∞(Ω;RN) with ‖z‖∞ ≤ 1;

(4.21) −div z = µ in D′(Ω);

(4.22) [z, ν] ∈ sign(−u) HN−1–a.e on ∂Ω;

(4.23) (z, Du) is a Radon measure and

(4.24) (z, Du) = |Du| as measures in Ω.

Remark 4.3. Let us observe that if the function u in the previous definition belongs
to W 1,1(Ω), then the measure (z, Du) coincides with z · ∇u. As already observed, this
means that the function u and the vector field z whose existence has been proved in
the previous Section yields a solution to problem (3.24). ¤

The announced stability result it is now an easy consequence of Theorem 4.1 and
Proposition 4.1.

Theorem 4.2. Let up be the solution to problem (4.1).
If ‖µ‖W−1,∞(Ω) < 1, then, as p goes to 1, up converges to u ≡ 0 solution to problem
(4.18) in the sense of Definition 4.1.
If ‖µ‖W−1,∞(Ω) > 1, then there is not solution to problem (4.18) in the sense of Defi-
nition 4.1.

Remark 4.4. We explicitly remark that by Theorem 4.1, if ‖µ‖W−1,∞(Ω) = 1, then
up converges, up to a subsequence, to a function u ∈ BV (Ω). Nevertheless we are
not able to prove, in general, that u is a solution to problem (4.18) in the sense of
Definition 4.1 (cf. Examples 4.1 and 4.2 below) ¤

We conclude this Subsection by showing some examples with datum belonging to
W−1,∞(Ω). The following example gives the explicit expression of the limit function u
when ‖µ‖W−1,∞(Ω) = 1.

Example 4.1. Let Ω be an open subset in RN containing BR(0) and consider a vector
field g : Ω → R2 defined by

g(x) =

{
−
√

N
N

( sign x1, . . . , sign xN) , if |x1|+ · · ·+ |xN | ≤ R ;
0, if |x1|+ · · ·+ |xN | > R .

Since |g| ≤ 1, div g ∈ W−1,∞(Ω) and ‖div(g)‖W−1,∞(Ω) = 1. We point out that
div g /∈ L1(Ω) since evaluating this divergence some measures appear. The solution to



−∆pup = div g , in Ω ;

up = 0 , on ∂Ω ;

is given by

up(x) =

{ √
N R
N

−
√

N
N

(|x1|+ · · ·+ |xN |) , if |x1|+ · · ·+ |xN | ≤ R ;
0, if |x1|+ · · ·+ |xN | > R .
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Hence, up does not depend on p and

u(x) = lim
p→1

up(x) =

{ √
N R
N

−
√

N
N

(|x1|+ · · ·+ |xN |) , if |x1|+ · · ·+ |xN | ≤ R ;
0, if |x1|+ · · ·+ |xN | > R .

It is easy to prove that u is a non trivial solution to the limit problem. ¤
Example 4.2. Let us consider the problem



−∆pup = div g , in BR ;

up = 0 , on ∂BR ;

where g ∈ L∞(BR;RN) is a radial and bounded vector field. It is well–known, see [23],
that the solution of this problem is given by

(4.25) up(x) =
1

NC
1/N
N

∫ CNRN

CN |x|N
G(t)

p′
p t

1
N
−1 dt ,

where G is a non–negative function satisfying
∫ CNRN

0

G(t)p′dt =

∫

BR

|g(x)|p′dx

(see [2]). Thus, applying Hölder’s inequality and performing easy computations, it
follows that

up(x) ≤ 1

NC
1/N
N

( ∫ CNRN

0

G(t)p′dt
)1/p( ∫ CNRN

CN |x|N
t

p′
N
−p′dt

)1/p′

≤ 1

NC
1/N
N

C
1/p
N RN/p‖g‖

1
p−1∞

(
N(p− 1)

N − p

((
CN |x|N

)− N−p
N(p−1) − (

CNRN
)− N−p

N(p−1)

))1/p′

=
RN/p

N
‖g‖

1
p−1∞

1

|x|N−p
p

(N(p− 1)

N − p

)(p−1)/p(
1−

( |x|
R

)N−p
p−1

)(p−1)/p

≤ RN/p

N
‖g‖

1
p−1∞

1

|x|N−p
p

(N(p− 1)

N − p

)(p−1)/p

.

