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Abstract
In the present paper we study the behaviour, as p goes to 1, of the renor-

malized solutions to the problems



−div

(|∇up|p−2∇up

)
= f in Ω

up = 0 on ∂Ω,
(0.1)

where p > 1, Ω is a bounded open set of RN (N ≥ 2) with Lipschitz boundary
and f belongs to L1(Ω). We prove that these renormalized solutions pointwise
converge, up to “subsequences”, to a function u. With a suitable definition of
solution we also prove that u is a solution to a “limit problem”. Moreover we
analyze the situation occurring when more regular data f are considered.

Key words: Nonlinear elliptic equations, renormalized solutions, 1–Laplace
operator, L1–data.
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1 Introduction

In the present paper we study the behaviour, when p goes to 1, of the renormalized
solutions to the problems



−div

(|∇up|p−2∇up

)
= f in Ω

up = 0 on ∂Ω,
(1.1)
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where p > 1, Ω is a bounded open set of RN (N ≥ 2) with Lipschitz boundary and
f belongs to L1(Ω).

The notion of renormalized solution was introduced in order to extend the clas-
sical setting of monotone operators (see [32]) and so be able to define a notion of
solution to problems whose data do not belong to the dual space W−1,p′(Ω) (as, for
instance, the case of L1–data). The main interest is not to get a solution to (1.1)
in the sense of distributions but to have a concept which allows to obtain existence
(see [10] and [11] to this end) and uniqueness. Renormalized solutions were adapted
to second order elliptic problems by P.–L. Lions and F. Murat in [33] (see also [36]
or [37]); both existence and uniqueness of such a solution are proved if the datum
f belongs to L1(Ω) + W−1,p′(Ω). In [19] and [20] such a notion has been extended
to the case where the right–hand side is a Radon measure with bounded total va-
riation; the authors proved an existence result and a partial uniqueness result. We
refer to [20] for an exhaustive treatment of renormalized solutions. An equivalent
notion, the concept of entropy solution, was introduced in [9] (see also [12]). For
such a solution both existence and uniqueness have been proved when f belongs to
L1(Ω) + W−1,p′(Ω). Other approaches to define suitable generalized solutions can
be found in [21] and [38] (see also [1] where symmetrization techniques are used).

Our purpose is to study the renormalized solutions up with two objectives. First,
we will study the behaviour of up when p goes to 1, proving that, up to a subsequence
(considering that up is a sequence),

up → u pointwise in Ω ,

|∇up|p−2∇up ⇀ z in Lq(Ω) , 1 ≤ q <
N

N − 1
.

Second we prove that this function u is a solution to the “limit equation” of (1.1),
namely: 




−div

(
Du

|Du|
)

= f , in Ω ;

u = 0 , on ∂Ω .

(1.2)

To this end, we need to introduce a precise formulation of such a solution. At least,
we will achieved a new point of view of the above issues which enable us to a better
understanding of what happens when more regular data are taken (see Theorem 4.2
below). A suitable notion of solution to (1.2) was introduced in [4] while dealing
with the equation

u− div

(
Du

|Du|
)

= f ∈ L1(Ω) , (1.3)

and a general Dirichlet boundary condition; equipped with such a notion of solution,
the authors are able to prove existence and uniqueness for such a problem. Their

notion of solution gives sense to the quotient
Du

|Du| (recall that, in general, Du is

not a function but a Radon measure) through a vector field z satisfying

• z ∈ L∞(Ω;RN) with ‖ |z| ‖∞ ≤ 1.

• −div z = f in D′(Ω).
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• (z,Du) = |Du|.

Observe that, formally, ‖ |z| ‖∞ ≤ 1 and (z, Du) = |Du| imply z =
Du

|Du| . The

meaning of (z, Du) relies on the theory of L∞–divergence–measure vector fields due
to G. Anzellotti [3] and to G.–Q. Chen and H. Frid [14] (their approaches, however,
are very different). This theory defines the pairing (z, Du) as a Radon measure,
where z ∈ DM∞(Ω) (see Section 2 for its Definition) and u is a certain BV –function;
it also provides the definition of a weakly trace on ∂Ω to the normal component of
z, denoted by [z, ν], and guaranties a Green’s formula. Following [4] (see also [6]),
we will use [z, ν] to include (in a very weak sense) the boundary condition in the
concept of solution to (1.2).

As it was mentioned, our second aim in the present paper is to show that the
limit function u, is actually a solution to (1.2). Hence, we will consider problem (1.2)
with data belonging to L1(Ω); so that, in some sense, we are covering the stage from
regular data to L1–data, in the same order of ideas of [10], [9] or [33]. However, in our
situation there is not hope of finding a unique solution, and so we are not looking for
every solution of (1.2), just those solutions which are pointwise limits of up (see also
Remark 4.6). We remark that in previous works, authors have considered problem
(1.2) with a datum in W−1,∞(Ω), typically in LN(Ω) or LN

loc(Ω). Indeed, although
in [4] L1–data are considered in equation (1.3), the regularity enjoyed because of the
lower term, allow the authors to get a solution such that f − u ∈ W−1,∞(Ω).

Let us briefly describe some features involved in the study of the limit equation
with L1–data. First of all we need a definition of solution to equation (1.2), which
should be an extension of the definition given in [4] (see also [34]) when the datum is
more regular. Of course, as in problem (1.1), we cannot expect that such a solution
u belongs to the energy space BV (Ω): only the truncations of the solution Tk(u)
are there. Nevertheless, there are other difficulties arisen in our study that we spell
out below.

1. Not only the function limit does not lies in BV (Ω), but it is typically infinite
on a set of positive measure, as was already shown in [34], Theorem 3.1, by
means of radial solutions (see also Exemple 4.1 below).

2. Unless the data are in the dual space W−1,∞(Ω), the vector field z no longer
belongs to L∞(Ω;RN), as happens when the equation (1.3) is studied (see
Remark 4.4 below). Instead, we have to consider a family of “local vector
fields” zk = zχ{|u|<k} such that zk ∈ L∞(Ω;RN) with ‖ |zk| ‖∞ ≤ 1.

3. One of the main difficulties in our investigation is just to find the equation
satisfied by zk. In the same way that v = Tk(up) solves equation

−∆pv = fχ{|up|<k} + λp ,

where λp is a Radon measure concentrated on {|up| = k} (see [18] and [19]),
we see that zk satisfies

−div zk = fχ{|u|<k} + (z, Dχ{|u|>k}) , in D′(Ω) ,
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where (z, Dχ{|u|>k}) is a Radon measure defined in (4.5) below (see also Step
4 in the proof of Theorem 4.1 and Proposition 6.3, where it is seen that it is
concentrated on {|u| = k}).

4. Under these conditions, we already have the approach by G.–Q. Chen and H.
Frid to make sense of the pairing (zk, DTk(u)). However, we will need to apply
the inequality

|(zk, DTk(u))| ≤ ‖ |zk| ‖∞|DTk(u)| (1.4)

(see Proposition 5.4 below) while in [14] it is only shown that the Radon
measure (zk, DTk(u)) is absolutely continuous with respect to |DTk(u)|. On
the contrary, in Anzellotti’s approach [3] (see also [6]) the above inequality is
proved, but only when Tk(u) is a continuous function. Hence, we will need to
extend the Anzellotti approach.

5. Actually, we will extend even further this Anzellotti’s theory to give meaning
to pairings such as (z, DTk(u)) or (z,Dχ{|u|>k}) (recall that the vector field z
is not bounded). We explicitly remark that the theory of divergence–measure
fields has been generalized to more general vector fields in [39] and [16] (see
also the survey [15] and references therein), but these generalizations cannot
be applied to our purposes.

Now we briefly mention some articles that deal with issues similar to those stu-
died here. The asymptotic behaviour have been considered by [28], [17] and [34] (see
also [30] and [27]). In turn, several authors have focused their research on finding
solutions to the limit problem (1.2), the list includes [4], [5], [7], [8], [22], [23], and
references therein. Other related works are [31] and [26]. The interest in this fra-
mework comes out, on the one hand, from an optimal design problem in the theory
of torsion and related geometrical problems (see [29]) and, on the other, from the
variational approach to image restoration (see [6]).

The plan of this paper is as follows. After introducing our notation (see next
Section), we begin by studying the asymptotic behaviour of (up) in Theorem 3.1. In
Section 4 we introduce our concept of solution and prove in Theorem 4.1 that the
limit function that was found in Section 3 satisfies its formulation. We also see in
Theorem 4.2 some consequences of Theorem 4.1 that illustrate the situation when
regular data are considered. Lastly, two appendix are included. In the first one,
the Anzellotti approach to the theory of divergence–measure fields is extended to
cover the case that the vector field belongs to DM∞(Ω) and the function lies in
BV (Ω)∩L∞(Ω). Appendix 2 is devoted to show some properties of (z, DTk(u)) and
(z, Dχ{|u|>k}).

2 Notation

In this Section we will introduce some notation which will be used throughout this
paper.

