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Universitat de València
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1. Introduction

In the celebrated paper [13], Caffarelli, Kohn and Nirenberg established

an interpolation inequality involving weighted Lebesgue norms of functions

and their first derivatives. This inequality, in turn, allows one to show

continuous and compact embeddings theorems dealing with weighted Sobolev

spaces. Furthermore, this inequality and the connected embeddings have been

applied to analyze several elliptic and parabolic problems involving weighted

Laplacian and p-Laplacian operators (for elliptic problems, see for instance

[1, 2, 9, 14, 12, 36] and the references therein).

Regarding anisotropic problems involving the 1-Laplacian operator, we

refer to [32] as the first paper which studies the existence and uniqueness of

the anisotropic total variation flow. On the other hand, in [29], the author

finds the Euler-Lagrange equation for the anisotropic least gradient problem

inf

{∫
Ω

φ(x,Du) : u ∈ BV (Ω), u|∂Ω = f

}
. (1.1)

We could also cite [37], where the author studies questions about the existence

and the regularity of minimizers of (1.1), where φ(x,Du) = a(x)|Du| and the

weight function a(·) is a smooth bounded function.

As a common hypothesis in all of these articles, we have the fact that

the weight w satisfies 0 < α ≤ w(x) ≤ β <∞. This assumption implies that

the natural space to analyze the corresponding problem is BV , the space of

functions of bounded variation (as in the isotropic case).

The aim of this paper is to consider some anisotropic problems with

unbounded weights related to the Caffarelli-Kohn-Nirenberg inequality. More

precisely, we study existence of positive solutions to the following problem
−div

(
1

|x|a
Du

|Du|

)
=

1

|x|b
f(u) in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded open set in RN (with N ≥ 2) containing the origin and

having Lipschitz boundary ∂Ω, and the two parameters satisfy 0 < a < N−1

and a < b < a+ 1. Hypotheses on function f : R→ R will be listed further

below.

To the best of our knowledge, this work is the first attempt to deal with

anisotropic problems having unbounded weights. In this situation, BV (Ω)

is unsuitable and it cannot be the natural space to analyze this problem.

Now, the energy space turns out to be a weighted BV –space. In the first step

this weighted space, denoted by BVa(Ω), is introduced. Since our weights
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are related to the Caffarelli–Kohn–Nirenberg inequality, one of our main

endeavors is to adapt this inequality to our setting. More specifically, we

prove the following result.

Theorem 1.1. Let 0 < a < N − 1, 0 < θ ≤ 1 and a < b < a + 1. Then there

exists a constant CCKN > 0 such that(∫
Ω

1

|x|αrθ
|u|rθdx

) 1
rθ

≤ CCKN

(∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1

)θ (∫
Ω

|u|dx
)1−θ

(1.3)

holds for all u ∈ BVa(Ω), where α = θb and rθ = N
N−θ(1+a−b) . Here BVa(Ω)

denotes the appropriate weighted BV –space, which was introduced in [10] (see

Subsection 2.3 below).

The concept of solution to problems involving the 1–Laplacian operator

lies on the theory of L∞–divergence–measure vector fields (see [7, 18]). It

provides tools to handle bounded vector fields and gradients of BV –functions,

including a Green’s formula. Since in our context this theory can no longer

be used, it follows that we must extend it to establish the necessary tools to

deal with it. This extension is far from being trivial, since the weight which is

included in the vector field is unbounded. Using this tool, we may introduce

the concept of solution to problem (1.2) (see Definition 4.9 below) and broach

its study.

Before stating our main result in this paper, we list the assumptions on

function f in problem (1.2):

(f1) f ∈ C0([0,+∞),R);

(f2) f(0) = 0;

(f3) There exist constants c1, c2 > 0 and 1 < q < N
N−(1+a−b) , such that

|f(s)| ≤ c1 + c2s
q−1, s ∈ [0,+∞);

(f4) There exist µ > 1 and s0 > 0 such that

0 < µF (s) ≤ f(s)s, ∀ s ≥ s0,

where F (t) =
∫ t

0
f(s)ds;

(f5) f is increasing on [0,+∞).

Remark 1.2. Some consequences of (f4) are in order. It is not difficult to

deduce from (f4) that there exist two positive constants d1 and d2 satisfying

F (s) ≥ d1s
µ − d2
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for all s > 0. Applying (f4) again, we get f(s) ≥ µ(d1s
µ−1 − d2s

−1) for all

s ≥ s0 and so, having in mind µ > 1, it yields

lim
s→+∞

f(s) = +∞ .

Remark 1.3. Since we are looking for nonnegative solutions, we may (and

will) extend f(s) as usual defining f(s) = 0 if s < 0. As a consequence, we

have F (s) = 0 for all s < 0.

Our main result is the following.

Theorem 1.4. Suppose that f satisfies conditions (f1)−(f4). Then there exists

a nontrivial nonnegative solution to problem (1.2). This solution is actually a

ground-state solution (i.e., that solution which has the lowest energy among

all nontrivial ones) if we further require condition (f5).

Two different approaches will be used to prove this result. In each case

a suitable variant of Mountain Pass Theorem (see [3]) is applied. In the first

of them, we consider approximate solutions to problems involving the p–

Laplacian operator and next we let p go to 1. Then we find a hindrance due

to the assumptions on the function f which are needed to find solutions to p–

problems. Indeed, in the literature on the p–Laplacian setting, our assumption

(f2) is too general to get a solution and a hypothesis as lim
s→0

f(s)

|s|p−1
= 0 is

required. The difficulty is overcome by modifying the reaction term in the

p–problems and then control the convergence process. In the second, we work

by using variational methods applied to the problem itself defined in BVa(Ω).

We apply a version of Mountain Pass Theorem suitable for functionals defined

on this sort of spaces. In addittion, by using this approach, we are able also

to show that this mountain pass solution is in fact a ground-state solution of

the problem, i. e., its energy level is the lowest one among all the nontrivial

solutions.

We briefly explain the plan of this paper. In Section 2 we present some

preliminary results and define the space BVa(Ω). In Section 3 we set the

Caffarelli-Kohn-Nirenberg inequality in the space BVa(Ω). In Section 4 we

extend the Anzellotti pairing theory to include unbounded vector fields and

also define the sense of solution we deal with. Section 5 is devoted to prove

Theorem 1.4 by using the approximation method by problems involving

weighted p-Laplacian problems. Finally, in Section 6 we present the proof

of Theorem 1.4 by using the purely variational approach.
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2. Preliminaries

We denote by HN−1(E) the (N − 1)-dimensional Hausdorff measure of a set

E while |E| stands for its N -dimensional Lebesgue measure. We will usually

handle an auxiliary function: the truncation function at level ±k defined by

Tk(s) =


s if |s| ≤ k,

k
s

|s|
if |s| > k.

(2.4)

In what follows, Ω ⊂ RN (N ≥ 1) is an open and bounded set such that

0 ∈ Ω. Moreover, its boundary ∂Ω is Lipschitz–continuous. Thus, an outward

normal unit vector ν(x) is defined for HN−1–almost every x ∈ ∂Ω.

From now on, we denote:

• C1
c (Ω), stands for the space of functions with compact support which

are continuously differentiable on Ω

• C∞c (Ω), denotes the space of all functions with compact support having

derivatives of all orders

We will make use of the usual Lebesgue and Sobolev spaces. Lebesgue

spaces with respect to a measure µ will be written as Lq(Ω, µ). The measure

will be deleted when it is Lebesgue measure.

Sometimes we will need to use convolution with mollifiers. We will

denote by ρ ∈ C∞c (RN ) a symmetric mollifier whose support is B(0, 1) and

its associated approximation to the identity by ρε(x) := 1
εN
ρ
(
x
ε

)
, for ε > 0.

The main properties of approximation to identity can be found, for instance,

in [4] or [11].

We explicitly remark that, if not otherwise specified, we will denote by

C several positive constants whose value may change from line to line. These

values will only depend on the data but they will never depend on p or other

indexes we will introduce.

2.1. Weighted spaces

Our objective in this subsection is to study spaces having a weight of the

form x 7→ |x|−a, with a > 0. We refer to [26, 25, 28] as sources for a more

extensive study on weights and weighted spaces. We begin by introducing

some features of these weights.

Recall that w, a nonnegative locally integrable function on RN , belongs

to Muckenhoupt’s class A1 if there exists a constant Cw > 0 such that

−
∫
B

wdx ≤ Cw ess inf
B
w, for all ball B ⊂ RN , (2.5)
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where −
∫
B
fdx = 1

|B|
∫
B
fdx.

It is well-known that the weight function w(x) = 1
|x|a belongs to

Muckenhoupt’s class A1 if and only if 0 < a < N , so that in this case

there exists a constant Ca > 0 such that

−
∫
B(x,r)

1

|y|a
dy ≤ Ca inf

y∈B(x,r)

1

|y|a
, (2.6)

for all B(x, r) ⊂ RN . We point out that this fact implies an inequality

connecting mollifiers and this weight. Indeed,

(ρε ∗ w)(x) =
1

εN

∫
B(x,ε)

ρ

(
x− y
ε

)
1

|y|a
dy ≤ ‖ρ‖∞|B(x, 1)|

|B(x, ε)|

∫
B(x,ε)

1

|y|a
dy

and, as a consequence of belonging to A1,

(ρε ∗ w)(x) ≤ Ca‖ρ‖∞|B(0, 1)| inf
y∈B(x,ε)

1

|y|a
≤ C

|x|a
(2.7)

holds for all x ∈ Ω.

Given a > 0 and s ≥ 1, let us denote by Lsa(Ω) the set of measurable

functions u such that (∫
Ω

1

|x|a
|u|sdx

) 1
s

<∞.

Remark 2.1. Since Ω is a bounded set, it follows that

ma := inf
x∈Ω

{
1

|x|a

}
is positive. We note that this implies that the embedding Lsa(Ω) ↪→ Ls(Ω) is

continuous for all s ≥ 1.

Definition 2.2. Let p ≥ 1 and fix 0 < a < N−p
p . The weighted Sobolev space

D1,p
a (Ω) is defined as the completion of restrictions of C∞c (RN ) with respect

to the norm given by

‖u‖p,a =

(∫
Ω

1

|x|ap
|u|pdx+

∫
Ω

1

|x|ap
|∇u|pdx

) 1
p

Observe that functions in this space belong to

W 1,p(Ω, |x|−ap) = {u ∈ Lpap(Ω); ∇u ∈ Lpap(Ω;RN )}.

Reasoning as in Remark 2.1, we deduce that there is a continuous embedding

D1,p
a (Ω) ↪→W 1,p(Ω).
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Remark 2.3. In [27] is proved that the space W 1,p(Ω, |x|−ap) is equal to the

closure of {ϕ ∈ C∞(Ω); ‖u‖p,a <∞}.

The Sobolev space D1,p
0,a(Ω) is defined as the completion of C∞c (Ω) with

respect to the norm ‖ · ‖p,a. Notice that there is a continuous embedding

D1,p
0,a(Ω) ↪→ W 1,p

0 (Ω). A Poincaré type inequality implies that this norm is

equivalent in D1,p
0,a(Ω) to the norm given by

‖u‖ =

(∫
Ω

1

|x|ap
|∇u|pdx

) 1
p

. (2.8)

This will be the norm we will use in what follows.