Therefore, if ‖g‖∞ < 1, then ‖g‖1/(p−1)
∞ goes to 0 and so

lim
p→1

up(x) = 0 .

On the other hand, if ‖g‖∞ = 1, then

0 ≤ lim
p→1

up(x) ≤ RN

N

1

|x|N−1
.

(Observe that this estimate is worse than (3.5).) ¤
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4.2. Data in the predual space of BV (Ω)

In the previous Subsection, we have stated a stability result when ‖µ‖W−1,∞(Ω) 6= 1.
The case ‖µ‖W−1,∞(Ω) = 1 is the most interesting since then limp→∞ up defines non–
trivial solutions to the “limit problem” (4.18). To check that limp→∞ up is indeed
a solution to (4.18), apart from passing to the limit, some extension of Anzellotti’s
theory is required. We refer to the definition of solution to (4.18) given in Definition
4.1.

We are able to extend the Anzellotti theory in some distinguished subspaces of
W−1,∞(Ω). The case of the space of all Guy David measures is cumbersome and will
be provided in a forthcoming paper. The case of the predual space Γ(Ω) of BV (Ω)
is shown in the Appendix. We point out (see Theorem 5.1 in the Appendix) that if
z ∈ L∞(Ω;RN) is a vector field such that its divergence in the sense of distributions
belongs to Γ(Ω), then the distribution defined in (4.19) is always a Radon measure.

In this Subsection we completely analyze the case where the datum µ belongs to
Γ(Ω). The main Theorem of this Subsection is the following

Theorem 4.3. Let µ ∈ Γ(Ω) and let up be the solution to problem (4.1). Then the
following statement are equivalent:

1) Up to subsequences, up converges a.e., as p goes to 1, to a measurable function u
which is a solution to problem (4.18) in the sense of Definition 4.1.

2) ||µ||W−1,∞(Ω) ≤ 1.

Remark 4.5. Since it is well–known that uniqueness does not hold to problem (4.18)
(we refer, for instance, to [8], p. 485), we cannot deduce that, when ‖µ‖W−1,∞(Ω) = 1,
there exists limp→1 up, but just that a “subsequence” converges, as stated. ¤

Proof of Theorem 4.3: We start by assuming that ‖µ‖W−1,∞(Ω) ≤ 1. By Proposi-
tion 4.1, there exists a vector field z ∈ L∞(Ω;RN) such that ‖z‖∞ ≤ 1 and

(4.26) |∇up|p−2∇up ⇀ z weakly in Lq(Ω) for all 1 ≤ q < +∞ .

Arguing as in the proof of Theorem 4.1, we obtain inequality (4.5) and then a function
u ∈ BV (Ω) such that, up to subsequences,




∇up ⇀ Du weakly* in the sense of measures,

up → u strongly in Lq(Ω) , 1 ≤ q < N
N−1

,

up → u a.e. in Ω .

As a consequence, up ⇀ u weakly* in BV (Ω) and therefore

(4.27) < µ, up >Γ(Ω),BV (Ω)→< µ, u >Γ(Ω),BV (Ω) .

Since up is a weak solution to problem (4.1) then, choosing as test function upϕ with
ϕ ∈ C∞

0 (Ω) and ϕ ≥ 0, we get∫

Ω

|∇up|pϕdx =< µ, ϕup >Γ(Ω),BV (Ω) −
∫

Ω

|∇up|p−2∇up · ∇ϕup dx.
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Passing to the limit in the right hand side, since µ = −div z, we get

(4.28) lim
p→1

∫

Ω

|∇up|pϕdx =< (z, Du), ϕ > .

On the other hand, by Young’s inequality∫

Ω

|∇up|ϕdx ≤ 1

p

∫

Ω

|∇up|pϕdx +
p− 1

p

∫

Ω

ϕ dx

and as a consequence,∫

Ω

|Du|ϕ ≤ lim inf
p→1

∫

Ω

|∇up|ϕdx ≤ lim inf
p→1

∫

Ω

|∇up|pϕdx

Therefore, by (4.28), it yields ∫

Ω

|Du|ϕ ≤
∫

Ω

(z, Du)ϕ

for every ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0. Hence, |Du| ≤ (z,Du) and ‖z‖∞ ≤ 1 implies

|Du| = (z, Du), thus (4.24) is done.
Taking now up as test function in the weak formulation of problem (4.1), it follows

that ∫

Ω

|∇up|p dx =< µ, up >W−1,∞(Ω),W 1,p
0 (Ω) .