As it was stated in the Introduction, our aim is to study the convergence of up

as p goes to 1. From now on, abusing terminology, we will say that up is a sequence
and we will consider subsequences of it.
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In the present paper, |z| will denote the Euclidean norm of z ∈ RN . We will
denote by Ω a bounded open subset of RN with Lipschitz boundary. Thus there
exists a unit vector field (denoted by ν) normal to ∂Ω and exterior to Ω, defined
HN−1–a.e. on ∂Ω. Here HN−1 denotes the (N − 1)–dimensional Hausdorff measure.
Here and in the sequel, |E| denotes the Lebesgue measure of a measurable subset E
of RN .

For 1 < q < ∞, the Lorentz space Lq,∞(Ω), also known as Marcinkiewicz or
weak–Lebesgue, is the space of Lebesgue measurable functions u such that

sup
t>0

t |{x ∈ Ω : |u(x)| > t}|1/q < +∞ . (2.1)

We defineM(Ω) as the space of all Radon measures with bounded total variation
on Ω and we denote by |µ| the total variation of µ ∈M(Ω). The space of all functions
of finite variation, that is the space of those u ∈ L1(Ω) whose distributional gradient
belongs to M(Ω), is denoted by BV (Ω). It is endowed with the norm defined by

‖u‖BV (Ω) =

∫

Ω

|u|+ |Du|(Ω), for any u ∈ BV (Ω). Since Ω has Lipschitz boundary,

if u belongs to BV (Ω), then the function

u0 =





u, in Ω;

0, in RN \ Ω;

belongs to BV (RN) and |Du0|(RN) =
∫

∂Ω
|u| dHN−1 + |Du|(Ω). We explicitly point

out that |Du0|(RN) defines an equivalent norm on BV (Ω), which we will use in the
sequel. Through the paper, with an abuse of notation, we still denote u0 by u.

We will denote by SN,p the best constant in the Sobolev inequality (cf. [40]),
that is,

‖u‖p∗ ≤ SN,p‖ |∇u |‖p , for all u ∈ W 1,p
0 (Ω) .

We will also write SN instead of SN,1. It is well–known (cf. [40]), that

lim
p→1

SN,p = SN . (2.2)

We will denote by W−1,∞(Ω) the dual space of W 1,1
0 (Ω), its norm is given by

‖µ‖W−1,∞(Ω) = sup

{
〈µ, ϕ〉W−1,∞(Ω),W 1,1

0 (Ω) :

∫

Ω

|∇ϕ| ≤ 1

}
. (2.3)

Following [14] we define DM∞(Ω) as the space of all vector fields z ∈ L∞(Ω;RN)
whose divergence in the sense of distribution is a Radon measure, i.e.,

z ∈ DM∞(Ω) ⇔ div z ∈M(Ω) ∩W−1,∞(Ω) .

Then µ = div z satisfy the following condition: there exists a constant C > 0 such
that

|µ(B)| ≤ CRN−1 for all (open or closed) balls B ⊂ Ω with radius R . (2.4)
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It is well known that if |µ|(B)| ≤ CRN−1 for all balls B ⊂ Ω with radius R,
then µ can be extended from W 1,1

0 (Ω) to BV (Ω), see [42], Theorem 5.12.4. (While
the extension of a functional is not necessarily unique, a particular extension to
BV (Ω) will be singularized: namely, that given by the integral, with respect to µ,
of the precise representative of each u ∈ BV (Ω), this representative is mentioned in
Appendix 1 below.) These measures are called David measures in [35].

3 The asymptotic behaviour

Consider the nonlinear elliptic problem




−div

(|∇up|p−2∇up

)
= f, in Ω,

up = 0, on ∂Ω ,
(3.1)

where Ω is a bounded open subset of RN with Lipschitz boundary, p is a real number
p > 1 and f is a function belonging to L1(Ω).
In this Section, we will study the behaviour, as p goes to 1, of renormalized solutions
up to problem (3.1).

For k > 0, denote by Tk : R→ R the usual truncation at level k, that is

Tk(s) =

{
s |s| ≤ k,
k sign(s) |s| > k,

∀s ∈ R.

We may extend this definition to infinite values: Tk(±∞) = ±k.
Consider a measurable function u : Ω → R which is finite almost everywhere and

satisfies Tk(u) ∈ W 1,p
0 (Ω) for every k > 0. Then there exists (see e.g. [9], Lemma

2.1) a unique measurable function v : Ω → RN
such that

∇Tk(u) = vχ{|u|≤k} almost everywhere in Ω, ∀k > 0. (3.2)

Remark 3.1 We point out that although truncations can be applied to functions
that are infinite on a set of positive measure, its gradient cannot be defined by the
above expression.

Definition 3.1 Assume that 1 < p < N . Let up : Ω → R be measurable and
almost everywhere finite on Ω. We say that up is a renormalized solution of (3.1) if
it satisfies the following conditions:

Tk(up) ∈ W 1,p
0 (Ω), ∀k > 0; (3.3)

|up| ∈ L
N(p−1)

N−p
,∞(Ω); (3.4)

the gradient ∇up introduced in (3.2), satisfies:

|∇up| ∈ L
N(p−1)

N−1
,∞(Ω), (3.5)
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lim
n→+∞

1

n

∫

{n≤|up|<2n}
|∇up|p = 0; (3.6)

and finally

∫

Ω

|∇up|p h′(up)φ +

∫

Ω

|∇up|p−2∇up · ∇φh(up) =

∫

Ω

fh(up)φ, (3.7)

for every φ ∈ W 1,p(Ω) ∩ L∞(Ω), for all h ∈ W 1,∞(R) with compact support in R,
which are such that h(up)φ ∈ W 1,p

0 (Ω).

Remark 3.2 By standard arguments the following estimate for the truncations of
the renormalized solution up to problem (3.1) holds true (see, for example, [9], [36]
or [20]) ∫

Ω

|∇Tk(up)|p ≤ k‖f‖L1(Ω) for any k > 0 . (3.8)

Remark 3.3 If up is a renormalized solution to problem (3.1), then up is also a
distributional solution in the sense that it satisfies the equality (see, for instance,
[20]) ∫

Ω

|∇up|p−2∇up · ∇φ =

∫

Ω

fφ, for any φ ∈ C∞
0 (Ω) .

The main result of this Section is given by the following Theorem

Theorem 3.1 For every fixed p ∈]1, N [, let up denote the renormalized solution
to problem (3.1). Then, there exist a measurable function u and a vector field z

belonging to L
N

N−1
,∞(Ω;RN) such that, up to a subsequence,

up → u a.e. in Ω, (3.9)

and

|∇up|p−2∇up ⇀ z weakly in Lq(Ω;RN), for every 1 ≤ q <
N

N − 1
. (3.10)

Proof: Step 1: A priori estimates
The first step consists in proving a priori estimates: the sequence (|∇up|p−1)p is

bounded in the Marcinkiewicz space L
N

N−1
,∞(Ω). Such a proof is well-known and

contained in [9] (see also [20]). Here we need to include it in order to make explicit
the dependence on p.

We begin by estimate the sequence (|up|p−1)p>1. For every fixed k > 0, denote
h = k1/(p−1). Then, Sobolev’s embedding Theorem and (3.8) imply

|{|up|p−1 ≥ k}| = |{|up| ≥ k1/(p−1)}| ≤
∫

Ω

|Th(up)|p∗
kp∗/(p−1)

≤

≤ Sp∗
N,p

kp∗/(p−1)
‖ |∇Th(up)| ‖p∗

p ≤ Sp∗
N,p

kp∗/(p−1)
h

p∗
p ‖f‖

p∗
p

L1(Ω) ≤ Sp∗
N,p

(‖f‖L1(Ω)

k

) N
N−p

,
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where SN,p denotes the best constant in the Sobolev embedding Theorem and p∗ =
Np

N−p
. Therefore

|{|up|p−1 ≥ k}| ≤ Sp∗
N,p

(‖f‖L1(Ω)

k

) N
N−p

. (3.11)

Now we go on in proving the boundedness of the sequence (|∇up|p−1)p>1 in the

Marcinkiewicz space L
N

N−1
,∞(Ω). Indeed, since for every fixed k > 0 and η > 0, we

have
{|∇up|p−1 ≥ η} ⊂ {|up| ≥ k} ∪ {|∇Tk(up)|p−1 ≥ η}.

Using (3.11) and (3.8), it yields

|{|∇up|p−1 ≥ η}| ≤ |{|up| ≥ k}|+ |{|∇Tk(up)| ≥ η1/(p−1)}|

≤ Sp∗
N,p

(‖f‖L1(Ω)

kp−1

) N
N−p

+

∫

Ω

|∇Tk(up)|p
ηp/(p−1)

≤ Sp∗
N,p‖f‖

N
N−p

L1(Ω)

1

k
N(p−1)

N−p

+
k‖f‖L1(Ω)

η
p

p−1

.