For more information on weighted Sobolev spaces, we refer to [27] (see

also [2, 36]).

2.2. The space BV (Ω)

In this subsection, we just introduce some properties of the space of functions

of bounded variation. As mentioned in the introduction, it is the natural space

to study problems involving the 1–Laplacian operator. This space is defined

as

BV (Ω) =
{
u ∈ L1(Ω) : Du is a finite Radon measure

}
where Du : Ω→ RN denotes the distributional gradient of u. Henceforth, we

denote the distributional gradient by ∇u when it belongs to L1(Ω;RN ).

We recall that the space BV (Ω) endowed with the norm

‖u‖BV (Ω) =

∫
Ω

|Du|+
∫

Ω

|u|dx

is a Banach space which is non reflexive and non separable. On the other

hand, the notion of a trace on the boundary can be extended to functions u ∈
BV (Ω), so that we may write u

∣∣
∂Ω

. Indeed, there exists a continuous linear

operator BV (Ω) ↪→ L1(∂Ω) extending the boundaries values of functions in

C(Ω). As a consequence, an equivalent norm on BV (Ω) can be defined:

‖u‖BV (Ω),1 =

∫
Ω

|Du|+
∫
∂Ω

|u| dHN−1.

We will often use this norm in what follows.

In addition, the following continuous embeddings hold

BV (Ω) ↪→ Lm(Ω) , for every 1 ≤ m ≤ N

N − 1
, (2.9)

which are compact for 1 ≤ m < N
N−1 .

For further properties of functions of bounded variations, we refer to [4]

and [21].
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2.3. The space BVa(Ω)

In this subsection, we study the definition and main properties of the space

BVa(Ω), which is our energy space. We mainly follow [10] to where we refer

for a wider analysis.

Let us define varau(Ω) as

varau(Ω) := sup

{∫
Ω

udiv φdx; φ ∈ C1
c (Ω,RN ), s.t. |φ(x)| ≤ 1

|x|a

}
.

We remark that the Riesz representation Theorem implies that varau(Ω)

defines a Radon measure (see, for instance, [21, Section 1.8]).

We point out that the function

x 7→ 1

|x|a
, 0 < a < N − 1 ,

is continuous in Ω\{0}, and hence it is lower semicontinuous. Then, appealing

to [10, Theorem 4.1], we obtain the next result.

Theorem 2.4. The following statements are equivalent:

a) varau(Ω) <∞;

b) u ∈ BV (Ω) and 1
|x|a ∈ L

1(Ω, |Du|).

Moreover,

varau(Ω) =

∫
Ω

1

|x|a
|Du|.

Definition 2.5. Let BVa(Ω) be the space of functions u ∈ L1(Ω) such that

| · |−a|Du| is a finite Radon measure, i.e.,

BVa(Ω) =

{
u ∈ L1(Ω) :

∫
Ω

1

|x|a
|Du| < +∞

}
.

The space BVa(Ω) is a Banach space when endowed with the norm

‖u‖BVa(Ω) :=

∫
Ω

1

|x|a
|Du|+

∫
Ω

|u|dx.

Moreover, note that ma

∫
Ω
|Du| ≤

∫
Ω

1
|x|a |Du| (ma as in Remark 2.1), so that

BVa(Ω) ↪→ BV (Ω).

Then

BVa(Ω) ↪→ L1(∂Ω)

and so every u ∈ BVa(Ω) has a trace on ∂Ω.

We point out that the functional given by

u 7→ varau(Ω) =

∫
Ω

1

|x|a
|Du|
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is lower semicontinuous with respect to the L1–convergence since each

u 7→
∫

Ω
udiv φdx is so. Furthermore, similar arguments lead to the lower

semicontinuity of the functional

u 7→
∫

Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u| dHN−1 (2.10)

We also need to use the lower semicontinuity of another functional. For a

fixed nonnegative ϕ ∈ C∞c (Ω), consider

u 7→
∫

Ω

ϕ
1

|x|a
|Du| , (2.11)

As a consequence of [10, Theorem 3.3], we may write∫
Ω

ϕ
1

|x|a
|Du| = sup

{∫
Ω

udiv (ϕΦ) dx : Φ ∈ C1
c (Ω)N |Φ| ≤ 1

|x|a

}
(2.12)

from where the desired lower semicontinuity follows.

We end this subsection by showing that just like in the space BV (Ω),

we can have an equivalent norm in BVa(Ω) which involves an integral over

∂Ω. Its proof is a consequence of being equivalent ‖ · ‖BV (Ω) and ‖ · ‖BV (Ω),1,

and using that the positive quantities

Ma = sup
x∈∂Ω

{
1

|x|a

}
and ma = inf

x∈∂Ω

{
1

|x|a

}
are finite.

Proposition 2.6. The norm ‖ · ‖BVa is equivalent to the norm given by

‖u‖BVa(Ω),1 =

∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1.

Proposition 2.7. Let u, v ∈ BVa(Ω), then max{u, v},min{u, v} ∈ BVa(Ω)

and the following inequality is valid

‖max{u, v}‖BVa(Ω),1 + ‖min{u, v}‖BVa(Ω),1 ≤ ‖u‖BVa(Ω),1 + ‖v‖BVa(Ω),1.

(2.13)

In particular, choosing v = 0, we have that u+ := max{u, 0}, u− =

min{u, 0} ∈ BVa(Ω), with u = u+ + u−, and it holds

‖u‖BVa(Ω),1 = ‖u+‖BVa(Ω),1 + ‖u−‖BVa(Ω),1. (2.14)

3. The Caffarelli-Kohn-Nirenberg inequality in BVa(Ω)

In this section we are going to present a version of the Caffarelli-Kohn-

Nirenberg inequality [13] in the space BVa(Ω). We do not prove it in its
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full generality, but just introduce those cases to be applied. In particular, we

employ them to prove embeddings involving BVa(Ω).

First of all we state the particular cases of the Caffarelli-Kohn-Nirenberg

inequality we are interested in.

Lemma 3.1. Let p ≥ 1 and consider parameters satisfying 0 < a < N−p
p ,

0 < θ ≤ 1 and a < b < a + 1. Then there exists a constant CCKN > 0 such

that the following inequality holds for all u ∈ C∞c (RN ):(∫
RN

1

|x|αrθ
|u|rθdx

) 1
rθ

≤ CCKN

(∫
RN

1

|x|ap
|∇u|pdx

) θ
p
(∫

RN
|u|dx

)1−θ

,

where α = θb and rθ = Np
θN−p[θ(1+a−b)−N(1−θ)] .

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u ∈ BVa(Ω) and consider its extension to RN

defined by

ũ(x) =

 u(x) if x ∈ Ω,

0 if x /∈ Ω.

We remark that Dũ = Du+ u|∂Ω · HN−1
∂Ω (see [4, Theorem 3.87]).

Note also that ũ ∗ ρε ∈ C∞c (RN ) and so we may apply Lemma 3.1 for

p = 1 (so that rθ = N
N−θ(1+a−b) ). Thus, for every ε > 0, we get

(∫
RN

1

|x|αrθ
|ũ ∗ ρε|rθdx

) 1
rθ

≤ CCKN

(∫
RN

1

|x|a
|∇(ũ ∗ ρε)|dx

)θ (∫
RN
|ũ ∗ ρε|dx

)1−θ

. (3.15)

We will separately take the limit as ε→ 0 in each integral.

We begin by analyzing the gradient term. Thanks to [4, Proposition

3.2(c)], we write∫
RN

1

|x|a
|∇(ũ ∗ ρε)|dx ≤

∫
RN

(
1

|x|a
∗ ρε

)
|Dũ|

Moreover, by the continuity of our weight,

1

|x|a
∗ ρε →

1

|x|a
pointwise in RN \ {0} (3.16)
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and this fact, jointly with (2.7), allows us to apply the Dominated

Convergence Theorem and obtain

lim
ε→0

∫
RN

(
1

|x|a
∗ ρε

)
|D(ũ)| =

∫
RN

1

|x|a
|D(ũ)| =

∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u| dHN−1 .

(3.17)

On the other hand, since

ρε ∗ ũ→ ũ in L1(RN ), (3.18)

it follows that

lim
ε→0

∫
RN
|ũ ∗ ρε|dx =

∫
RN
|ũ|dx =

∫
Ω

|u|dx . (3.19)

Furthermore, we deduce from

ρε ∗ ũ(x)→ ũ(x) a. e. in RN ,

and Fatou’s Lemma that∫
Ω

1

|x|αrθ
|u|rθdx =

∫
RN

1

|x|αrθ
|ũ|rθdx ≤ lim inf

ε→0

∫
RN

1

|x|αrθ
|ũ ∗ ρε|rθdx .

(3.20)

Therefore, using (3.17), (3.19) and (3.20), we may pass to the limit in

(3.15) and obtain the desired result. �

In the following results, we denote CΩ = sup{|x| : x ∈ Ω}, which is

finite since Ω is bounded.

Theorem 3.2. Let a < b < a + 1 and r = N
N−(1+a−b) . Then for all q ∈ R,

1 ≤ q ≤ r, the embedding

BVa(Ω) ↪→ Lqb(Ω)

is continuous.

Proof. In this proof, we consider several cases. All of them are consequence

of some manipulations involving Hölder’s inequality and the version of

Caffarelli-Kohn-Nirenberg’s inequality given in Theorem 1.1.

First of all, let us consider the case q = 1. We apply the mentioned

inequalities to get∫
Ω

1

|x|b
|u|dx ≤

(∫
Ω

1

|x|br
|u|r
) 1
r

|Ω|
r−1
r

≤ |Ω|
r−1
r CCKN

(∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1

)
.
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Now consider 1 < q < r. In this case, arguing as above, we obtain∫
Ω

1

|x|b
|u|qdx =

∫
Ω

1

|x|b−bq
1

|x|bq
|u|qdx

≤ Cbq−bΩ

∫
Ω

1

|x|bq
|u|qdx

≤ Cbq−bΩ |Ω|
r−q
r

(∫
Ω

1

|x|br
|u|rdx

) q
r

≤ Cbq−bΩ |Ω|
r−q
r CqCKN

(∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1

)q
.

Finally, the case q = r follows from a similar argument.

Therefore, in any case, there exists C > 0 such that(∫
Ω

1

|x|b
|u|qdx

) 1
q

≤ C
(∫

Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1

)
holds for every u ∈ BVa(Ω) and we are done. �

Theorem 3.3. Let a < b < a+1 and r = N
N−(1+a−b) . Then for all q, 1 ≤ q < r

the embedding

BVa(Ω) ↪→ Lqb(Ω)

is compact.

Proof. Let (un) be a bounded sequence in BVa(Ω) and note that, since

BVa(Ω) ↪→ BV (Ω), (un) is also bounded in BV (Ω). Then, by the compact

embedding in BV (Ω), there exist a subsequence (not relabeled) and u ∈
BV (Ω) such that

un → u in L1(Ω) . (3.21)

Let 1 < q < r. Note that there exists θ ∈ (0, 1) such that

1

θ
< q <

N

N − θ(1 + a− b)
.