Applying Young’s inequality we get

(4.29)

∫

Ω

|∇up| dx ≤ 1

p

∫

Ω

|∇up|p dx +
p− 1

p
|Ω|

=
1

p
< µ, up >Γ(Ω),BV (Ω) +

p− 1

p
|Ω| .

Now we let p goes to 1 in (4.29), by (4.27), it yields

|Du|(Ω) +

∫

∂Ω

|u| dHN−1 ≤< µ, u >Γ(Ω),BV (Ω) ,

or equivalently,

− < µ, u >Γ(Ω),BV (Ω) +

∫

Ω

(z, Du) +

∫

∂Ω

|u| dHN−1 ≤ 0 .

By Green’s formula (5.4) in the Appendix below, we get∫

∂Ω

[z, ν] u dHN−1 +

∫

∂Ω

|u| dHN−1 ≤ 0 .

Since ‖[z, ν]‖∞ ≤ ‖z‖∞ ≤ 1, it follows that

[z, ν] u + |u| = 0 HN−1–a.e. on ∂Ω ,

which proves (4.22).
Now let us assume that ‖µ‖W−1,∞(Ω) > 1. By Theorem 4.1 we deduce that there is

not solution to problem (4.18). ¤
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Remark 4.6. We point out that the solution whose existence is proved in Theorem
4.3 satisfies a variational formulation, namely:

(4.30)

|Du|(Ω) +

∫

∂Ω

|u| dHN−1+ < µ,w >BV (Ω)∗,BV (Ω)≤

≤
∫

∂Ω

|w| dHN−1 +

∫

Ω

(z, Dw)+ < µ, u >BV (Ω)∗,BV (Ω) ,

for every w ∈ BV (Ω).

Next, we will only sketch the proof of this fact, which is “inspired” in [7], pp. 133–
134 and pp 139–140.

Let w ∈ W 1,2
0 (Ω) and take w−up as test function in the weak formulation of problem

(4.1) for 1 < p ≤ 2, it follows that
∫

Ω

|∇up|p−2∇up · ∇w −
∫

Ω

|∇up|p =< µ, w − up >BV (Ω)∗,BV (Ω) .

In order to take limit when p → 1, apply Young’s inequality and have in mind (4.26)
and (4.27), to get

|Du|(Ω) +

∫

∂Ω

|u| dHN−1+ < µ, w >BV (Ω)∗,BV (Ω)≤
∫

Ω

z · ∇w+ < µ, u >BV (Ω)∗,BV (Ω) ,

for all w ∈ W 1,2
0 (Ω). By approximating, this inequality holds for all w ∈ W 1,1

0 (Ω). In
the following step assume that w ∈ W 1,1(Ω), take into account (wn)n (the sequence of
Lemma 5.1), pass to the limit as n →∞ and obtain

|Du|(Ω) +

∫

∂Ω

|u| dHN−1+ < µ,w >BV (Ω)∗,BV (Ω)≤

≤
∫

∂Ω

|w| dHN−1 +

∫

Ω

z · ∇w dx+ < µ, u >BV (Ω)∗,BV (Ω) .

Finally, given w ∈ BV (Ω), by Proposition 5.1, consider wn ∈ W 1,1(Ω) satisfying
wn|∂Ω = w|∂Ω for all n ∈ N,

wn → w in L1(Ω) ,

∫

Ω

|∇wn| dx → |Dw|(Ω) .

Next apply the above inequality to each wn and let n goes to ∞ taking into account

< µ, wn >BV (Ω)∗,BV (Ω)→< µ, w >BV (Ω)∗,BV (Ω) and

∫

Ω

z · ∇wn dx →
∫

Ω

(z, Dw). Then

we arrive to the desired inequality (4.30). ¤
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Remark 4.7. The same scheme followed in Theorem 4.3 can be adapted when the
datum lives in LN(Ω). Indeed, if µ = f ∈ LN(Ω) and ‖f‖W−1,∞(Ω) ≤ 1, then (4.5)
holds true and so we may find u ∈ BV (Ω) such that, up to subsequences,




∇up ⇀ Du weakly* in the sense of measures,

up is bounded in L
N

N−1 (Ω) ,

up → u a.e in Ω .

These two last properties imply that up ⇀ u weakly in L
N

N−1 (Ω), so that (4.27) becomes∫

Ω

fup dx →
∫

Ω

fu dx .