Now choosing

k = S
N

N−1

N,p ‖f‖
1

N−1

L1(Ω)η
N−p

(N−1)(p−1)

in the previous inequality, we obtain

|{|∇up|p−1 ≥ η}| ≤ 2

(
SN,p‖f‖L1(Ω)

η

) N
N−1

, (3.12)

for any η > 0. From (3.12), since SN = limp→1 SN,p, it follows that

|{|∇up|p−1 ≥ η}| ≤ 2

(
(SN + 1)‖f‖L1(Ω)

η

) N
N−1

, (3.13)

for p close to 1. For each 1 ≤ q < N
N−1

, by estimate (3.13), we deduce that, up to

subsequences, there exists a vector field zq belonging to Lq(Ω;RN) such that

|∇up|p−2∇up ⇀ zq weakly in Lq(Ω;RN) .

Finally, by a diagonal argument we may find a limit that does not depend on q;

hence (3.10) is proved. Observe also that (3.13) and (3.10) imply z ∈ L
N

N−1
,∞(Ω;RN).

Step 2: Pointwise convergence of (up)p

We will prove that, up to a subsequence,

up → u a.e. in Ω, (3.14)

where u is a measurable function in Ω.
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Following [38], first consider Ψ(s) = s/(1+ |s|), which is a strictly increasing and
bounded real function. Moreover

∣∣∣
∫ up

0

(Ψ′(s))p ds
∣∣∣ ≤

∫ |up|

0

Ψ′(s) ds = Ψ(|up|) ≤ 1.

So that if, for each k > 0, we take

φ(x) =

∫ Tk(up(x))

0

(Ψ′(s))p ds,

and

hn(s) =





1, if |s| ≤ n ;
− 1

n
|s|+ 2, if n ≤ |s| ≤ 2n ;

0, if |s| ≥ 2n ;

in (3.7), then

−1

n

∫

{n≤|up|≤2n}
|∇up|pφ sign (up) +

∫

Ω

Ψ′(Tk(up))
p|∇Tk(up)|phn(up)

=

∫

Ω

fhn(up)φ ≤
∫

Ω

|f | .

By letting n go to infinity and applying (3.6), we get

∫

Ω

|∇Ψ(Tk(up))|p =

∫

Ω

Ψ′(Tk(up))
p|∇Tk(up)|p ≤

∫

Ω

|f | .

By Fatou’s Lemma, when k goes to infinity we obtain

∫

Ω

|∇Ψ(up)|p ≤
∫

Ω

|f | .

Thus, Hölder’s inequality implies that the sequence
(
Ψ(up)

)
p

is bounded in

W 1,1
0 (Ω) and so a subsequence, also denoted by

(
Ψ(up)

)
p
, converges *-weakly in

BV (Ω). As a consequence, it also converges strongly in L1(Ω) and a.e. Since Ψ is
strictly increasing, the sequence (up)p tends a.e. to a measurable function u. We
point out that, when limp→1 Ψ(up) = ±1, we have u = ±∞

Remark 3.4 We remark that when the datum f is more regular, we may find better
regularity on z. Indeed it is well-known that, if f ∈ Lm(Ω), with 1 < m < N , then
the sequence (|∇up|p−2∇up)p is bounded in Lm∗

(Ω;RN) and so z ∈ Lm∗
(Ω;RN).

Observe also the regularity enjoyed by z in Example 4.1 below.

4 The limit problem

In this Section we will show that the limit function u whose existence has been
proved in the previous section is a solution (in the sense of Definition 3.1 below) to
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a boundary value problem associated to the “limit equation” of equation in (3.1),
which can formally be written





−div

(
Du

| Du |
)

= f, in Ω ;

u = 0, on ∂Ω,

(4.1)

with f ∈ L1(Ω). We begin by introducing the notion of solution to such a problem,
which needs some preliminaries.

Let u : Ω → R be a measurable function on Ω, such that Tk(u) ∈ BV (Ω) for any

k > 0. Let z ∈ L
N

N−1
,∞(Ω;RN) be a vector field satisfying

- div (z) = f in D′(Ω) ,

and
zχ{|u|<k} ∈ DM∞(Ω) , for all k > 0 ;

i.e., denoting zk = zχ{|u|<k} and µk = div (zk) it holds

zk ∈ L∞(Ω;RN) and µk is a Radon measure.

With the above notation, we define the distributions

(zk, DTk(u)) : C∞
0 (Ω) → R (4.2)

(z,Dχ{|u|>k}) : C∞
0 (Ω) → R (4.3)

by

〈(zk, DTk(u)), φ〉 = −
∫

Ω

Tk(u) φ dµk −
∫

Ω

Tk(u)zk · ∇φ, (4.4)

〈(z, Dχ{|u|>k}), φ〉 =

∫

{|u|>k}
f φ−

∫

{|u|>k}
z · ∇φ, (4.5)

for any φ ∈ C∞
0 (Ω). Since Tk(u) ∈ L∞(Ω) ∩ BV (Ω) ⊂ L1(Ω, µk) (cf. Appendix 1

below, we point out that a singular extension of µk to bounded BV–functions has

been chosen), zk ∈ L∞(Ω;RN), f ∈ L1(Ω), z ∈ L
N

N−1
,∞(Ω;RN) and φ ∈ C∞

0 (Ω) all
terms in (4.4) and (4.5) make sense.

Definition 4.1 We say that a measurable function u : Ω → R is a solution to
problem (4.1) if the following conditions hold

Tk(u) ∈ BV (Ω), for all k > 0; (4.6)

there exists a vector field z ∈ L
N

N−1
,∞(Ω;RN) such that

−div z = f in D′(Ω); (4.7)

for each k > 0, the distribution (z, Dχ{|u|>k}) is a Radon measure and the vector
field zk = zχ{|u|<k} satisfies

‖ |zk| ‖∞ ≤ 1, (4.8)
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−div zk = fχ{|u|<k} + (z, Dχ{|u|>k}) in D′(Ω), (4.9)

(zk, DTk(u)) is a Radon measure, and

(zk, DTk(u)) = |DTk(u)| as measures in Ω ; (4.10)

∫

∂Ω

|Tk(u)| dHN−1 +

∫

∂Ω

[zχ{|u|<∞}, ν]Tk(u) dHN−1

+ k

∫

∂Ω

[zχ{u=+∞}, ν] dHN−1 − k

∫

∂Ω

[zχ{u=−∞}, ν] dHN−1 ≤ 0 . (4.11)

As a consequence of (4.11), in the case where u is finite on ∂Ω, the following condition
holds true:

[z, ν] = [zχ{|u|<∞}, ν] ∈ sign(−u) on ∂Ω . (4.12)

Remark 4.1 Observe that, as a consequence of (4.8), the vector field zχ{|u|<∞}
satisfies ‖ |zχ{|u|<∞}| ‖∞ ≤ 1, so that the weak trace on ∂Ω of its normal component
is well defined by the results in [3] (or [14]) and |[zχ{|u|<∞}, ν]| ≤ 1, HN−1–a.e. on
∂Ω. A definition of [z, ν], [zχ{u=+∞}, ν] and [zχ{u=−∞}, ν] can be found in Appendix
3 below.

We remark that we have defined
∫

∂Ω

[z, ν] v dHN−1,

∫

∂Ω

[zχ{u=+∞}, ν] v dHN−1 and

∫

∂Ω

[zχ{u=−∞}, ν] v dHN−1

for v ∈ W 1− 1
q
,q(∂Ω) ∩ L∞(∂Ω), with q > N . If we extended those expressions to

every v ∈ L∞(∂Ω), then (4.11) would be written as
∫

∂Ω

|Tk(u)| dHN−1 +

∫

∂Ω

[z, ν]Tk(u) dHN−1 ≤ 0 .

Remark 4.2 Let us observe that Definition 4.1 coincides, when u ∈ BV (Ω), with
the definition given in [4] (see also [34] Definition 4.1) for regular enough data (see
also Theorem 4.2 below).

Remark 4.3 Roughly speaking, it follows from (4.8) and (4.10) that zk coincides
with the vector field Du

|Du| on the set {|u| < k} for all k > 0, and so the vector field

z plays the role of Du
|Du| on the set {|u| < +∞}.

Remark 4.4 Let us observe that we cannot expect that in general the vector field z
belongs to L∞(Ω,RN) as the following simple argument shows. Consider f ∈ L1(Ω)
and assume that u is a solution to (4.1) with z ∈ L∞(Ω,RN). Then we have

∣∣∣∣
∫

Ω

fφ

∣∣∣∣ =

∣∣∣∣
∫

Ω

z · ∇φ

∣∣∣∣ ≤ ‖ |z| ‖∞
∫

Ω

|∇φ| for all φ ∈ C∞
0 (Ω) .

This distribution generated by f can uniquely be extended to φ ∈ W 1,1
0 (Ω); thus

f ∈ W−1,∞(Ω), which is impossible for a general f ∈ L1(Ω) when N ≥ 2 (see also
Theorem 4.2 and Example 4.1 below).
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The main result of this section is

Theorem 4.1 The limit function u given by Theorem 3.1 is a solution to problem
(4.1) in the sense of Definition 4.1.