Then, using first Hölder’s inequality and then (1.3) we get∫
Ω

1

|x|b
|un − u|qdx =

∫
Ω

1

|x|b−θbq
1

|x|θbq
|un − u|qdx

≤ Cθbq−bΩ

∫
Ω

1

|x|θbq
|un − u|qdx

≤ Cθbq−bΩ |Ω|
rθ−q
rθ

(∫
Ω

1

|x|θbrθ
|un − u|rθdx

) q
rθ

≤ Cθbq−bΩ |Ω|
rθ−q
rθ CqCKN‖un − u‖

qθ
BVa(Ω),1

(∫
Ω

|un − u|dx
)(1−θ)q

,
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which tends to 0 as n → ∞. Here we have used that (un)n is bounded in

BVa(Ω) and (3.21).

It remains to consider q = 1. Note that there exists 0 < θ̄ < 1 such that

θ̄(1 + a) > b. Performing similar manipulations, we get∫
Ω

1

|x|b
|un − u|dx =

∫
Ω

1

|x|b−θ̄b
1

|x|θ̄b
|un − u|dx

≤

(∫
Ω

(
1

|x|b−θ̄b

) r
θ̄

rθ̄−1

) r
θ̄
−1

rθ̄
(∫

Ω

1

|x|θ̄brθ̄
|un − u|rθ̄dx

) 1
rθ̄

Observe that, since θ̄(a+ 1) > b, it follows that b(1− θ̄) rθ̄
rθ̄−1 < N , so that

A =

(∫
Ω

(
1

|x|b−θ̄b

) r
θ̄

rθ̄−1

) r
θ̄
−1

r
θ̄

< +∞ .

Hence, applying (1.3), it yields∫
Ω

1

|x|b
|un − u|dx ≤ A

(∫
Ω

1

|x|θ̄brθ̄
|un − u|rθ̄dx

) 1
r
θ̄

≤ ACCKN‖un − u‖θ̄BVa(Ω),1

(∫
Ω

|un − u|dx
)1−θ̄

,

which tends to 0 as above. �

4. Extension of the Anzellotti theory

In this Section, we extend the Anzellotti theory to a setting which involves

unbounded vector fields. To begin with, we recall this theory. Not only these

results will be applied, but they will also serve us as a guide for its broadening.

4.1. Remainder of Anzellotti’s theory

We recall the notion of weak trace on ∂Ω of the normal component defined

in [7] for every z ∈ L∞(Ω;RN ) such that its distributional divergence div z is

a Radon measure having finite total variation. This trace is a function [z, ν] :

∂Ω→ R satisfying [z, ν] ∈ L∞(∂Ω) and ‖ [z, ν] ‖L∞(∂Ω) ≤ ‖z‖L∞(Ω;RN ), being

ν(·) the outer normal unitary vector on ∂Ω.

In [7], it was also introduced a distribution (z,Du) : C∞c (Ω)→ R defined

by

〈(z,Du), ϕ〉 = −
∫

Ω

uϕdiv z −
∫

Ω

u z · ∇ϕdx , (4.22)

where

u ∈ BV (Ω) ∩ L∞(Ω) and div z ∈ L1(Ω) , (4.23)
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among other possible pairings. It is then proved

|〈(z,Du), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

|Du| (4.24)

for all open sets U ⊂ Ω such that suppϕ ⊂ U . As a consequence, (z,Du) is

a Radon measure whose total variation satisfies

|(z,Du)| ≤ ‖z‖∞|Du| . (4.25)

Finally, a Green formula involving the measure (z,Du) and the weak

trace [z, ν] is established in [7], namely:∫
Ω

(z,Du) +

∫
Ω

udiv z =

∫
∂Ω

u [z, ν] dHN−1 (4.26)

being z and u as in (4.23).

4.2. Weighted theory

In this subsection, we consider weights w(x) = |x|−a, with 0 < a < N − 1.

Nevertheless, We point out that most of the results holds for more general

weights.

We define the space

DMa(Ω) =

{
z ∈ L∞(Ω,RN ); div

(
1

|x|a
z

)
∈ L1(Ω)

}
.

Note that, for every z ∈ DMa(Ω), the following equalities are valid in

the sense of distributions

div

(
Tk

(
1

|x|a

)
z

)
= Tk

(
1

|x|a

)
div(z) + z · ∇Tk

(
1

|x|a

)
, ∀k > 0. (4.27)

Hence, letting k →∞, it also holds

div

(
1

|x|a
z

)
=

1

|x|a
div(z) + z · ∇

(
1

|x|a

)
, (4.28)

in the sense of distributions. Since div
(

1
|x|a z

)
and z · ∇

(
1
|x|a

)
belong to

L1(Ω), this last identity implies that

1

|x|a
div (z) ∈ L1(Ω) (4.29)

and so, taking into account that Ω is bounded,

div (z) ∈ L1(Ω) . (4.30)

Then Anzellotti’s theory supplies us with the weak trace [z, ν] on ∂Ω and

the Radon measure (z,Du) for every u ∈ BV (Ω) ∩ L∞(Ω) (and so for every

u ∈ BVa(Ω) ∩ L∞(Ω)).



15

It is easy to compare
[

1
|x|a z, ν

]
and 1

|x|a [z, ν]. To see that they are equal,

we just employ the inequality

1

|x|a
≤Ma, for all x ∈ ∂Ω.

for certain finite constant Ma.

Lemma 4.1. For every z ∈ DMa(Ω) we have that[
1

|x|a
z, ν

]
=

1

|x|a
[z, ν] HN−1 − a. e. ∂Ω.

Proof. For each k > 0, by the Proposition 2 of [15], we obtain[
Tk

(
1

|x|a

)
z, ν

]
= Tk

(
1

|x|a

)
[z, ν] HN−1 − a. e. ∂Ω

Now it is enough to take k ≥Ma to get our result. �

4.3. Measures
(

1
|·|a z,Du

)
and 1

|·|a (z,Du)

In this subsection, we take z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω), and

introduce two distributions
(

1
|x|a z,Du

)
and 1

|x|a (z,Du), which turn out to

be equal. Finally, we will prove a Green’s formula that connects them to

traces
[

1
|x|a z, ν

]
= 1
|x|a [z, ν].

We begin by observing that
(
Tk

(
1
|x|a

)
z,Du

)
= Tk

(
1
|x|a

)
(z,Du) as

measures for all k > 0. In order to do so, first notice that div
(

1
|x|a z

)
∈ L1(Ω).

Then
(
Tk

(
1
|x|a

)
z,Du

)
is defined as in (4.22) by

〈(
Tk

(
1

|x|a

)
z,Du

)
, ϕ

〉
= −

∫
Ω

uϕdiv

(
Tk

(
1

|x|a

)
z

)
dx−

∫
Ω

uTk

(
1

|x|a

)
z · ∇ϕdx .

On the other hand, Tk

(
1
|x|a

)
(z,Du) is such that〈

Tk

(
1

|x|a

)
(z,Du) , ϕ

〉
=

∫
Ω

Tk

(
1

|x|a

)
ϕ (z,Du) .

It is not difficult to connect both distributions. To this end, denote w(x) =

Tk

(
1
|x|a

)
and consider the mollification of ϕw. Then

ρε ∗ (ϕw)→ ϕw uniformly in Ω

∇ (ρε ∗ (ϕw))→ ∇(ϕw) strongly in L1(Ω;RN )
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and so∫
Ω

Tk

(
1

|x|a

)
ϕ (z,Du) = lim

ε→0

∫
Ω

ρε ∗ (ϕw) (z,Du)

= − lim
ε→0

∫
Ω

u(ρε ∗ (ϕw))div z dx− lim
ε→0

∫
Ω

uz · ∇ (ρε ∗ (ϕw)) dx

= −
∫

Ω

uϕTk

(
1

|x|a

)
div z dx−

∫
Ω

uz · ∇
(
ϕTk

(
1

|x|a

))
dx .

We stress that (4.27) implies that both distributions are equal. So, we have

proved the following lemma.

Lemma 4.2. For every z ∈ DMa(Ω) and u ∈ BVa(Ω)∩L∞(Ω), we have that(
Tk

(
1

|x|a

)
z,Du

)
= Tk

(
1

|x|a

)
(z,Du) as Radon measures in Ω,∀k > 0.

We define the weighted pairings as the limit of the above functionals.

Definition 4.3. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). Then we define

the functional
(

1
|x|a z,Du

)
: C∞c (Ω)→ R as〈(

1

|x|a
z,Du

)
, ϕ

〉
= −

∫
Ω

uϕdiv

(
1

|x|a
z

)
dx−

∫
Ω

1

|x|a
uz · ∇ϕdx

Lemma 4.4. For every z ∈ DMa(Ω) and u ∈ BVa(Ω)∩L∞(Ω), we have that(
1

|x|a
z,Du

)
=

1

|x|a
(z,Du) as distributions.

As a consequence, since 1
|x|a (z,Du) is a Radon measure in Ω, so is(

1
|x|a z,Du

)
.

Proof. We point out that 1
|x|a ∈ L

1(Ω, (z,Du)), since |(z,Du)| ≤ ‖z‖∞|Du|
and u ∈ BVa(Ω) ∩ L∞(Ω). Moreover, we have〈

1

|x|a
(z,Du), ϕ

〉
=

∫
Ω

ϕ
1

|x|a
(z,Du)

= −
∫

Ω

uϕ
1

|x|a
div (z) dx−

∫
Ω

uϕz · ∇
(

1

|x|a
ϕ

)
dx.

Thus, having in mind (4.28), both distributions are equal. �

Theorem 4.5. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). For all open sets

U ⊂ Ω and for all functions ϕ ∈ C∞c (U), it yields∣∣∣∣〈( 1

|x|a
z,Du

)
, ϕ

〉∣∣∣∣ ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

1

|x|a
|Du|.
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Proof. Note that, from (4.24) we have that∣∣∣∣〈( 1

|x|a
z,Du

)
, ϕ

〉∣∣∣∣ =

∣∣∣∣∫
U

1

|x|a
ϕ(z,Du)

∣∣∣∣ (4.31)

≤
∫
U

1

|x|a
|ϕ| |(z,Du)| (4.32)

≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

1

|x|a
|Du|dx, (4.33)

what proves the result. �

Corollary 4.6. The measures
(

1
|x|a z,Du

)
and

∣∣∣( 1
|x|a z,Du

)∣∣∣ are absolutely

continuous with respect to the measure 1
|x|a |Du| and the inequality∣∣∣∣∫

B

(
1

|x|a
z,Du

)∣∣∣∣ ≤ ∫
B

∣∣∣∣( 1

|x|a
z,Du

)∣∣∣∣ ≤ ‖z‖L∞(U)

∫
B

1

|x|a
|Du|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.

Theorem 4.7. Let z ∈ DMa(Ω) and u ∈ BVa(Ω) ∩ L∞(Ω). Then we have∫
Ω

udiv

(
1

|x|a
z

)
dx+

∫
Ω

1

|x|a
(z,Du) =

∫
∂Ω

1

|x|a
[z, ν]u dHN−1.