Once we have obtained this convergence, we may follow the same proof of the above
theorem and get that up converges to a solution to problem (4.18) in the sense of
Definition 4.1 if and only if ‖f‖W−1,∞(Ω) ≤ 1.

We point out that the above reasoning cannot be extended to all data belonging

to the Marcinkiewicz space LN,∞(Ω) since, in general, up bounded in L
N

N−1
,1(Ω) and

up → u a.e. in Ω does not imply up ⇀ u weakly in L
N

N−1
,1(Ω). Nevertheless, we can

handle every datum that belongs to LN,∞(Ω) by using truncations: see [19]. ¤

Example 4.3. In this example we give an element of the predual Γ(Ω) which does
not belong to LN,∞(Ω).

Let h ∈ C0(] − 1, 1[N−1) satisfy 0 ≤ h ≤ 1 and h|[−1/2,1/2]N−1 ≡ 1. We consider

Ω =]− 1, 1[N and g : Ω → RN given by

g(x1, x2, . . . , xN) =
( λ

1− α
(1− |x1|)1−αh(x2, . . . , xN), 0, 0, . . . , 0

)
,

with λ ∈ R and 1
N

< α < 1, and we set F ≡ div g.
Since g ∈ C0(Ω;RN), it follows that F ∈ Γ(Ω). On the other hand,

F (x1, x2, . . . , xN) =
−λ sign x1

(1− |x1|)α
h(x2, . . . , xN) .

We now prove that F /∈ LN,∞(Ω). Indeed, given t > 0, one has

{(x1, x2, . . . , xN) ∈ RN :
λ

(1− |x1|)α
h(x2, . . . , xN) > t}

⊃ {(x1, x2, . . . , xN) ∈ RN :
λ

(1− |x1|)α
> t and h(x2, . . . , xN) = 1}

⊃ {x1 ∈ R :
λ

(1− |x1|)α
> t} ×

[−1

2
,
1

2

]N−1

.

Now, it follows from

|{x1 ∈ R :
λ

(1− |x1|)α
> t}| = 4

(λ

t

)1/α
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that

|{(x1, x2, . . . , xN) ∈ RN : |Fx1, x2, . . . , xN)| > t}| ≥ Cλ

t1/α
,

with 1 < 1
α

< N . By (2.1), we deduce that F /∈ LN,∞(Ω). ¤

5. Appendix

This Appendix contains some simple facts on Γ(Ω) which we prove for the sake of
completeness.

5.1. Norm of Γ(Ω)

We need the following result, which is stated in [4] (see also [7]).

Lemma 5.1. Given u ∈ BV (Ω), and so u|∂Ω ∈ L1(∂Ω), there exists a sequence (wn)n

in W 1,1(Ω) ∩ C(Ω) satisfying

(1) wn|∂Ω = u|∂Ω .

(2)

∫

Ω

|∇wn| dx ≤
∫

∂Ω

|u| dHN−1 +
1

n
.

(3)

∫

Ω

|wn| dx ≤ 1

n
.

(4) wn(x) = 0, if dist(x, ∂Ω) > 1
n

.

A straightforward consequence of conditions (2) and (3) is

(5.1) wn ⇀ 0 weakly* in BV (Ω) .

Proposition 5.1. If µ ∈ Γ(Ω), then

(5.2) ‖µ‖W−1,∞(Ω) = ‖µ‖BV (Ω)∗ .

Proof: Since ‖µ‖W−1,∞(Ω) ≤ ‖µ‖BV (Ω)∗ , we only have to see the inequality ‖µ‖BV (Ω)∗ ≤
‖µ‖W−1,∞(Ω). To this end, let u ∈ BV (Ω) be such that

|Du|(Ω) +

∫

∂Ω

|u| dHN−1 ≤ 1

and fix ε > 0. Given u ∈ BV (Ω), consider the sequence (wn)n of Lemma 5.1; observe
that (5.1) implies < µ,wn >→ 0. Let n ∈ N satisfy

| < µ, wn >Γ(Ω),BV (Ω) |+ 1

n
< ε .