Proof: We proceed dividing the proof in several steps.

Step 1: Tk(u) ∈ BV (Ω) for all k > 0.

It follows from (3.14) that Tk(up) → Tk(u) a.e for all k > 0. On the other hand,
from Hölder’s inequality and (3.8), we deduce

∫

Ω

|∇Tk(up)| ≤ |Ω|1− 1
p

(∫

Ω

|∇Tk(up)|p
) 1

p

≤ |Ω|1− 1
p‖f‖

1
p

L1(Ω)k
1
p . (4.13)

Therefore, once k is chosen,
(
Tk(up)

)
p

is bounded in W 1,1
0 (Ω), and consequently

Tk(up) ⇀ Tk(u) *-weakly in BV (Ω); (4.14)

so that Tk(u) ∈ BV (Ω) for all k > 0 and (4.6) holds true.

Step 2: −div z = f in the sense of distributions.

Since up is a solution in the sense of distributions to problem (3.1) (see Remark
3.3), we have

∫

Ω

|∇up|p−2∇up · ∇φ =

∫

Ω

φf, ∀φ ∈ C∞
0 (Ω).

By Theorem 3.1, letting p goes to 1, we get

∫

Ω

z · ∇φ =

∫

Ω

φf, ∀φ ∈ C∞
0 (Ω),

or, equivalently, −div z = f in the sense of distributions.

Step 3: the vector field zk = zχ{|u|<k} belongs to L∞(Ω;RN) and ‖ |zk| ‖∞ ≤ 1

Here we repeat the same arguments used in [4] (see also [34]). For any fixed

k > 0, the sequence (|∇up|p−1 χ{|up|<k})p is bounded in L
N

N−1
,∞(Ω,RN), by (3.13).

Thus, as p goes to 1, we have

|∇up|p−2∇up χ{|up|<k} ⇀ wk weakly in L1(Ω;RN), (4.15)

for some vector field wk ∈ L1(Ω;RN). For every fixed k > 0, h > 0 and p > 1, we
denote

Bp,h,k = {x ∈ Ω : |∇Tk(up)| > h}. (4.16)

By (3.13), as p goes to 1, we have (up to subsequences)

|∇up|p−2∇up χBp,h,k∩{|up|<k} ⇀ gh,k weakly in L1(Ω,RN), (4.17)

|∇up|p−2∇up χ(Ω\Bp,h,k)∩{|up|<k} ⇀ fh,k weakly in L1(Ω,RN), (4.18)
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for some gh,k ∈ L1(Ω;RN) and fh,k ∈ L1(Ω;RN). On the other hand, by (3.8) the
following inequality holds true

|Bp,h,k| ≤ 1

hp

∫

Ω

|∇Tk(up)|p ≤ k

hp
‖f‖L1(Ω) . (4.19)

Therefore, by Hölder’s inequality, (3.8) and (4.19), for any Φ ∈ L∞(Ω,RN) such
that ‖ |Φ| ‖∞ ≤ 1, we have

∣∣∣
∫

Bp,h,k∩{|up|<k}
|∇up|p−2∇up · Φ

∣∣∣ ≤
(∫

Ω

|∇Tkup|p
)(p−1)/p

|Bp,h,k|1/p ≤

≤ (
k‖f‖L1(Ω)

)(p−1)/p
(

k‖f‖L1(Ω)

hp

)1/p

=
k‖f‖L1(Ω)

h
.

By (4.17), for any fixed k > 0 and h > 0, this implies

∣∣∣
∫

Ω

gh,k · Φ
∣∣∣ ≤ k‖f‖L1(Ω)

h

for any Φ ∈ L∞(Ω,RN) such that ‖ |Φ| ‖∞ ≤ 1. By duality, we deduce the following
estimate for ghk ∫

Ω

|gh,k| ≤
k‖f‖L1(Ω)

h
,

for any fixed h > 0 and k > 0. Moreover, by definition of the set Bp,h,k we have
∣∣|∇up|p−2∇up χ(Ω\Bp,h,k)∩{|up|<k}

∣∣ ≤ hp−1 a.e. in Ω.

This implies the following pointwise estimate for fh,k

|fh,k| ≤ lim
p→1

hp−1 = 1, a.e. in Ω .

For any fixed h > 0 and k > 0,

wk = fh,k + gh,k (4.20)

with

‖fh,k‖∞ ≤ 1 and

∫

Ω

|gh,k| ≤ M

h
.

Therefore, we obtain (see [4], and also Step 3 of Proposition 4.1 in [34])

‖ |wk| ‖∞ ≤ 1, (4.21)

for all k > 0. Since limp→1 up(x) = u(x) almost everywhere in Ω, it follows that

χ{|up|<k} → χ{|u|<k}, strongly in Lρ(Ω), for every 1 ≤ ρ < +∞ ,

for almost all k > 0. We point out that, since |Ω| < +∞, the set of the values k
such that |{|u| = k}| > 0 is countable. Therefore, by (3.10) and (4.15), we conclude

wk = z χ{|u|<k} = zk ,
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for almost all k > 0. Observe that, by applying

lim
k→+∞

wk = lim
k→+∞

zχ{|u|<k} = zχ{|u|<+∞}, a.e. in Ω

and (4.21), we deduce ‖ |z χ{|u|<k}| ‖∞ ≤ ‖ |z χ{|u|<+∞}| ‖∞ ≤ 1 for all k > 0. This
proves (4.8).

Step 4: Proof of (z, Dχ{|u|>k}) is a Radon measure and (4.9) holds.
Let us consider hkε(up)φ as test function in (3.7), where φ ∈ C∞

0 (Ω) and hkε(s)
is defined by

hkε(s) =





0, |s| ≥ k + ε;

1, |s| ≤ k;

k+ε−|s|
ε

, k < |s| < k + ε.

Then we have

− 1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up) +

∫

Ω

hkε(up)|∇up|p−2∇up · ∇φ

=

∫

Ω

hkε(up)fφ . (4.22)

Letting p go to 1, we get

∫

Ω

hkε(u)z · ∇φ =

∫

Ω

hkε(u)fφ + lim
p→1

1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up)

and therefore letting ε go to zero

∫

{|u|≤k}
z · ∇φ =

∫

{|u|≤k}
fφ + lim

ε→0
lim
p→1

1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up). (4.23)

Hence, since (4.7) holds, we have

lim
ε→0

lim
p→1

1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up) =

∫

{|u|>k}
fφ−

∫

{|u|>k}
z · ∇φ ,

that is, by Definition 4.5

lim
ε→0

lim
p→1

1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up) = 〈(z,Dχ{|u|>k}), φ〉 . (4.24)

Since

∣∣∣∣∣
1

ε

∫

{k≤|up|<k+ε}
|∇up|pφ sign (up)

∣∣∣∣∣ ≤
‖φ‖∞

ε

∫

{k≤|up|<k+ε}
|∇up|p

=
‖φ‖∞

ε

∫

Ω

f Tε(up − Tk(up)) ≤ ‖φ‖∞
∫

Ω

|f |
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for all p > 1 and all ε > 0, we deduce from (4.24) that (z, Dχ{|u|>k}) is actually a
Radon measure satisfying

|(z,Dχ{|u|>k})|(Ω) ≤
∫

Ω

|f | .

On the other hand, (4.23) becomes
∫

Ω

zk · ∇φ =

∫

Ω

f χ{|u|<k}φ + 〈(z, Dχ{|u|>k}), φ〉 ,

and it yields (4.9). We explicitely observe that, since the right-hand side in (4.9) is
a Radon measure, we deduce that −div(zk) is a Radon measure in the dual space
W−1,∞(Ω). Moreover, since the measure (z, Dχ{|u|>k}) belongs to L1(Ω)+W−1,∞(Ω)
and therefore (see Proposition 5.2 in Appendix 1) it is absolutely continuous with
respect to the Hausdorff measure HN−1, then the precise representative (as mentio-
ned in Appendix 1) of every v ∈ BV (Ω) ∩ L∞(Ω) belongs to L1(Ω, (z, Dχ{|u|>k})).

Step 5: Study of (zk, DTk(u))
As pointed out in the previous step, −divzk is a Radon measure. Therefore by

Appendix 2 Proposition 5.4,

|(zk, DTk(u))| ≤ ‖ |zk| ‖∞|DTk(u)|
and, since ‖ |zk| ‖∞ ≤ 1, we have

(zk, DTk(u)) ≤ |DTk(u)| , as measures in Ω . (4.25)

Now we prove that in fact equality holds in (4.25). Denote, for every φ ∈ C∞
0 (Ω),

〈(z, Dχ{u>k}), φ〉 =

∫

{u>k}
fφ−

∫

{u>k}
z · ∇φ

〈(z, Dχ{−u>k}), φ〉 =

∫

{−u>k}
fφ−

∫

{−u>k}
z · ∇φ .