Proof. It follows from (4.26), jointly with Lemmas 4.1 and 4.2, that∫
Ω

udiv

(
Tk

(
1

|x|a

)
z

)
dx+

∫
Ω

Tk

(
1

|x|a

)
(z,Du)

=

∫
∂Ω

Tk

(
1

|x|a

)
[z, ν]u dHN−1. (4.34)

for all k > 0. Since x 7→ 1
|x|a is a bounded function on ∂Ω, then for k large

enough, Tk

(
1
|x|a

)
= 1
|x|a . Hence,

lim
k→+∞

∫
∂Ω

Tk

(
1

|x|a

)
[z, ν]u dHN−1 =

∫
∂Ω

1

|x|a
[z, ν]u dHN−1. (4.35)

On the left hand side of (4.34), we will apply the Dominated Convergence

Theorem. In the first term, we may pass to the limit as in the proof of the

Theorem 4.5, taking into account (4.27), (4.29) and ∇
(

1
|x|a

)
∈ L1(Ω). On

the other hand, we denote by θ(z,Du) the Radon–Nikodým derivative of

(z,Du) with respect to |Du|, so that |θ(z,Du)| ≤ ‖z‖∞. Then

Tk

(
1

|x|a

)
(z,Du) = Tk

(
1

|x|a

)
θ(z,Du)|Du|

and ∣∣∣∣Tk ( 1

|x|a

)
θ(z,Du)

∣∣∣∣ ≤ ‖z‖∞|x|a .
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Owing to 1
|x|a ∈ L1(Ω, |Du|), we are allowed to use the Dominated

Convergence Theorem. Therefore, when k →∞, identity (4.34) becomes∫
Ω

udiv

(
1

|x|a
z

)
dx+

∫
Ω

1

|x|a
(z,Du) =

∫
∂Ω

1

|x|a
[z, ν]u dHN−1

as desired. �

Remark 4.8. Note that, by Lemmas 4.1 and 4.4, the last identity can also be

written as∫
Ω

udiv

(
1

|x|a
z

)
dx+

∫
Ω

(
1

|x|a
z,Du

)
=

∫
∂Ω

[
1

|x|a
z, ν

]
u dHN−1.

4.4. Concept of solution to problem (1.2)

Once we have the weighted theory available, we may introduce the definition

of solution to problem (1.2).

Definition 4.9. We say that u ∈ BVa(Ω) ∩ L∞(Ω) is a solution of problem

(1.2) if there exists a vector field z ∈ L∞(Ω,RN ) with ‖z‖∞ ≤ 1 and such

that

(1) −div
(

1
|x|a z

)
=

1

|x|b
f(u), in D′(Ω),

(2)
(

1
|x|a z,Du

)
=

1

|x|a
|Du| as measures on Ω,

(3) [z, ν] ∈ sign (−u) on ∂Ω.

We will need a variational formulation of our concept of solution. We

begin with the following equivalence, whose proof in the non weighted setting

can be found in [6, Proposition 2].

Proposition 4.10. For u ∈ BVa(Ω) ∩ L∞(Ω), the following assertions are

equivalent.

a) u is a solution to problem (1.2).

b) there exists a vector field z ∈ L∞(Ω,RN ) satisfying ‖z‖∞ ≤ 1,

−div

(
1

|x|a
z

)
=

1

|x|b
f(u), in D′(Ω),

and∫
Ω

1

|x|b
f(u)(v−u)dx =

∫
Ω

1

|x|a
(z,Dv)−

∫
∂Ω

1

|x|a
v[z, ν] dHN−1−‖u‖BV (Ω),1

(4.36)

for all v ∈ BVa(Ω) ∩ L∞(Ω).



19

Proof. To see that (a) ⇒ (b), just take v ∈ BVa(Ω) ∩ L∞(Ω), multiply

the equality (1) of Definition 4.9 by v − u and apply Green’s formula and

conditions (2) and (3).

The reverse implication (b)⇒ (a) is deduced by taken v = u in (4.36). Indeed,

we obtain

‖u‖BV (Ω),1 ≤
∫

Ω

1

|x|a
(z,Du)−

∫
∂Ω

1

|x|a
u[z, ν] dHN−1

and conditions (2) and (3) follow since ‖z‖∞ ≤ 1. �

Corollary 4.11. If u is a solution to problem (1.2), then∫
Ω

1

|x|b
f(u)(v − u)dx ≤ ‖v‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.37)

holds for every v ∈ BVa(Ω).

Proof. When v ∈ BVa(Ω) ∩ L∞(Ω), it is an easy consequence of Proposition

4.10 and the condition ‖z‖∞ ≤ 1. For a general v ∈ BVa(Ω), apply this

inequality to Tk(v) to get∫
Ω

1

|x|b
f(u)(Tk(v)− u)dx ≤ ‖Tk(v)‖BV (Ω),1 − ‖u‖BV (Ω),1

≤ ‖v‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.38)

Now, on account of Theorem 3.2, v ∈ L1
b(Ω) and so we may let k go to ∞ on

the left hand side of (4.38). �

Corollary 4.12. Every solution to problem (1.2) is nonnegative.

Proof. Let u be a solution to problem (1.2). By Proposition 2.7, we may take

v = u+ in Corollary 4.11 obtaining∫
Ω

1

|x|b
f(u)(−u−) ≤ ‖u+‖BV (Ω),1 − ‖u‖BV (Ω),1 = −‖u−‖BV (Ω),1 .

On the left hand side, the integrand vanishes (recall that f(s) = 0 for all

s ≤ 0) and we get∫
Ω

1

|x|b
f(u)(−u−) =

∫
{u<0}

1

|x|b
f(u)(−u) = 0 .

Therefore, ‖u−‖BV (Ω),1 ≤ 0 and so u = u+ ≥ 0. �

To characterize the sub-differential of the norm, we could try to adapt

the proof of [6, Section 5] to our weighted framework. Nevertheless, for our

purposes, the following result will be enough.
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Proposition 4.13. Let h ∈ L1(Ω) and assume that problem
−div

(
1

|x|a
Du

|Du|

)
= h in Ω,

u = 0 on ∂Ω,

(4.39)

has a bounded solution w. (By a solution to problem (4.39) we mean that w

satisfies Definition 4.9 with the obvious replacement of 1
|x|b f(w) by h.)

If u ∈ BVa(Ω) ∩ L∞(Ω) and h ∈ ∂‖u‖BV (Ω),1, then u is also a solution to

problem (4.39).

Proof. Let w ∈ BVa(Ω)∩L∞(Ω) be a solution to problem (4.39). Then there

exists a vector field z ∈ L∞(Ω,RN ) such that ‖z‖∞ ≤ 1 and

−div

(
1

|x|a
z

)
= h in D′(Ω)

jointly with conditions (2) and (3). Taken w − u as test function, it yields∫
Ω

h(w − u) dx

=

∫
Ω

1

|x|a
(z,Dw)−

∫
Ω

1

|x|a
(z,Du)

−
∫
∂Ω

1

|x|a
w[z, ν] dHN−1 +

∫
∂Ω

1

|x|a
u[z, ν] dHN−1

= ‖w‖BV (Ω),1 −
∫

Ω

1

|x|a
(z,Du) +

∫
∂Ω

1

|x|a
u[z, ν] dHN−1 (4.40)

On the other hand, assumption h ∈ ∂‖u‖BV (Ω),1 implies∫
Ω

h(w − u) dx ≤ ‖w‖BV (Ω),1 − ‖u‖BV (Ω),1 . (4.41)

Hence, gathering (4.40) and (4.41), it follows that

−
∫

Ω

1

|x|a
(z,Du) +

∫
∂Ω

1

|x|a
u[z, ν] dHN−1 ≤ −‖u‖BV (Ω),1

and the result is a consequence of being ‖z‖∞ ≤ 1. �

5. Proof of Theorem 1.4 through p–Laplacian problems

This section is devoted to prove Theorem 1.4 by an approximating approach.

We first consider problems involving the p-Laplacian operator and, following

the arguments of [31], we prove a priori estimates which allows us to find the

solution w of Problem (1.2) as p→ 1+.
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5.1. Approximating problems involving p-Laplacian operators

First of all, we consider 1 < p̄ < 2 and so p̄ < N < N
1+a−b . Since

0 < a < N − 1, µ > 1 and 1 < q < N
N−(1+a−b) , we may assume that p̄

also satisfies

a <
N − p̄
p̄

< N − 1, µ > p̄ and p̄ < q < q + p̄− 1 <
N

N − (1 + a− b)
.

This implies that, denoting q̄ = q + p̄− 1,

p <
N

1 + a− b
, a <

N − p
p

, µ > p and p < q̄ <
Np

N − p(1 + a− b)
.

for every 1 < p ≤ p̄. Now, for each 1 < p ≤ p̄, we consider the problem
−div

(
1

|x|ap
|∇u|p−2∇u

)
=

1

|x|b
fp(u) in Ω,

u = 0 on ∂Ω,

(5.42)

where fp(s) = f(s)|s|p−1. Observe that, as a consequence of (f1)− (f4), the

function fp satisfies:

(f1p) fp ∈ C0([0,+∞),R);

(f2p) lim
s→0+

fp(s)

|s|p−1
= 0;

(f3p) There exist constants c1, c2 > 0 and p < q̄ < Np
N−p(1+a−b) , such that

|fp(s)| ≤ c1 + c2s
q̄−1 for all s ∈ [0,+∞).

(f4p) There exists µ > p such that

0 < µFp(s) ≤ fp(s)s, ∀ s ≥ s0,

where Fp(t) =
∫ t

0
fp(s)ds.

Remark 5.1. The conditions (f1p) − (f3p) are straightforward to check. To

prove the condition (f4p), just integrate by parts to obtain

fp(s)s

Fp(s)
=

f(s)|s|p−1s

F (s)|s|p−1 − (p− 1)
∫ s

0
F (σ)
|σ|2−p dσ

=
f(s)s

F (s)− (p− 1) 1
|s|p−1

∫ s
0

F (σ)
|σ|2−p dσ

when s > 0. It follows from lims→+∞ F (s) = +∞ and L’Hôpital’s rule that

lim
s→+∞

(p− 1)
1

|s|p−1

∫ s

0

F (σ)

|σ|2−p
dσ = +∞,

so that it is positive for s large enough. Hence,

fp(s)s

Fp(s)
≥ f(s)s

F (s)
≥ µ

for s large enough.
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Problem (5.42) has been studied in [12] using the lower and

upper–solutions method. Nevertheless, we need to obtain a solution applying

the Mountain Pass Theorem to get estimates independent of p and thus be

able to pass to the limit as p→ 1.

In order to get a nontrivial solution to (5.42), we work in the space

D1,p
0,a(Ω) that is defined in Subsection 2.1. Moreover, the functions of this

space satisfy the following Caffarelli-Kohn-Nirenberg inequality.