Since n is already fixed and (u−wn)|∂Ω = 0, there exists a sequence (ϕk)k in C∞
0 (Ω)

such that ϕk ⇀ u− wn weakly* in BV (Ω) and
∫

Ω
|∇ϕk| ≤

∫
Ω
|D(u− wn)|. Hence,

< µ, ϕk >Γ(Ω),BV (Ω)→< µ, u− wn >Γ(Ω),BV (Ω) as k →∞
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and ∫

Ω

|∇ϕk| dx ≤ |Du|(Ω) +

∫

Ω

|∇wn| ≤ |Du|(Ω) +

∫

∂Ω

|u| dHN−1 +
1

n
≤ 1 + ε .

Then

| < µ, u >Γ(Ω),BV (Ω) | ≤ | < µ,wn >Γ(Ω),BV (Ω) |+ | < µ, u− wn >Γ(Ω),BV (Ω) |

≤ ε + limk→∞ | < µ, ϕk >Γ(Ω),BV (Ω) |

≤ ε + limk→∞ | < µ, ϕk >W−1,∞(Ω),W 1,1
0 (Ω) |

≤ ε + lim infk→∞ ‖µ‖W−1,∞(Ω)

∫
Ω
|∇ϕk| dx

≤ ε + ‖µ‖W−1,∞(Ω)(1 + ε) .

Since ε is arbitrary, the conclusion follows. ¤
5.2. The Anzellotti Theory in Γ(Ω)

In this second part of the Appendix, we adapt Anzellotti’s theory to the case
div (z) ∈ Γ(Ω). Recalling that [z, ν], the weak trace of the exterior normal com-
ponent of z is already considered (see [7] pp.126–127), we have to define (z, Du), see
that is a Radon measure for all u ∈ BV (Ω) and prove a Green’s formula. We only
show the proofs corresponding to (z, Du) in Theorem 5.1 bellow, the others follow the
same schema of [4] adapted in the same way than the proof of Theorem 5.1.

Theorem 5.1. Let z ∈ L∞(Ω,RN) be a vector field such that its divergence in the sense
of distributions ξ = div (z) belongs to Γ(Ω). Then (4.19) defines a Radon measure on
Ω such that for every open set U ⊂ Ω and for every ϕ ∈ C∞

0 (U), we have

(5.3) | < (z,Du), ϕ > | ≤ ‖ϕ‖∞ ‖z‖L∞(U) |Du|(U).

Proof: Since u ∈ BV (Ω), we may find a sequence (un)n in C∞(Ω) ∩ BV (Ω) such
that

un → u in L1(Ω) ,

limn→∞
∫

V
|∇un| = |Du|(V ) ,

for all open set V ⊂⊂ Ω satisfying |Du|(∂V ) = 0.
Now, given ϕ ∈ C∞

0 (U) take an open set V such that supp (ϕ) ⊂ V ⊂⊂ U and
|Du|(∂V ) = 0. We point out that (unϕ)n is a sequence in BV (Ω) that weakly*
converges to uϕ. It follows from div (z) = ξ ∈ Γ(Ω) that

< ξ, un ϕ >Γ(Ω),BV (Ω)→< ξ, u ϕ >Γ(Ω),BV (Ω) .

Observe that
∫
Ω

z · ∇un ϕdx = − ∫
Ω

un z · ∇ϕdx− < ξ, un ϕ >Γ(Ω),BV (Ω) for all n ∈ N,

and so the sequence
( ∫

Ω
z · ∇un ϕ

)
n

converges to < (z, Du), ϕ >. Since

∣∣∣
∫

Ω

z · ∇un ϕ
∣∣∣ dx ≤ ‖ϕ‖∞‖z‖L∞(U)

∫

V

|∇un| dx ,
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letting n goes to +∞, we have

| < (z, Du), ϕ > | ≤ ‖ϕ‖∞‖z‖L∞(U) |Du|(V ) ≤ ‖ϕ‖∞‖z‖L∞(U) |Du|(U) . ¤

It is straightforward consequence of the above arguments that
∣∣∣
∫

B

(z, Du)
∣∣∣ ≤

∫

B

|(z, Du)| ≤ ‖z‖L∞(Ω) |Du|(B)

for all Borel sets B ⊂ Ω.
Finally, we state the Green formula that may be proved in our case.

Theorem 5.2. Let z ∈ L∞(Ω,RN) be a vector field such that its divergence in the
sense of distributions ξ = div (z) belongs to Γ(Ω). If u ∈ BV (Ω), then

(5.4) < div (z), u >Γ(Ω),BV (Ω) +

∫

Ω

(z,Du) =

∫

∂Ω

[z, ν] u dHN−1 .
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