(4.26)

By Proposition 6.3 in Appendix 2, these distributions are Radon measure concen-
trated in {u = k} and {−u = k}, respectively. Therefore, by (4.4) and (4.9), we
obtain

〈(zk, DTk(u)), φ〉 =

∫

{|u|<k}
fTk(u)φ+

∫

Ω

Tk(u)φ d(z, Dχ{|u|>k})−
∫

{|u|<k}
Tk(u)z ·∇φ .

Since ∫

{|u|<k}
fTk(u)φ =

∫

Ω

fTk(u)φ− k

∫

{u>k}
fφ + k

∫

{−u>k}
fφ ,

∫

Ω

Tk(u)φ d(z, Dχ{|u|>k}) = k〈(z, Dχ{u>k}), φ〉 − k〈(z, Dχ{−u>k}), φ〉

and
∫

{|u|≤k}
Tk(u)z · ∇φ =

∫

Ω

Tk(u)z · ∇φ− k

∫

{u>k}
z · ∇φ + k

∫

{−u>k}
z · ∇φ ;
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it follows that

〈(zk, DTk(u)), φ〉 =

∫

Ω

fTk(u)φ−
∫

Ω

Tk(u)z · ∇φ . (4.27)

Now, we denote

〈(z, DTk(u)), φ〉 =

∫

Ω

fTk(u)φ−
∫

Ω

Tk(u)z · ∇φ φ ∈ C∞
0 (Ω). (4.28)

In Appendix 2, Proposition 6.1, we prove that the distribution defined by the above
expression is actually a Radon measure. From (4.27) we deduce that

(zk, DTk(u)) = (z, DTk(u)) for all k > 0 , (4.29)

and thefore by (4.25)

(z,DTk(u)) ≤ |DTk(u)| as measures in Ω , (4.30)

Now we prove that

|DTk(u)| ≤ (z, DTk(u)) as measures in Ω . (4.31)

Denote for n > k

hkn(s) =





0 , |s| ≥ k + 2n ;

(k + 2n− |s|)k sign s

n
, k + n < |s| < k + 2n ;

Tk(s) , |s| ≤ k + n .

Obviously hkn tends to Tk(s) as n → +∞. Let φ be a nonnegative function belonging
to C∞

0 (Ω). By choosing hkn(up)φ as test function in (3.7) and letting n go to infinity,
we get

∫

Ω

|∇Tk(up)|p φ +

∫

Ω

|∇up|p−2∇up · ∇φ Tk(up) =

∫

Ω

Tk(up)φf.

By Young’s inequality we have
∫

Ω

|∇Tk(up)|φ ≤ 1

p

∫

Ω

|∇Tk(up)|p φ +
p− 1

p

∫

Ω

φ

=
1

p

∫

Ω

Tk(up) φf − 1

p

∫

Ω

|∇up|p−2∇up · ∇φ Tk(up) +
p− 1

p

∫

Ω

φ.

This implies
∫

Ω

|∇Tk(up)|φ +
1

p

∫

Ω

|∇up|p−2∇up · ∇φTk(up) ≤

≤ 1

p

∫

Ω

Tk(up) φf +
p− 1

p

∫

Ω

φ.
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Now we let p go to 1 and we obtain
∫

Ω

φ d|DTk(u)|+
∫

Ω

z · ∇φ Tk(u) ≤
∫

Ω

Tk(u)φf,

for every nonnegative φ ∈ C∞
0 (Ω). On the other hand, by (4.28), it follows that

〈|DTk(u)|, φ〉 ≤ 〈(z, DTk(u)), φ〉,

for every φ ∈ C∞
0 (Ω) with φ ≥ 0. This yields (4.31), and by (4.29) and (4.30) we

arrive to (4.10).

We explicitly observe that the previous arguments imply

lim
p→1

∫

Ω

|∇Tk(up)|pφ = 〈(z,DTk(u)), φ〉 = 〈|DTk(u)|, φ〉, ∀ φ ∈ C∞
0 (Ω).

Step 6: Proof of (4.11).

We begin by observing that, since zχ{|u|<+∞} ∈ DM∞(Ω), by [3], [zχ{|u|<+∞}, ν]
is well–defined and satisfies |[zχ{|u|<+∞}, ν]| ≤ ‖ |zχ{|u|<+∞}| ‖∞ ≤ 1. On the other
hand, the weak traces of [z, ν], [zχ{u=+∞}, ν] and [zχ{u=−∞}, ν] will be introduced
in Appendix 3 below.

Fixed k > 0, our starting point is the equality
∫

Ω

|∇Tk(up)|p =

∫

Ω

fTk(up)

that holds for all p > 1. Applying Young’s inequality, we obtain
∫

Ω

|∇Tk(up)| ≤ 1

p

∫

Ω

|∇Tk(up)|p +
p− 1

p
|Ω| = 1

p

∫

Ω

fTk(up) +
p− 1

p
|Ω| .

Now the inferior semicontinuity implies

|DTk(u)|(Ω) +

∫

∂Ω

|Tk(u)| dHN−1 ≤
∫

Ω

fTk(u) = −
∫

Ω

(div z) Tk(u) . (4.32)

Taking into account that z = zχ{|u|<+∞} + zχ{u=+∞} + zχ{u=−∞}, we may split the
right hand of (4.32) into three parts. By the Gauss–Green formula (5.1), we deduce

−
∫

Ω

(
div (zχ{|u|<+∞})

)
Tk(u)

=

∫

Ω

(zχ{|u|<+∞}, DTk(u))−
∫

∂Ω

[zχ{|u|<+∞}, ν]Tk(u) dHN−1 . (4.33)

In order to compute (zχ{|u|<+∞}, DTk(u)) we have to perform some computations
are needed. For every φ ∈ C∞

0 (Ω), we have

〈(zχ{|u|<+∞}, DTk(u)), φ〉
=

∫

{|u|<+∞}
fTk(u)φ +

∫

Ω

Tk(u)φ d(z, Dχ{|u|=+∞})−
∫

{|u|<+∞}
Tk(u)z · ∇φ .
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Performing similar manipulations to those done in Step 5, we obtain

〈(zχ{|u|<+∞}, DTk(u)), φ〉 =

∫

Ω

fTk(u)φ−
∫

Ω

Tk(u)z · ∇φ .

Thus,
∫
Ω
(zχ{|u|<+∞}, DTk(u)) =

∫
Ω
(z, DTk(u)) = |DTk(u)|(Ω). From here and

(4.33), one deduces

−
∫

Ω

(
div (zχ{|u|<+∞})

)
Tk(u)

= |DTk(u)|(Ω)−
∫

∂Ω

[zχ{|u|<+∞}, ν]Tk(u) dHN−1 . (4.34)

The other two parts are easier of handling. Observe that, choosing v ≡ 1 in the
definition of [zχ{u=+∞}, ν], we obtain

∫

∂Ω

[zχ{u=+∞}, ν] dHN−1 =

∫

{u=+∞}

(
div (zχ{u=+∞})

)
,

so that

−
∫

Ω

(
div (zχ{u=+∞})

)
Tk(u) =

∫

{u=+∞}
fTk(u)−

∫

Ω

Tk(u) d(z, Dχ{u=+∞})

= k
[ ∫

{u=+∞}
f −

∫

Ω

d(z,Dχ{u=+∞})
]

= −k

∫

Ω

div (zχ{u=+∞}) = −k

∫

∂Ω

[zχ{u=+∞}, ν] dHN−1 . (4.35)

Analogously, we have

−
∫

Ω

(
div (zχ{u=−∞})

)
Tk(u) = k

∫

∂Ω

[zχ{u=−∞}, ν] dHN−1 . (4.36)

Having in mind (4.34), (4.35) and (4.36), inequality (4.32) becomes

|DTk(u)|(Ω) +

∫

∂Ω

|Tk(u)| dHN−1

≤ |DTk(u)|(Ω)−
∫

∂Ω

[zχ{|u|<+∞}, ν]Tk(u) dHN−1

− k

∫

∂Ω

[zχ{u=+∞}, ν] dHN−1 + k

∫

∂Ω

[zχ{u=−∞}, ν] dHN−1 ,

from where (4.11) follows.
Finally assume that u is HN−1–a.e. finite on ∂Ω. Then

∫

∂Ω

[zχ{u=+∞}, ν] dHN−1 =

∫

∂Ω

[zχ{u=−∞}, ν] dHN−1 = 0

and so, by (4.11),
∫

∂Ω

|Tk(u)| dHN−1 ≤ −
∫

∂Ω

[zχ{|u|<+∞}, ν] Tk(u) dHN−1 .
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Since ‖[zχ{|u|<+∞}, ν]‖∞ ≤ ‖ |zχ{|u|<+∞}| ‖∞ ≤ 1, this implies

|Tk(u)| = −[zχ{|u|<+∞}, ν] Tk(u) HN−1–a.e. on ∂Ω .

Therefore, [zχ{|u|<+∞}, ν] ∈ sign (−u), HN−1–a.e. on ∂Ω, and (4.12) is proved.