Theorem 5.2. Let 0 < a < N−p̄
p̄ , 0 < θ ≤ 1 and a < b < a + 1. Then there

exists a constant CCKN > 0 such that the following inequality holds for all

u ∈ D1,p
0,a(Ω)(∫

Ω

1

|x|αrθp
|u|rθpdx

) 1
rθp

≤ CCKN

(∫
Ω

1

|x|ap
|∇u|pdx

) θ
p
(∫

Ω

|u|dx
)1−θ

,

where α = θb and rθp = Np
θN−p[θ(1+a−b)−N(1−θ)] .

Proof. The proof follows as that one of Theorem 3.1, with the difference that

ρε ∗ ũ→ ũ in D1,p
0,a(Ω) as ε→ 0, (5.43)

as showed in Theorem 2.5 of [27]. �

Thanks to this version of the Caffarelli-Kohn-Nirenberg inequality and

using the arguments of the proofs of Theorems 3.2 and 3.3, we can show the

following embedding result. Probably this result already has been proved in

the literature (for a related result, see [36, Theorem 2.1]). However, we state

it here for the sake of completeness.

Theorem 5.3. Let 0 < a < N−p
p , a < b < a + 1 and rp = r1p = Np

N−p(1+a−b) .

Then the embedding

D1,p
0,a(Ω) ↪→ Lqb(Ω)

is continuous for all q ∈ [1, rp] and compact for all q ∈ [1, rp).

The functional associated to problem (5.42) is given by

Jp(u) =
1

p

∫
Ω

1

|x|ap
|∇u|pdx−

∫
Ω

1

|x|b
Fp(u)dx for all u ∈ D1,p

0,a(Ω).

By the conditions (f2p), (f3p), (f4p) and the Theorem 5.3, the functional Jp

satisfies the geometric conditions of the Mountain Pass Theorem (see [35]),

which imply that there exists a (PS)c sequence (wn)n∈N in D1,p
0,a(Ω), i.e.,

Jp(wn)→ cp and J ′p(wn)→ 0, as n→∞,



23

where

cp = inf
γ∈Γ

max
t∈[0,1]

Jp(γ(t))

and

Γ = {γ ∈ C([0, 1],D1,p
0,a(Ω)); γ(0) = 0, Jp(γ(1)) < 0}.

Well–known arguments can be used to show that (wn)n∈N is a bounded

sequence in D1,p
0,a(Ω) and consequently, that there exists wp ∈ D1,p

0,a(Ω) in such

a way that

wn → wp in D1,p
0,a(Ω), as n→∞.

Since Jp ∈ C1(D1,p
0,a(Ω)) the previous convergence implies that

Jp(wp) = cp and J ′p(wp) = 0

and consequently wp is a nontrivial solution in D1,p
0,a(Ω) to problem (5.42).

Once we have got the family of approximate solutions (wp)1<p≤p̄, our

main concern is to get bounds of this family which do not depend on p. To

this end, let us consider the functional Ip : D1,p
0,a(Ω)→ R defined by

Ip(u) =
1

p

∫
Ω

1

|x|ap
|∇u|pdx+

p− 1

p
|Ω|.

It is straightforward to see that p 7→ Ip(u) is a nondecreasing function, for

every u ∈ W 1,p
0 (Ω, |x|−a). Indeed, let 1 < p1 < p2 < p and note that, by

Young’s inequality,

Ip1
(u) =

1

p1

∫
Ω

1

|x|ap1
|∇u|p1dx+

p1 − 1

p1
|Ω|

≤ 1

p1

(
p1

p2

∫
Ω

1

|x|ap2
|∇u|p2dx+

p2 − p1

p2
|Ω|
)

+
p1 − 1

p1
|Ω|

= Ip2
(u).

Moreover, the critical points of Jp are the same of those of u 7→ Ip(u) −∫
Ω

1
|x|bFp(u)dx.

Next, we show that there exists e ∈ C∞c (Ω) such that

Jp(e) < 0, for all 1 < p ≤ p̄.

Fix a nontrivial φ ∈ C∞c (Ω) such that φ ≥ 0 and ‖φ‖∞ ≤ 1. This fact leads

to ∫
Ω

1

|x|b
|φ|p̄dx ≤

∫
Ω

1

|x|b
|φ|pdx ≤

∫
Ω

1

|x|b
|φ| dx (5.44)

for every 1 < p ≤ p̄. Moreover, the Lebesgue Dominated Convergence

Theorem implies

lim
p→1+

∫
Ω

1

|x|b
|φ|pdx =

∫
Ω

1

|x|b
|φ| dx
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and, as a consequence, we may assume that

1

2

∫
Ω

1

|x|b
|φ| dx <

∫
Ω

1

|x|b
|φ|p̄dx . (5.45)

Analogously, there is no loss of generality in assuming that∫
Ω

1

|x|ap
|∇φ|pdx < 2

∫
Ω

1

|x|a
|∇φ| dx (5.46)

for every 1 < p ≤ p̄.
Now let t > 1. Then, owing to lim

s→+∞
f(s) = +∞, given

K = 16

∫
Ω

1
|x|a |∇φ| dx∫

Ω
1
|x|b |φ| dx

, (5.47)

we can find M > 0 such that f(s) > K, and consequently fp(s) > Ksp−1,

for all s > M . Hence, if s > M , then

Fp(s) >

∫ s

M

f(s)|s|p−1ds > K
sp

p
−KMp

p
> K

sp

p
−K(1 +M)p̄ .

Denoting K1 = K(1 +M)p̄
∫

Ω
1
|x|b dx and taking t large enough such that

1

2

∫
Ω

1

|x|b
|φ|p̄dx <

∫
{φ>M/t}

1

|x|b
|φ|p̄dx , (5.48)

we deduce∫
Ω

1

|x|b
Fp(tφ) dx ≥

∫
{φ>M/t}

1

|x|b
Fp(tφ) dx > K

tp

p

∫
{φ>M/t}

1

|x|b
|φ|pdx−K1

≥ K tp

p

∫
{φ>M/t}

1

|x|b
|φ|p̄dx−K1 ≥ K

tp

2p

∫
Ω

1

|x|b
|φ|p̄dx−K1

> K
tp

4p

∫
Ω

1

|x|b
|φ| dx−K1 = 4

tp

p

∫
Ω

1

|x|a
|∇φ| dx−K1 ,

where have also used (5.47). Therefore, from (5.46)

Ip(tφ) −
∫

Ω

1

|x|b
Fp(tφ)dx

≤ tp

p

∫
Ω

1

|x|ap
|∇φ|p dx− 4

tp

p

∫
Ω

1

|x|a
|∇φ| dx+K1

≤ K1 − 2
tp

p

∫
Ω

1

|x|a
|∇φ| dx

≤ K1 − t
∫

Ω

1

|x|a
|∇φ| dx,

since p < 2 and t > 1. Thus, choosing t large enough, we find e = tφ satisfying

Jp(e) ≤ Ip(e)−
∫

Ω

1

|x|b
Fp(e)dx < 0, for all 1 < p ≤ p̄. (5.49)
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Since e does not depend on p, thanks to the Mountain Pass Theorem,

we know that wp satisfies

Ip(wp)−
∫

Ω

1

|x|b
Fp(wp)dx = inf

γ∈Γp
max
t∈[0,1]

(
Ip(γ(t))−

∫
Ω

1

|x|b
Fp(γ(t))dx

)
,

where

Γp = {γ ∈ C([0, 1],D1,p
0,a(Ω)) : γ(0) = 0, γ(1) = e}.

5.2. Estimate of the family {wp}

We claim that the sequence
(
Ip(wp)−

∫
Ω

1
|x|bFp(wp)dx

)
1<p<p̄

is bounded by

a constant which does not depend on p. Indeed, let 1 < p1 < p2 < p̄ and

let us apply the monotonicity of Ip and the fact that Γp2 ⊂ Γp1 (because

D1,p2

0,a (Ω) ⊂ D1,p1

0,a (Ω)). Then

Ip1(wp1)−
∫

Ω

1

|x|b
Fp1(wp1)dx = inf

γ∈Γp1

(
max
t∈[0,1]

Ip1(γ(t))−
∫

Ω

1

|x|b
Fp1(γ(t))dx

)
≤ inf
γ∈Γp2

max
t∈[0,1]

(
Ip1

(γ(t))−
∫

Ω

1

|x|b
Fp1

(γ(t))dx

)
≤ inf
γ∈Γp2

max
t∈[0,1]

(
Ip2(γ(t))−

∫
Ω

1

|x|b
Fp1(γ(t))dx

)
.

It yields

Ip1(wp1)−
∫

Ω

1

|x|b
Fp1(wp1)dx

≤ inf
γ∈Γp2

max
t∈[0,1]

Ip2(γ(t))−
∫

Ω

1

|x|b
Fp2

(γ(t))dx

+

∫
Ω

1

|x|b
Fp2

(γ(t))dx−
∫

Ω

1

|x|b
Fp1

(γ(t))dx

≤ Ip2
(wp2

)−
∫

Ω

1

|x|b
Fp2

(wp2
)

+ inf
γ∈Γp2

max
t∈[0,1]

(∫
Ω

1

|x|b
|Fp2

(γ(t))|dx+

∫
Ω

1

|x|b
|Fp1

(γ(t))|dx
)

≤ Ip2
(wp2

)−
∫

Ω

1

|x|b
Fp2

(wp2
)

+ max
t∈[0,1]

(∫
Ω

1

|x|b
|Fp2(γ0(t))|)dx+

∫
Ω

1

|x|b
|Fp1(γ0(t))|dx

)
,

where γ0(t) = te. Now, for 1 < p < p̄, it is straightforward to see that∫
Ω

1

|x|b
Fp(te)dx ≤

∫
Ω

1

|x|b
F (te)|te|p−1dx ≤ (‖e‖∞ + 1)p̄−1

∫
Ω

1

|x|b
F (te)dx
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and so

max
t∈[0,1]

(∫
Ω

1

|x|b
|Fp2

(γ0(t))|)dx+

∫
Ω

1

|x|b
|Fp1

(γ0(t))|dx
)

≤ 2(1 + ‖e‖∞)p̄−1 max
t∈[0,1]

∫
Ω

1

|x|b
F (te)dx.

It follows that if 1 < p < p̄, then

Ip(wp)−
∫

Ω

1

|x|b
Fp(wp)dx

≤ Ip̄(wp̄)−
∫

Ω

1

|x|b
Fp̄(wp̄)dx+ 2(1 + ‖e‖∞)p̄−1 max

t∈[0,1]

∫
Ω

1

|x|b
F (te)dx

and the claim is proved. Thus, there exists C > 0 such that

Jp(wp) =
1

p

∫
Ω

1

|x|ap
|∇wp|pdx−

∫
Ω

1

|x|b
Fp(wp)dx ≤ C, for all p ∈ (1, p̄)

(5.50)

where the constant C is independent of p.

Let Ωp = {x ∈ Ω : |wp(x)| ≤ s0}, for any p ∈ (1, p̄). Then, by (f3p), we

have

|Fp(s)| ≤
∣∣∣∣∫ s

0

|fp(σ)| dσ
∣∣∣∣ ≤ c1|s|+ c2

q̄
|s|q̄

and so∫
Ωp

1

|x|b
Fp(wp)dx ≤ c1

∫
Ωp

1

|x|b
|wp|dx+

c2
q̄

∫
Ωp

1

|x|b
|wp|q̄dx (5.51)

≤ c1
∫

Ω

1

|x|b
s0dx+

c2
q̄

∫
Ω

1

|x|b
sq̄0dx = C1.

By the condition (f4p) and since wp is a solution of (5.42), it holds∫
Ω\Ωp

1

|x|b
Fp(wp) dx ≤

1

µ

∫
Ω\Ωp

1

|x|b
fp(wp)wp dx

=
1

µ

∫
Ω

1

|x|ap
|∇wp|p dx−

1

µ

∫
Ωp

1

|x|b
fp(wp)wp dx. (5.52)

On the other hand, note that condition (f3p) also implies

−
∫

Ωp

1

|x|b
fp(wp)wpdx ≤ c1s0

∫
Ω

1

|x|b
dx+ c2s

q̄
0

∫
Ω

1

|x|b
dx = C2 (5.53)

Thus, by (5.52) and (5.53), we get∫
Ω\Ωp

1

|x|b
Fp(wp)dx ≤

1

µ

∫
Ω

1

|x|ap
|∇wp|pdx+ C2. (5.54)
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Gathering together (5.50), (5.51) and (5.52), we have(
1

p
− 1

µ

)∫
Ω

1

|x|ap
|∇wp|pdx ≤ C + C1 + C2, ∀p ∈ (1, p̄).

Moreover, since 1 < p ≤ p̄ < µ by the last inequality we have that there

exists C̃ > 0 independent of p such that∫
Ω

1

|x|ap
|∇wp|pdx ≤ C̃, ∀p ∈ (1, p̄). (5.55)

Now, using the previous estimate, Young and Hölder’s inequalities we

have∫
Ω

1

|x|ap
|∇wp|dx ≤

1

p

∫
Ω

1

|x|ap
|∇wp|pdx+

p− 1

p

∫
Ω

1

|x|ap
dx

≤ 1

p

∫
Ω

1

|x|ap
|∇wp|pdx+

(∫
Ω

1

|x|ap̄
dx

) p
p̄

|Ω|
p̄−p
p̄ (5.56)

≤ C̃ +

(∫
Ω

1

|x|ap̄
dx+ 1

)
(|Ω|+ 1) = Ĉ ,

where Ĉ is a constant independent of p.

5.3. Convergence of (wp)p

Recalling that wp
∣∣
∂Ω

= 0, it follows from (5.56) that the sequence {wp}1<p<p̄
is bounded in BVa(Ω). Then, up to a subsequence, there exists w such that,

by Theorem 3.3,

wp → w in Lqb(Ω), (5.57)

for all q ∈
[
1, N

N−(1+a−b)

)
as well as, by (2.9),

wp → w in Ls(Ω), (5.58)

for all s ∈
[
1, N

N−1

)
. Up to a further subsequence, by [11, Theorem 4.9], we

may also assume

wp(x)→ w(x) a. e. x ∈ Ω . (5.59)

and that there exists g ∈ Lqb(Ω), 1 ≤ q < N
N−(1+a−b) , such that

|wp(x)| ≤ g(x) a. e. x ∈ Ω (5.60)

holds for all p ∈ (1, p̄]. Finally, the lower semicontinuity of the functional

u 7→
∫

Ω
1
|x|a |Du| guarantees that w ∈ BVa(Ω).
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5.4. Boundedness of the limit

Let k ≥ 0 and let wp ∈ D1,p
0,a(Ω) be a solution of problem (5.42). Define

Ak,p = {x ∈ Ω; |wp(x)| ≥ k a. e. in Ω}.

Lemma 5.4. Let p > 1 be small enough. For each ε > 0 there exists k0 > 0

(which does not depend on p) such that∫
Ak,p

1

|x|b
(1 + |wp|q̄−1)

N
1+a−b dx < ε for all k ≥ k0,

where q̄ is as in (f3p).

Proof. Note that∫
Ak,p

1

|x|b
dx ≤ 1

k
N

N−(1+a−b)

∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx. (5.61)

Now we denote α = (q̄−1)[N−(1+a−b)]
1+a−b and l = N

1+a−b , which satisfy 0 < α < 1

and l > 1. Using (5.61) and Hölder’s inequality, we obtain

∫
Ak,p

1

|x|b
(1 + |wp|q̄−1)ldx ≤ 2l−1

(∫
Ak,p

1

|x|b
dx+

∫
Ak,p

1

|x|b
|wp|(q̄−1)ldx

)

≤ 2l−1

∫
Ak,p

1

|x|b
dx+

(∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx

)α(∫
Ak,p

1

|x|b
dx

)1−α


≤ 2l−1

(
1

k
N

N−(1+a−b)

∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx

)

+2l−1

(∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx

)α(
1

k
N

N−(1+a−b)

∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx

)1−α

≤ 2l−1

(
1

k
N

N−(1+a−b)
+

1

k
N(1−α)

N−(1+a−b)

)∫
Ak,p

1

|x|b
|wp|

N
N−(1+a−b) dx

Hence, we have got∫
Ak,p

1

|x|b
(1 + |wp|q̄−1)ldx ≤ ω(k)

∫
Ω

1

|x|b
|wp|

N
N−(1+a−b) dx (5.62)

where ω(k) stands for a quantity independent on p that tends to 0 as

k → +∞. On the other hand, by the Caffarelli-Kohn-Nirenberg inequality,

the Hölder inequality and the estimate (5.55) we obtain
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∫
Ω

1

|x|b
|wp|

N
N−(1+a−b) dx ≤ C

N
N−(1+a−b)
CKN

(∫
Ω

1

|x|a
|∇wp|dx

) N
N−(1+a−b)

≤ C
N

N−(1+a−b)
CKN C̃

N
N−(1+a−b) (5.63)

due to (5.56).

Therefore using (5.63) in (5.62) we get

∫
Ak,p

1

|x|b
(1 + |wp|q̄−1)ldx ≤ ω(k)C

N
N−(1+a−b)
CKN C̃

N
N−(1+a−b) ,

which tends to 0 as k →∞. �

Now, let us deduce from Lemma 5.4 that w ∈ L∞(Ω). To this end, given

k > 0, we define the auxiliary function Gk : R→ R as

Gk(s) =


s− k if s > k,

0 if |s| ≤ k,

s+ k if s < −k.

(5.64)

Choosing Gk(wp) as a test function in problem (5.42), we get

∫
Ω

1

|x|ap
|∇Gk(wp)|pdx =

∫
Ω

1

|x|b
fp(wp)Gk(wp)dx.

Set 1∗a = N
N−(1+a−b) . Then the previous identity, Caffarelli-Kohn-

Nirenberg’s, Young’s and Hölder’s inequalities and the condition (f3p) lead
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to (∫
Ω

1

|x|b
|Gk(wp)|1

∗
adx

) 1
1∗a
≤ C

b(1∗a−1)

1∗a
Ω

(∫
Ω

1

|x|b1∗a
|Gk(wp)|1

∗
adx

) 1
1∗a

≤ C
∫

Ω

1

|x|a
|∇Gk(wp)|dx

≤ C

p

∫
Ω

1

|x|ap
|∇Gk(wp)|pdx+

C(p− 1)

p
|Ω|

=
C

p

∫
Ω

1

|x|b
fp(wp)Gk(wp)dx+

C(p− 1)

p
|Ω|

≤ C
∫

Ω

1

|x|b
(1 + |wp|q̄−1)|Gk(wp)|dx+

C(p− 1)

p
|Ω|

≤ C

(∫
Akp

1

|x|b
(1 + |wp|q̄−1)

N
1+a−b

) 1+a−b
N (∫

Ω

1

|x|b
|Gk(wp)|1

∗
adx

) 1
1∗a

+
C(p− 1)

p
|Ω| (5.65)

On the other hand, by Lemma 5.4 there exists k0 ∈ N such that∫
Ak,p

1

|x|b
(1 + |wp|q̄−1)

N
1+a−b dx <

1

(2C)
N

1+a−b
for all k ≥ k0. (5.66)

Using (5.66) in (5.65) we get(∫
Ω

1

|x|b
|Gk(wp)|1

∗
adx

) 1
1∗a
≤ 2C(p− 1)

p
|Ω|. (5.67)

Since wp(x)→ w(x) a. e. in Ω when p→ 1+, Fatou’s Lemma implies∫
Ω

1

|x|b
|Gk(w)|1

∗
adx = 0 for all k ≥ k0.

Therefore ‖w‖∞ ≤ k0.

5.5. Existence of the vector field

We begin by using the notation of Remark 2.1 and observing that (5.55)

yields

mp
a

∫
Ω

|∇wp|p dx ≤ C̃ ∀p ∈ (1, p̄)

and then ∫
Ω

|∇wp|p dx ≤ C̃
(

1 +
1

ma

)p̄
∀p ∈ (1, p̄) .

So, we may apply the same argument than that in [30, Theorem 3.5.] and

obtain a subsequence (not relabeled) and z ∈ L∞(Ω;RN ) satisfying ‖z‖∞ ≤ 1
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and

|∇wp|p−2∇wp ⇀ z weakly in Ls(Ω;RN ) , for all 1 ≤ s <∞ . (5.68)

In order to pass to the limit in the following stages, these weak

convergences must slightly be improved. Fix 1 < s <∞ such that 1 < s′ < N
a ,

and take p̄ small enough to have 1 < s′ < N
ap̄ , so that

∫
Ω

1
|x|ap̄s′ dx <∞. Since

1

|x|aps′
≤ max

{
1

|x|ap̄s′
, 1

}
for all 1 < p < p̄, Lebesgue Convergence Dominated Theorem implies∫

Ω

∣∣∣∣ 1

|x|ap
− 1

|x|a

∣∣∣∣s′ dx→ 0 as p→ 1+. (5.69)

Thus, the convergences 1
|x|ap →

1
|x|a strongly in Ls

′
(Ω) and |∇wp|p−2∇wp ⇀

z weakly in Ls(Ω;RN ) lead to

1

|x|ap
|∇wp|p−2∇wp ⇀

1

|x|a
z weakly in L1(Ω;RN ). (5.70)

5.6. w satisfies condition (1) of Definition 4.9

Let ϕ ∈ C∞c (Ω) and take it as test function in (5.42) to obtain∫
Ω

1

|x|ap
|∇wp|p−2∇wp · ∇ϕdx =

∫
Ω

1

|x|b
fp(wp)ϕdx. (5.71)

Our aim is to let p→ 1+ in (5.71). On the left hand side it is enough to apply

(5.70), while in the right hand side, just observe that

fp(wp(x))→ f(w(x)) a. e. x ∈ Ω

due to (5.59). Moreover, by (f3p) and Young’s inequality, we get

|fp(wp(x))| ≤ c1 + c2|wp(x)|q̄−1

≤ c1 + c2g(x)q̄−1

≤ c1 +
1

q̄
cq̄2 +

q̄ − 1

q̄
g(x)q̄

and g ∈ Lq̄b(Ω). Hence, the Lebesgue Dominated Convergence Theorem

implies

lim
p→1+

∫
Ω

1

|x|b
fp(wp)ϕdx =

∫
Ω

1

|x|b
f(w)ϕdx. (5.72)

Therefore, letting p→ 1+ in (5.71), we obtain∫
Ω

1

|x|a
z · ∇ϕdx =

∫
Ω

1

|x|b
f(w)ϕdx (5.73)

and thus item (1) of Definition 4.9 is verified.
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5.7. w satisfies condition (2) of Definition 4.9

In this subsection, we show that the identity(
1

|x|a
z,Dw

)
=

1

|x|a
|Dw|,

holds as Radon measures.