Remark 4.5 In [34], (Theorems 4.2 and 4.3), we have shown that, when the norm
of a datum belonging to W−1,∞(Ω) is small enough, we find a solution to problem
(4.1) which is a function belonging to BV (Ω). This situation does not hold for
general L1-data. Indeed, observe that ‖ |z χ{|u|<∞}| ‖∞ ≤ 1 and so, by the same
argument in Remark 4.4, z χ{|u|<∞} = z only when the datum belongs to W−1,∞(Ω)
and its norm is small enough. We explicitly point out that if f ∈ L1(Ω)\W−1,∞(Ω),
or f ∈ W−1,∞(Ω) with ‖f‖W−1,∞(Ω) > 1, then the set {|u| = +∞} has positive
measure. This feature is stated more precisely in Theorem 4.2 below and illustrated
in Example 4.1, where data which do not belong to W−1,∞(Ω) are considered.

Theorem 4.2 For every fixed p > 1 let up denote the renormalized solution to pro-
blem (3.1). If u is the pointwise limit of up, and z is the weak limit of |∇up|p−2∇up,
as in Theorem 3.1, then the following statements are equivalent

(1) f ∈ W−1,∞(Ω) with ‖f‖W−1,∞(Ω) ≤ 1;

(2) u ∈ BV (Ω);

(3) u is almost everywhere finite in Ω;

(4) z ∈ L∞(Ω;RN) with ‖ |z| ‖∞ ≤ 1.

Sketch of Proof: (1) ⇒ (2) It is a consequence of the estimate
∫
Ω
|∇up| ≤ |Ω|

for all p > 1 (see [34], Theorem 4.1).
(2) ⇒ (3) It is straightforward.
(3) ⇒ (4) Theorem 4.1 yields zχ{|u|<∞} ∈ L∞(Ω;RN) with ‖ |zχ{|u|<∞}| ‖∞ ≤ 1.

So that |u(x)| < ∞ a.e. implies condition (4).
(4) ⇒ (1) The argument is contained in Remark 4.4.

Example 4.1 For every 0 < λ < +∞ and 1 < q < N , we consider the problem



−∆pup = f , in BR(0) ;

up = 0 , on ∂BR(0) ;

where f(x) = λ

C
q/N
N |x|q . Since f is a radial function and its decreasing rearrangement

is defined by f ∗(s) = λ
sq/N , the solution of our problem is given by (see [41])

up(x) = 1

Np′Cp′/N
N

∫ CNRN

CN |x|N
s

p′
N
−p′

( ∫ s

0

f ∗(σ) dσ
)1/(p−1)

ds =

= λ1/(p−1)

C
p′/N
N (N−q)1/(p−1)

p−1
q−p

((
CN |x|N

)− q−p
N(p−1) − (

CNRN
)− q−p

N(p−1)

)
=

=
(

λ

C
q/N
N (N−q)|x|q−p

)1/(p−1)
p−1
q−p

(
1−

(
|x|
R

) q−p
p−1

)
.
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Letting p go to 1, we point out that |x| <
(

λ

C
q/N
N (N−q)

)1/(q−1)

implies up(x) → +∞

and |x| ≥
(

λ

C
q/N
N (N−q)

)1/(q−1)

yields up(x) → 0. Hence, for all λ, the limit blows up

in a ball of positive measure. Furthermore, when λ ≥ (N − q)C
q/N
N Rq−1, the limit

blows up everywhere.
In this example, we may also compute the vector field z. Indeed,

|∇up|p−2∇up = − λ

(N − q)C
q/N
N

x

|x|q
for all p > 1, so that

|z(x)| = λ

C
q/N
N (N − q)|x|q−1

.

Therefore, this vector field is not bounded, and it belongs to L
N

q−1
,∞(BR;RN). On

the other hand, we also point out that

if |z| ≤ 1 , then up → 0 ;

if |z| > 1 , then up → +∞ .
(4.37)

Example 4.2 For every 0 < λ < +∞, we consider


−∆pup = λ δ0 , in BR(0) ;

up = 0 , on ∂BR(0) ;

where δ0 denotes the delta function concentrated on {0}.
The solution to this problem is given by

up(x) =
p− 1

N − p

λ1/(p−1)

(NCN)1/(p−1)

( 1

|x|(N−p)/(p−1)
− 1

R(N−p)/(p−1)

)
.

Thus, if |x| <
(

λ
NCN

)1/(N−1)

, then up(x) → +∞. Hence, for all λ, the limit blows

up in a set of positive measure. Furthermore, when λ ≥ NCNRN−1, the limit blows

up everywhere. On the other hand, if |x| ≥
(

1
NCN

)1/(N−1)

, then up(x) → 0.

We also remark that

|∇up|p−2∇up =
λ

NCN

x

|x|N for all p > 1 ,

and consequently |z| = λ
NCN

1
|x|N−1 . Hence,the vector field z and the limit function

u are linked as in (4.37).

Remark 4.6 As far as uniqueness is concerned, if u is a regular solution to (4.1) and
h ∈ C1(R,R) is strictly increasing, then h(u) is also a solution to (4.1) (for instance,
arctan(u) is a solution). Hence uniqueness in general does not hold. Indeed we
remark that only a “subsequence” converges.

However, the limit points are not general solutions to (4.1) since we have got
|u| = +∞ in a subset of positive measure (unless ‖f‖W−1,∞(Ω) ≤ 1). Therefore, not
every solution to problem (4.1) is the limit of a “subsequence” of (up)p>1, in other
words, our limit points to (up)p>1 are some specific solutions to (4.1).
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5 Appendix 1: L∞–divergence–measure fields

In this Appendix we will study some properties involving divergence–measure vector
fields and functions of bounded variation. We will prove basic approximation results,
and we will give an extension of the Anzellotti’s theory proved in [3] (see also [6],
[31], [34]).

5.1 Approximation results

Let us begin by stating two basic results. In the first one every BV–function will
be approximated by smooth ones; its proof is a simple combination of Lemma 5.1
in [3] and [2] p. 175.

Proposition 5.1 Let u ∈ BV (Ω) and let (ρε)ε be a family of positive symmetric
mollifiers. Define

uε(x) =





u ∗ ρε(x), if x ∈ Ω;

0, if x /∈ Ω.

Then,

(1) uε pointwise converge HN−1–a.e. to the precise representative of u

(2)

∫

A

|∇uε| → |Du|(A) if A ⊂ Ω is open and |Du|(∂A) = 0.

(3) If u ∈ BV (Ω) ∩ L∞(Ω), then |uε(x)| ≤ ‖u‖∞ HN−1–a.e.

The second basic fact is the following proposition, which is proved in [14]. It can also
be proved as a consequence of (2.4) and inequality in [25] p. 171 relating Hausdorff
measure and Hausdorff spherical measure.

Proposition 5.2 For every z ∈ DM∞(Ω), the measure µ = div z is absolutely
continuous with respect to HN−1. As a consequence, |µ| ¿ HN−1.

Consider now µ = div z with z ∈ DM∞(Ω) and let u ∈ BV (Ω). Since the
precise representative of u is equal HN−1–a.e. to the Borel function limε→0 uε, then
one deduces from Proposition 5.2, that (the precise representative of) u is equal
µ–a.e. to a Borel function. From now on, given u ∈ BV (Ω), we also denote by u
its precise representative; and we will say that every BV–function is µ–measurable.
Moreover, u ∈ BV (Ω) ∩ L∞(Ω) implies u ∈ L∞(Ω, µ) ⊂ L1(Ω, µ). On the other
hand, it also yields

∫

Ω

u dµ = −
∫

Ω

z · ∇u = 〈µ, u〉W−1,∞(Ω),W 1,1
0 (Ω) ,

for every u ∈ W 1,1
0 (Ω).
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Proposition 5.3 Let µ = div z with z ∈ DM∞(Ω). For each u ∈ BV (Ω) ∩ L∞(Ω)
there exists a sequence (un) in W 1,1(Ω) ∩ C∞(Ω) ∩ L∞(Ω) such that

(1) un → u in L1(Ω, |µ|)

(2)

∫

Ω

|∇un| → |Du|(Ω).

(3) un|∂Ω = u|∂Ω for all n ∈ N .
(Here u|∂Ω denotes the trace of u and not the trace of the extension u0.)

(4) |un(x)| ≤ ‖u‖∞ |µ|–a.e. and for all n ∈ N , and un → u in L∞ − weak∗ .

Moreover, if u ∈ W 1,1(Ω) ∩ L∞(Ω), then

(2)’ un → u in W 1,1(Ω) .

instead of (2).

Proof: Fixed δ > 0, we prove the existence of a function uδ ∈ BV (Ω) ∩ C∞(Ω)
such that

∫

Ω

|u− uδ| d|µ| < δ ,

∫

Ω

|u− uδ| < δ and

∫

Ω

|∇uδ| ≤ |Du|(Ω) + δ ,

and if u ∈ W 1,1(Ω) ∩ L∞(Ω), it also satisfies

∫

Ω

|∇uδ −∇u| ≤ δ .