Firstly note that we may apply Corollary 4.6 (since ‖z‖∞ ≤ 1) getting∫
Ω

(
1

|x|a
z,Dw

)
≤
∫

Ω

∣∣∣∣( 1

|x|a
z,Dw

)∣∣∣∣ ≤ ∫
Ω

1

|x|a
|Dw|.

Now let us check the opposite inequality, i. e.,〈(
1

|x|a
z,Dw

)
, ϕ

〉
≥
〈

1

|x|a
|Dw|, ϕ

〉
, (5.74)

for all ϕ ∈ C1
c (Ω) such that ϕ ≥ 0.

Fix 0 ≤ ϕ ∈ C1
c (Ω) and choose k > ‖w‖∞. Taking Tk(wp)ϕ ∈ D1,p

0,a(Ω)

as test function in (5.42), we get∫
Ω

1

|x|ap
ϕ|∇Tk(wp)|p dx+

∫
Ω

1

|x|ap
Tk(wp)|∇wp|p−2∇wp · ∇ϕdx

=

∫
Ω

1

|x|b
fp(wp)Tk(wp)ϕdx (5.75)

Moreover, applying Young’s inequality, one deduces∫
Ω

1

|x|a
ϕ|∇Tk(wp)|dx ≤

1

p

∫
Ω

1

|x|ap
|∇Tk(wp)|pϕdx+

p− 1

p

∫
Ω

ϕdx

≤ −1

p

∫
Ω

1

|x|ap
Tk(wp)|∇wp|p−2∇wp · ∇ϕdx+

1

p

∫
Ω

1

|x|b
fp(wp)Tk(wp)ϕdx

+
p− 1

p

∫
Ω

ϕdx . (5.76)

Our next objective is to let p → 1+. On the left hand side, since Tk(wp) →
Tk(w) in L1(Ω), the lower semicontinuity of (2.11) may be applied:∫

Ω

1

|x|a
ϕ|DTk(w)| ≤ lim inf

p→1

∫
Ω

1

|x|a
ϕ|∇Tk(wp)|dx . (5.77)

We turn to analyze the right hand side of (5.76). The convergence of the first

integral is a consequence of (5.59) and (5.70). Thus,∫
Ω

1

|x|a
Tk(w)z · ∇ϕdx = lim

p→1

∫
Ω

1

|x|ap
Tk(wp)|∇wp|p−2∇wp · ∇ϕdx . (5.78)
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We deal with the second integral applying the Lebesgue Dominated

Convergence Theorem as in the previous subsection. So, we obtain∫
Ω

1

|x|b
f(w)Tk(w)ϕdx = lim

p→1

∫
Ω

1

|x|b
fp(wp)Tk(wp)ϕdx . (5.79)

The last term on the right hand side, obviously, tends to 0.

Therefore, from (5.77), (5.78) and (5.79), inequality (5.76) becomes∫
Ω

1

|x|a
ϕ|DTk(w)|+

∫
Ω

1

|x|a
Tk(w)z · ∇ϕdx ≤

∫
Ω

1

|x|b
f(w)Tk(w)ϕdx.

Our choice of k leads to∫
Ω

1

|x|a
ϕ|Dw|+

∫
Ω

1

|x|a
wz · ∇ϕdx ≤

∫
Ω

1

|x|b
f(w)wϕdx ,

so that (5.73) implies∫
Ω

1

|x|a
ϕ|Dw| ≤ −

∫
Ω

wϕdiv

(
1

|x|a
z

)
−
∫

Ω

1

|x|a
wz · ∇ϕdx

=

〈(
1

|x|a
z,Dw

)
, ϕ

〉
.

Thus (5.74) holds.

5.8. w satisfies condition (3) of Definition 4.9

It only remains to check

[z, ν] ∈ sign(−w) on ∂Ω. (5.80)

It is equivalent to show that∫
∂Ω

(
1

|x|a
|w|+ w

1

|x|a
[z, ν]

)
dHN−1 = 0. (5.81)

Indeed, ‖z‖∞ ≤ 1 yields

−w
[

1

|x|a
z, ν

]
≤ 1

|x|a
‖z‖∞|w| HN−1 − a. e. on ∂Ω (5.82)

and so the integrand is nonnegative. Then (5.81) implies 1
|x|a |w| +

w 1
|x|a [z, ν] = 0 and it follows from (5.82) that (5.80) holds. Actually, due

to the nonnegativeness of the integrand, it is enough to check∫
∂Ω

(
1

|x|a
|w|+ w

1

|x|a
[z, ν]

)
dHN−1 ≤ 0. (5.83)

In order to do so, we take wp as a test function in (5.42) obtaining∫
Ω

1

|x|ap
|∇wp|p dx =

∫
Ω

1

|x|b
fp(wp)wp dx .
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Using Young’s inequality and the boundary condition wp
∣∣
∂Ω

= 0, we get

p

∫
Ω

1

|x|a
|∇wp| dx+p

∫
∂Ω

1

|x|a
|wp| dHN−1 ≤

∫
Ω

1

|x|ap
|∇wp|p dx+(p−1)|Ω|

=

∫
Ω

1

|x|b
fp(wp)wp dx+ (p− 1)|Ω|. (5.84)

Our aim is to let p → 1+ again. The lower semicontinuity of the

functional in (2.10) gives∫
Ω

1

|x|a
|Dw|+

∫
∂Ω

1

|x|a
|w| dHN−1

≤ lim inf
p→1+

(∫
Ω

1

|x|a
|∇wp| dx+

∫
∂Ω

1

|x|a
|wp| dHN−1

)
. (5.85)

On the other hand, we may apply the Lebesgue Dominated Convergence

Theorem on the right hand side of (5.84), owing to

fp(wp(x))wp(x)→ f(w(x))w(x) a. e. x ∈ Ω

and the following consequence of condition (f3p):

|fp(wp(x))wp(x)| ≤ c1|wp(x)|+ c2|wp(x)|q̄−1|wp(x)|

≤ c3 + c4g(x)q̄ .

Thus, ∫
Ω

1

|x|b
f(w)w dx = lim

p→1

∫
Ω

1

|x|b
fp(wp)wp dx (5.86)

and the remainder term tends to 0.

Consequently, using (5.85) and (5.86) in (5.84) we get∫
Ω

1

|x|a
|Dw|+

∫
∂Ω

1

|x|a
|w|dHN−1 ≤

∫
Ω

1

|x|b
f(w)w dx. (5.87)

Applying (5.73) and Green’s formula (Theorem 4.7), we arrive at∫
Ω

1

|x|b
f(w)wdx = −

∫
Ω

w div

(
1

|x|a
z

)
dx (5.88)

= −
∫
∂Ω

w

[
1

|x|a
z, ν

]
dHN−1 +

∫
Ω

1

|x|a
(z,Dw)

= −
∫
∂Ω

w

[
1

|x|a
z, ν

]
dHN−1 +

∫
Ω

1

|x|a
|Dw|.

Gathering together (5.87) and (5.88), we obtain∫
∂Ω

w

[
1

|x|a
z, ν

]
dHN−1 +

∫
Ω

1

|x|a
|w|dHN−1 ≤ 0, (5.89)

and we are done.
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Therefore, since w satisfies conditions (1), (2) and (3) of Definition 4.9,

we conclude that w is a solution to problem (1.2).

5.9. w is a nontrivial solution of (1.2)

Now, what is left to do is to show that w 6= 0. In order to do so, we should

introduce the energy functional Φ : BVa(Ω)→ R given by

Φ(u) =

∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1 −

∫
Ω

1

|x|b
F (u)dx.

First of all, let us prove that

lim
p→1+

(
Ip(wp)−

∫
Ω

1

|x|b
Fp(wp)dx

)
= Φ(w). (5.90)

Indeed, since w satisfies (1), (2) and (3) in Definition 4.9 and wp satisfies

(5.42), it follows from Remark 4.8, (5.57), (f3p) and the Lebesgue Dominated

Convergence Theorem that, as p→ 1+

‖w‖BVa(Ω),1 =

∫
Ω

1

|x|a
|Dw|+

∫
∂Ω

1

|x|a
|w|dHN−1

=

∫
Ω

(
1

|x|a
z,Dw

)
−
∫
∂Ω

1

|x|a
w [z, ν] dHN−1

= −
∫

Ω

w div

(
1

|x|a
z

)
dx

=

∫
Ω

1

|x|b
f(w)wdx

=
1

p

∫
Ω

fp(wp)wpdx+ op(1)

=
1

p

∫
Ω

1

|x|ap
|∇wp|pdx+ op(1). (5.91)

Moreover, again by (f3p), (5.57) and the Lebesgue Dominated Convergence

Theorem, as p→ 1+, we have that∫
Ω

1

|x|b
F (w)dx =

∫
Ω

1

|x|b
Fp(wp)dx+ op(1). (5.92)

Then, (5.91) and (5.92) imply in (5.90).

We remark that, by (f1) and (f2), given ε > 0, we may find δ > 0

satisfying

|f(s)| < ε ∀|s| < δ

so that (f3) implies that there exists a positive constant C̃ε > 0 such that

|f(s)| < ε+ C̃ε|s|q−1 ∀s ∈ R .
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Integrating this inequality, we deduce

|F (s)| ≤ ε|s|+ Cε|s|q ∀s ∈ R , (5.93)

for certain constant Cε > 0. Thus, by Theorem 3.2,

Φ(u) = ‖u‖BVa(Ω),1 −
∫

Ω

1

|x|b
F (u) dx

≥ ‖u‖BVa(Ω),1 − ε
∫

Ω

1

|x|b
|u| dx− Cε

∫
Ω

1

|x|b
|u|q dx

≥ (1− εC1)‖u‖BVa(Ω),1 − CεCq‖u‖qBVa(Ω),1.

Let us consider ε > 0 small enough such that 1 − εC1 > 1/2. So, if

‖u‖BVa(Ω),1 ≤ ρ, where 0 < ρ <

(
(1− εC1)− 1/2

CεCq

) 1
q−1

, then

Φ(u) ≥
‖u‖BVa(Ω),1

2
. (5.94)

On the other hand, for all 1 < p < p̄, Young’s inequality implies

that Ip(u) −
∫

Ω
1
|x|bFp(u)dx ≥ Φ(u) + op(1). Then, for all γ ∈ Γp, from

the continuity of t 7→ Ip(γ(t)) −
∫

Ω
1
|x|bFp(γ(t))dx and from the fact that

Ip(e) −
∫

Ω
1
|x|bFp(e)dx < 0, it follows that there exists t0 ∈ [0, 1] such that

‖γ(t0)‖BVa(Ω),1 = ρ. Then,

Ip(wp)−
∫

Ω

1

|x|b
Fp(wp) = inf

γ∈Γp
max
t∈[0,1]

(
Ip(γ(t))−

∫
Ω

1

|x|b|
Fp(γ(t))dx

)
≥ ρ

2
.

Hence, from the last inequality and (5.90), it follows that

Φ(w) > 0

and then w is a nontrivial solution of (1.2). It remains to prove that w is a

nonnegative solution of (1.2), but Corollary 4.12 does the job. This finishes

the proof of Theorem 1.4.

As a consequence of Proposition 4.13, we deduce the following result.

Corollary 5.5. If u ∈ BVa(Ω) ∩ L∞(Ω) and 1
|x|b f(w) ∈ ∂‖u‖BV (Ω),1, then u

is a solution to problem (1.2).

6. Existence by variational methods

First of all, let us consider the energy functional Φ : BVa(Ω)→ R, given by

Φ(u) =

∫
Ω

1

|x|a
|Du|+

∫
∂Ω

1

|x|a
|u|dHN−1 −

∫
Ω

1

|x|b
F (u)dx

= Ja(u)−Fb(u),
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where

Ja(u) = ‖u‖BVa(Ω),1

and

Fb(u) =

∫
Ω

1

|x|b
F (u)dx.

It is straightforward to see that Fb is a smooth functional. Moreover,

by the same arguments of [8], it is possible to show that the functional Ja
admits some directional derivatives. More specifically, given u ∈ BVa(Ω), for

all v ∈ BVa(Ω) such that (Dv)s is absolutely continuous with respect to

(Du)s, (Dv)a vanishes a.e. on the set {x ∈ Ω : (Du)a(x) = 0} and v ≡ 0,

HN−1−a.e. on {x ∈ ∂Ω : u(x) = 0}, it follows that

J ′a(u)v =

∫
Ω

1

|x|a
(Du)a(Dv)a

|(Du)a|
dx+

+

∫
Ω

1

|x|a
Du

|Du|
(x)

Dv

|Dv|
(x)|(Dv)|s +

∫
∂Ω

1

|x|a
sgn(u)vdHN−1. (6.95)

In particular, note that, for all u ∈ BVa(Ω),

J ′a(u)u = Ja(u). (6.96)

Then, the directional derivatives Φ′(u)u exist and

Φ′(u)u = ‖u‖BVa(Ω),1 −
∫

Ω

1

|x|b
f(u)udx. (6.97)

Note that Φ can we written as the difference between a Lipschitz

and a smooth functional in BVa(Ω). Taking into account the theory of

subdifferentials of Clarke (see [16, 17]) , we say that w ∈ BVa(Ω) is a critical

point of Φ if 0 ∈ ∂Φ(w), where ∂Φ(w) denotes the generalized gradient of Φ

in w. It follows that this is equivalent to F ′(w) ∈ ∂Ja(w) and, since Ja is

convex, this can be written as

Ja(v)− Ja(w) ≥ F ′(w)(v − w), ∀v ∈ BVa(Ω). (6.98)

Henceforth, every w ∈ BVa(Ω) such that (6.98) holds is going to be called a

critical point of Φ.

Let us prove that Φ satisfies the first geometric condition of the

Mountain Pass Theorem (see [22]). Note again (see inequality (5.93)) that,

by (f1), (f2) and (f3), it follows that for all ε > 0, there exists Aε > 0 such

that

|F (s)| ≤ ε|s|+Aε|s|q, ∀s ∈ R. (6.99)
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Note also that, by (6.99) and the embeddings of BVa(Ω) (see Theorem

3.2), it follows that

Φ(u) = ‖u‖BVa(Ω),1 −
∫

Ω

1

|x|b
F (u)dx

≥ ‖u‖BVa(Ω),1 − ε‖u‖L1
b(Ω) −Aε‖u‖

q
Lqb(Ω)

= ‖u‖BVa(Ω),1

(
1− εC − c3‖u‖q−1

BVa(Ω),1

)
≥ α,

for all u ∈ BVa(Ω), such that ‖u‖BVa(Ω),1 = ρ, where 0 < ε < 1 is fixed,

0 < ρ <

(
1− εC
c3

) 1
p−1

and α = ρ(1− εC − c3ρp−1).

Now let us check that Φ satisfies the second geometric condition of the

Mountain Pass Theorem. Recall (see Remark 1.2) that condition (f4) implies

that there exists constants d1, d2 > 0 such that

F (s) ≥ d1|s|µ − d2, ∀s ∈ R. (6.100)

Let φ ∈ C∞c (Ω) be nontrivial and nonnegative and let t > 0. Since

µ > 1, it follows that

Φ(tφ) ≤ t‖φ‖BVa(Ω),1 − d1t
µ‖φ‖µLµΩ + d2|supp(φ)| → −∞,

as t→ +∞, and so we can choose e ∈ BVa(Ω) such that Φ(e) < 0.

Then, the Mountain Pass Theorem (see [22, Theorem 4.1]) implies that

there exist sequences τn → 0 and (wn) ⊂ BVa(Ω) satisfying the following

conditions

(1)

lim
n→∞

Φ(wn) = c (6.101)

where c is given by

c = inf
γ∈Γ

sup
t∈[0,1]

Φ(γ(t))

and Γ = {γ ∈ C0([0, 1], BVa(Ω)); γ(0) = 0 and γ(1) = φ}.
(2)

‖v‖BVa(Ω),1 − ‖wn‖BVa(Ω),1

≥
∫
RN

1

|x|b
f(wn)(v − wn)dx− τn‖v − wn‖BVa(Ω),1, (6.102)

for all v ∈ BVa(Ω).
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Let us prove that the sequence (wn) is bounded in BVa(Ω). First of all,

note that by taking v = wn+twn in (6.102), dividing by t and letting t→ 0±,

we have that∫
Ω

1

|x|b
f(wn)wndx− τn‖wn‖BVa(Ω),1 ≤ ‖wn‖BVa(Ω),1

≤
∫

Ω

1

|x|b
f(wn)wndx+ τn‖wn‖BVa(Ω),1. (6.103)

Then, by (f4) and (6.103), note that

c+ on(1) ≥ Φ(wn)

= ‖wn‖BVa(Ω),1 −
∫

Ω∩[wn≤s0]

1

|x|b
F (wn)dx−

∫
Ω∩[wn>s0]

1

|x|b
F (wn)dx

≥ ‖wn‖BVa(Ω),1 − C −
1

µ

∫
Ω∩[wn>s0]

1

|x|b
f(wn)wndx

≥ ‖wn‖BVa(Ω),1 − C −
1

µ

∫
Ω

1

|x|b
f(wn)wndx

≥
(

1− 1

µ
− τn

µ

)
‖wn‖BVa(Ω),1 − C

≥ C‖wn‖BVa(Ω),1 − C + on(1),

for some C > 0 uniform in n ∈ N. Then it follows that (wn) is bounded in

BVa(Ω).

By the boundedness of (wn) ⊂ BVa(Ω) and Theorem 3.3, we find

w ∈ BVa(Ω) such that

wn → w in Lr(Ω) for all r ∈
[
1, N

N−(1+a−b)

)
. (6.104)

Then, by (6.104) and the lower semicontinuity of Ja with respect to

the L1(Ω) convergence, calculating the lim sup on both sides of (6.102), it

yields that w satisfies (6.98). Moreover, by taking v = w + tw in (6.98) and

considering the sign of t, we obtain

‖w‖BVa(Ω),1 =

∫
Ω

1

|x|b
f(w)wdx. (6.105)

On the other hand, taking the limit as n→ +∞ in (6.103), it follows that

‖wn‖BVa(Ω),1 =

∫
Ω

1

|x|b
f(wn)wndx+ on(1). (6.106)

Hence, from (6.104), (6.105), (6.106) and the Lebesgue Dominated

Convergence Theorem, it follows that

c = Φ(w)
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and then w is a nontrivial critical point of Φ.

Our next concern is to check that w ∈ L∞(Ω). To this end, consider

k > 0 and the function Gk(s) defined in (5.64). Taking v = w ± Gk(w) in

(6.98), it yields

±
∫

Ω

1

|x|b
f(w)Gk(w) dx ≤ ‖w±Gk(w)‖BVa(Ω),1−‖w‖BVa(Ω),1 ≤ ‖Gk(w)‖BVa(Ω),1

and we infer that

‖Gk(w)‖BVa(Ω),1 =

∫
Ω

1

|x|b
f(w)Gk(w)dx.

Setting 1∗a = N
N−(1+a−b) again and reasoning as in Subsection 5.4, we obtain

(∫
Ω

1

|x|b
|Gk(w)|1

∗
adx

) 1
1∗a

≤ C

(∫
{|w|≥k}

1

|x|b
(1 + |w|q−1)

N
1+a−b dx

) 1+a−b
N (∫

Ω

1

|x|b
|Gk(w)|1

∗
adx

) 1
1∗a
.

Since

lim
k→∞

∫
{|w|≥k}

1

|x|b
(1 + |w|q−1) dx = 0,

we may find k0 > 0 such that

C

(∫
{|w|≥k0}

1

|x|b
(1 + |w|q−1 dx)

N
1+a−b

) 1+a−b
N

< 1

and then (∫
Ω

1

|x|b
|Gk(w)|1

∗
adx

) 1
1∗a

= 0

holds. Therefore, Gk0
(w) = 0 and so |w| ≤ k0.

As a consequence of Corollary 5.5, since w ∈ BVa(Ω) ∩ L∞(Ω) satisfies

(6.98), it also satisfies all the conditions of Definition 4.9 and, moreover, it is

nonnegative thanks to Corollary 4.12.

It just remains to justify that w is a ground-state solution, i.e., that w

has the lowest energy level among all nontrivial bounded variation solutions.

In order to prove it, we have to recall [23], where it is proved that we can

define the Nehari set associated to Φ, given by

N =

{
u ∈ BVa(Ω)\{0} : ‖u‖BVa(Ω),1 =

∫
Ω

1

|x|b
f(u)udx

}
.

It can be proven as in [23] that N is a set which contains all nontrivial

bounded variation solutions of (1.2). Then, if we manage to prove that the
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solution w is such that Φ(w) = infN Φ, then w would have the lowest energy

level among the nontrivial solutions.

By using the same kind of arguments that Rabinowitz in [33], which

consists in study the map t 7→ Φ(tv) and verify that it has a unique maximum

point tv > 0, which is such that tvv ∈ N ((f5) is mandatory to prove

the uniqueness), in the light of (f1) − (f5), one can see that N is radially

homeomorphic to the unit sphere in BVa(Ω) and also that the minimax level

c satisfies

c = inf
v∈BVa(Ω)\{0}

max
t>0

Φ(tv) = inf
v∈N

Φ(v).

Since w is such that Φ(w) = c, it follows that w is a solution which has the

lowest energy among all the nontrivial ones.
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