In order to prove such a claim, we denote by Ωk a sequence of open sets defined as
in the proof of the Meyers–Serrin theorem (see for instance [2], p. 122). Consider also
a partition of unity subordinate to this covering: φk ∈ C∞

0 (Ω) such that supp φk ⊂
Ωk, 0 ≤ φ ≤ 1 and

∑∞
k=0 φk(x) = 1 for all x ∈ Ω. Moreover, let (ρn)n be a sequence

of positive symmetric mollifiers. Finally, let (δk)k be a sequence of positive numbers
satisfying

∑∞
k=1 δk < δ.

Since limn→∞
(
ρn ∗ (φku)

)
(x) = φk(x)u(x) for HN−1–almost all point x, one

deduces from Proposition 5.2 that limn→∞
(
ρn ∗ (φku)

)
(x) = φk(x)u(x) for |µ|–

almost all point x and so

lim
n→∞

∫

Ω

|ρn ∗ (φku)− φku| d|µ| = 0 for all k ∈ N .
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Thus, for each k ∈ N, we can find εk > 0 such that

supp ρεk
∗ (φku) ⊂ Ωk ,

∫

Ω

|ρεk
∗ (φku)− φku| d|µ| < δk ,

∫

Ω

|ρεk
∗ (φku)− φku| < δk and

∫

Ω

|ρεk
∗ (u∇φk)− u∇φk| < δk .

When u ∈ W 1,1(Ω) ∩ L∞(Ω) we may consider εk > 0 satisfying
∫

Ω

|ρεk
∗ ∇(uφk)−∇(uφk)| < δk .

Defining uδ =
∑∞

k=0 ρεk
∗ (u∇φk), we may next follow the proof of [2], p. 123.

5.2 The pairing (z, Du) and the Gauss–Green formula

In this Section we define a measure (z, Du) when u ∈ BV (Ω) ∩ L∞(Ω) and z ∈
DM∞(Ω). Denoting µ = div z, we first define a distribution by the following ex-
pression

〈(z, Du), φ〉 = −
∫

Ω

uφ dµ−
∫

Ω

uz · ∇φ, φ ∈ C∞
0 (Ω) .

Every term is well defined since u ∈ BV (Ω) ∩ L∞(Ω) ⊂ L1(Ω, µ) ∩ L1(Ω) and
z ∈ L∞(Ω,RN).

Proposition 5.4 Let z, µ and u be as above. Then the distribution (z, Du) is a
Radon measure on Ω such that, for every open U ⊂ Ω and every φ ∈ C∞

0 (U), we
have

|〈(z, Du), φ〉| ≤ ‖φ‖∞ ‖ |z| ‖L∞(U) |Du|(U).

As a consequence,
∣∣∣
∫

B

(z, Du)
∣∣∣ ≤

∫

B

|(z, Du)| ≤ ‖ |z| ‖L∞(Ω) |Du|(B)

for every Borel set B ⊂ Ω.

Proof: Since u ∈ BV (Ω)∩L∞(Ω), by Proposition 5.1 and Proposition 5.2, we can
find a sequence (un)n in C∞(Ω) ∩W 1,1(Ω) ∩ L∞(Ω) such that

un → u |µ| − a.e.,

limn→∞

∫

V

|∇un| = |Du|(V )

|un(x)| ≤ ‖u‖∞ |µ|–a.e.,
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for every open V ⊂⊂ Ω satisfying |Du|(∂V ) = 0.
Let φ ∈ C∞

0 (U) be fixed and consider an open set V such that supp (φ) ⊂ V ⊂⊂
U and |Du|(∂V ) = 0. Since (unφ)n is a sequence in L1(Ω, µ) that converges to uφ
|µ|–a.e. and |un(x)φ(x)| ≤ ‖φ‖∞‖u‖∞ |µ|–a.e., it follows from Lebesgue’s Theorem
that ∫

Ω

un φ dµ →
∫

Ω

uφ dµ .

On the other hand unφ ∈ W 1,1
0 (Ω) ∩ L∞(Ω) implies

∫

Ω

z · ∇un φ = −
∫

Ω

un z · ∇φ−
∫

Ω

un φ dµ for all n ∈ N ,

and so the sequence
( ∫

Ω
z · ∇un φ

)
n

tends to 〈(z, Du), φ〉. Since

∣∣∣
∫

Ω

z · ∇un φ
∣∣∣ ≤ ‖φ‖∞‖ |z| ‖L∞(U)

∫

V

|∇un|,

taking the limit as n goes to +∞, we obtain

|〈(z, Du), φ〉| ≤ ‖φ‖∞‖ |z| ‖L∞(U) |Du|(V ) ≤ ‖φ‖∞‖ |z| ‖L∞(U) |Du|(U) .

Lemma 5.1 Let z ∈ DM∞(Ω) and u ∈ BV (Ω)∩L∞(Ω). If (un)n is a sequence in
BV (Ω) ∩ C∞(Ω) ∩ L∞(Ω) that converges to u as in Proposition 5.3, then

∫

Ω

z · ∇un →
∫

Ω

(z, Du) .

Proof: The proof is similar to that in [3], Lemma 1.8.

In order to get the generalized Gauss–Green formula, an easy step is still nee-
ded. By [3], we already have the normal trace [z, ν] defined for all z ∈ DM∞(Ω).
Moreover, it holds

∫

Ω

u dµ +

∫

Ω

z · ∇u =

∫

∂Ω

[z, ν]u dHN−1

for every u ∈ W 1,1(Ω) ∩ C(Ω) ∩ L∞(Ω).

Theorem 5.1 For every z ∈ DM∞(Ω) and every u ∈ BV (Ω) ∩ L∞(Ω), it holds

∫

Ω

u dµ +

∫

Ω

z · ∇u =

∫

∂Ω

[z, ν]u dHN−1 ,

where µ = div z.

Proof: It is enough consider a sequence (un)n as in Proposition 5.3 and take the
limit in ∫

Ω

un dµ +

∫

Ω

z · ∇un =

∫

∂Ω

[z, ν]un dHN−1 ,

as n goes to ∞, by applying Lemma 5.1.
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6 Appendix 2: Properties of measures (zk, DTk(u))

and (z, Dχ{|u|>k})

In this Appendix we study the properties of the distributions defined in (4.4), (4.5)
and (4.28); our main result is given by Proposition 6.3.

Let us recall the distribution defined in (4.28), i.e.

〈(z, DTk(u)), φ〉 =

∫

Ω

fTk(u)φ−
∫

Ω

Tk(u) z · ∇φ , ∀φ ∈ C∞
0 (Ω) ;

here u denotes the limit function and z the vector field whose existence have been
proved in Theorem 3.1. We begin by proving the following result.

Proposition 6.1 The distribution (z,DTk(u)) is a Radon measure.

Proof: Let up be the renormalized solution to problem (3.1). As in Step 5 of the
proof of Theorem 4.1, we obtain

∫

{|up|<k}
|∇up|pφ +

∫

Ω

Tk(up)|∇up|p−2∇up · ∇φ =

∫

Ω

Tk(up)fφ .

Therefore letting p go to 1, we get

lim
p→1

∫

{|up|<k}
|∇up|pφ =

∫

Ω

fTk(u)φ−
∫

Ω

Tk(u)z · ∇φ. = 〈(z, DTk(u)), φ〉 . (6.1)

Moreover it results:∣∣∣∣
∫

{|up|<k}
|∇up|pφ

∣∣∣∣ ≤ ‖φ‖∞
∫

Ω

|∇Tk(up)|p = ‖φ‖∞
∫

Ω

fTk(up) ≤ ‖φ‖∞k

∫

Ω

|f | ,

and therefore by (6.1)

|〈(z, DTk(u)), φ〉| ≤ ‖φ‖∞k

∫

Ω

|f | .

This yields the conclusion.

Remark 6.1 Actually in the same way we can define the distributions (z, Dh(u))
for all Lipschitz function h such that the support of its derivative is compact, that
is

〈(z, Dh(u)), φ〉 =

∫

Ω

fh(u)φ−
∫

Ω

h(u) z · ∇φ , ∀φ ∈ C∞
0 (Ω).

With the same arguments used in the proof of Proposition 6.1, we can prove that
(z, Dh(u)) is a Radon measure. In this way, for every k > 0 and η ≥ 0, we obtain
that (z, DTk(u− Tη(u))+) and (z, DTk(u− Tη(u)−) are Radon measures satisfying

|〈(z, DTk(u− Tη(u))+), φ〉| ≤ ‖φ‖∞k

∫

{u≥η}
|f | ,

and

|〈(z, DTk(u− Tη(u))−), φ〉| ≤ ‖φ‖∞k

∫

{−u≥η}
|f | ,

respectively.
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Now we prove that the measure (z, DTk(u)) is concentrated on the set {|u| ≤ k}.
To this aim we need some preliminaries.

Proposition 6.2 The Radon measure (z, DTk(u− Tη(u))+) is concentrated on the
set {η ≤ u ≤ k + η}. Analogously the Radon measure (z, DTk(u − Tη(u))−) is
concentrated on the set {η ≤ −u ≤ k + η}. In particular when η = 0, the Radon
measure (z,DTk(u)) is concentrated on the set {|u| ≤ k}.

Proof: We only prove that the Radon measure (z,DTk(u−Tη(u))+) is concentrated
on the set {η ≤ u ≤ k + η} since the second part of the proposition is obtained by
the same arguments. To this aim we have to prove that

(z, DTk(u− Tη(u))+)(ω ∩ {u > k + η}) = (z, DTk(u− Tη(u))+)(ω ∩ {u < η}) = 0

for any ω open subset such that ω ⊂⊂ Ω.
Let us fix ω ⊂⊂ Ω and consider a sequence of mollifiers (ρn)n. Denote by zn =

ρn ∗ z and fn = ρn ∗ f . Then fn = −div zn in ω, for n large enough, and moreover

zn → z in L1(ω;RN) and fn → f in L1(ω) .

By the results proved in [3], we have

∫

ω∩{u>k+h}
|(zn, DTk(u− Tη(u))+)| ≤ ‖ |zn| ‖∞|DTk(u− Tη(u))+|(ω ∩ {u > k + η})

Thus, since |DTk(u− Tη(u))+|({u > k + η}) = 0, we obtain

∫

ω∩{u>k+η}
(zn, DTk(u− Tη(u))+) = 0 , ∀n.

In an analogous way we also obtain

∫

ω∩{u<η}
(zn, DTk(u− Tη(u))+) = 0 , ∀n.

On the other hand, for any φ ∈ C∞
0 (ω), we have

∣∣∣
∫

ω

Tk(u− Tη(u))+z · ∇φ
∣∣∣

≤
∣∣∣〈(z, DTk(u− Tη)

+), φ〉
∣∣∣ +

∣∣∣
∫

ω

Tk(u− Tη(u))+fφ
∣∣∣

≤ 2‖φ‖∞k

∫

{u≥η}
|f | .

Therefore for n large enough, it yields

∣∣∣
∫

ω

Tk(u− Tη(u))+zn · ∇φ
∣∣∣ ≤ 3‖φ‖∞k

∫

{u≥η}
|f |.
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We deduce that

|〈(zn, DTk(u− Tη(u))+), φ〉|
≤ 3‖φ‖∞k

∫

{u≥η}
|f |+

∣∣∣
∫

ω

Tk(u− Tη(u))+fnφ
∣∣∣

≤ 4‖φ‖∞k

∫

{u≥η}
|f | .

Moreover, since

lim
n→∞

∫

ω

Tk(u− Tη(u))+fnφ−
∫

ω

Tk(u− Tη(u))+zn · ∇φ

=

∫

ω

Tk(u− Tη(u))+fφ−
∫

ω

Tk(u− Tη(u))+z · ∇φ ,

we get

(zn, DTk(u− Tη(u))+)| ω → (z, DTk(u− Tη(u))+)| ω weakly-* as measures.

Therefore
∫

ω∩{u>k+η}
(z, DTk(u− Tη(u))+) = lim

n→∞

∫

ω∩{u>k+η}
(zn, DTk(u− Tη(u))+) = 0

and
∫

ω∩{u<η}
(z, DTk(u− Tη(u))+) = lim

n→∞

∫

ω∩{u<η}
(zn, DTk(u− Tη(u))+) = 0 .

Corollary 6.1 For any ε > 0, the measure (z, DTε(u − Tk(u))+) is concentrated
on {k ≤ u ≤ k + ε} and the measure (z, DTε(u − Tk(u))−) is concentrated on
{k ≤ −u ≤ k + ε}.

Proposition 6.3 Let (z, Dχ{u>k}) and (z, Dχ{−u>k}) be the Radon measures defi-
ned in (4.26). Then, for every φ ∈ C∞

0 (Ω),

〈(z,Dχ{u>k}), φ〉 = lim
ε→0

1

ε
〈(z,DTε(u− Tk(u))+

)
, φ〉

〈(z,Dχ{−u>k}), φ〉 = lim
ε→0

−1

ε
〈(z, DTε(u− Tk(u))−

)
, φ〉 .

Moreover, (z, Dχ{u>k}) is concentrated on {u = k}, while (z, Dχ{−u>k}) is concen-
trated on {u = −k}.

As a consequence, the Radon measure (z, Dχ{|u|>k}) is concentrated on {|u| = k}.
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Proof: Let φ ∈ C∞
0 (Ω) and let up be the renormalized solution to problem (3.1).

Arguing as in Step 4 of the proof of Theorem 4.1, we obtain

1

ε

∫

{k≤up<k+ε}
|∇up|pφ = (6.2)

=
1

ε

∫

Ω

fTε(up − Tk(up))
+φ− 1

ε

∫

Ω

Tε(up − Tk(up))
+|∇up|p−2∇up · ∇φ .

Therefore, letting p go to 1 and ε to zero, we have

lim
ε→0

lim
p→1

1

ε

∫

{k≤up<k+ε}
|∇up|pφ = 〈(z, Dχ{u>k}), φ〉 . (6.3)

It follows from (6.2) that

lim
p→1

1

ε

∫

{k≤up<k+ε}
|∇up|pφ =

1

ε
〈(z, DTε(u− Tk(u))+), φ〉.

By (6.3) and the above equality, we get

〈(z, Dχ{u>k}), φ〉 = lim
ε→0

1

ε
〈(z, DTε(u− Tk(u))+), φ〉.

Therefore, by Corollary 6.1, we deduce that the measure (z, Dχ{u>k}) is concentrated
on the set ∩∞n=1{k ≤ u ≤ k + 1

n
} = {u = k}.

In the same way we can prove the assertions concerning the measure (z, Dχ{−u>k}).
The last statement is a consequence of (z, Dχ{|u|>k}) = (z,Dχ{u>k})+(z, Dχ{−u>k}).

7 Appendix 3: Weak trace on ∂Ω of the normal

component of z.

The aim of this Appendix is define [z, ν], the weak trace on ∂Ω of the normal
component of z, z denoting the vector field found in Theorem 3.1. Recall that it

satisfies z ∈ L
N

N−1
,∞(Ω;RN) and −div z = f in D′(Ω).

Let v ∈ W 1− 1
q
,q(∂Ω)∩L∞(∂Ω) for some q > N . Then there exists w ∈ W 1,q(Ω)∩

L∞(Ω) such that w|∂Ω = v. We define

〈z, v〉∂Ω =

∫

Ω

z · ∇w −
∫

Ω

fw . (7.1)

The following result can be proved using similar arguments that those in [3] (see
also [14]).

Proposition 7.1 The value 〈z, v〉∂Ω, defined in (7.1), does not depend on the chosen

function w and the expression 〈z, ·〉∂Ω defines a linear map on W 1− 1
q
,q(∂Ω)∩L∞(∂Ω)

which is continuous in the space W 1− 1
q
,q(∂Ω), for all q > N .
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We will write
∫

∂Ω
[z, ν] v dHN−1 instead of 〈z, v〉∂Ω.

To define
∫

∂Ω
[zχ{u=+∞}, ν] v dHN−1 and

∫
∂Ω

[zχ{u=−∞}, ν] v dHN−1, we need to
know an expression to −div (zχ{u=+∞}) and −div (zχ{u=−∞}), respectively. It is
easy to check that

−div
(
zχ{u=+∞}

)
= fχ{u=+∞} − (z, Dχ{u=+∞}) ,

−div
(
zχ{u=−∞}

)
= fχ{u=−∞} − (z, Dχ{u=−∞}) ,

−div
(
zχ{|u|<+∞}

)
= fχ{|u|<+∞} + (z, Dχ{|u|=+∞}) ,

holds in the sense of distributions. Thus, we may write

∫

∂Ω

[zχ{u=+∞}, ν] v dHN−1

=

∫

Ω

zχ{u=+∞} · ∇w −
∫

{u=+∞}
fw +

∫

Ω

w d(z,Dχ{u=+∞}) ,

and

∫

∂Ω

[zχ{u=−∞}, ν] v dHN−1

=

∫

Ω

zχ{u=−∞} · ∇w −
∫

{u=−∞}
fw +

∫

Ω

w d(z,Dχ{u=−∞}) ,

where v ∈ W 1− 1
q
,q(∂Ω) ∩ L∞(∂Ω), for some q > N , and w ∈ W 1,q(Ω) ∩ L∞(Ω)

satisfies w|∂Ω = v. Moreover, it yields

∫

∂Ω

[z, ν] v dHN−1 =

∫

∂Ω

[zχ{|u|<∞}, ν] v dHN−1

+

∫

∂Ω

[zχ{u=+∞}, ν] v dHN−1 +

∫

∂Ω

[zχ{u=−∞}, ν] v dHN−1 ,

for every v ∈ W 1− 1
q
,q(∂Ω) ∩ L∞(∂Ω), with q > N .
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