1D LOGISTIC REACTION AND p-LAPLACIAN DIFFUSION AS
p GOES TO ONE
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ABSTRACT. This work discusses the existence of the limifpegoes to
1 of the nontrivial solutions to the one—dimensional profile

— (Jux|P~2uy), = A |u[P~2u— [u[%2u 0<x<1
u(0) =u(1) =0,
whereA is a positive parameter and the expongntgsatisfy 1< p < q.

We prove that solutions do converge to a limit function, whsolves in
a proper sense a Dirichlet problem involving the 1-Laplacigerator.

1. INTRODUCTION

The logistic equation is a standard in nonlinear analyspufation dy-
namics and reacting—diffusing systems, among other fighdis[22], [13]).
According to orthodoxy, the asymptotic density distribatu of a migrat-
ing species with intrinsic growth rate > 0, living in a habitatQ c RN (a
bounded domain) which is surrounded by a completely hostddium, is
governed by the problem:

{—Apu:}\|u|p—2u—\u\q‘2u xeQ

1.1
u=~0 xe 0Q. (1.1)

The p—Laplacian operatav,u = div (|Ou|P~2u) acts as the diffusive mech-
anism describing the migration afthroughoutQ. On the other hand, the
power g term in the equation accounts for the population dnogveffects.
This means that the species is in competition against itsethe available
resources. The exponernigy are assumed to satisfy,

l1<p<aq (1.2)

Let us review some few traits of (1.1). Existence of nonéligolutions
is only possible whem > A1(—Ap), the first eigenvalue of-Ap, while
the best understood issues has to do with positive solutionfact, there
exists a unique positive solutiar, bifurcating from zero aA = A1, whose
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asymptotic profile a3 — o has been studied in full detail (see [20], [17],
[18], [14] for references dealing with the ‘genuine’ nomar diffusion case
p # 2). As a characteristic feature,

1 1
|urllo <ATP  and A TPuy —1 as A — oo,

the last convergence being uniform in compact sefQ.olMoreover, while
first estimate is strict in the case<lp < 2, the complementary range> 2

enjoys especial phenomena. In fact, the rediop(x) = A qup} becomes
nonempty and converges fasA — o ([20], [17] and Remark 2 below).
On the other hand, by means of variational arguments it cashben the
existence of an arbitrarily large number of further non#iitwo—signed)
solutions to (1.1) whei — o (see [15] for this kind of results in a closely
related problem).

In the present work, we are only concerned with the one—déineal
case:

u(0) =u(1) =0. (1.3)

The emphasis is firstly focussed in studying the existent¢beofimitsu of
its nontrivial solutionss asp — 1. Secondly, in analyzing the rble of these
limits u as solutions to the formal limit problem,

{—(|ux\p—2ux)xz}\|u|p_2u—|u|q_2u 0O<x<1

_<i) :,\i—u\quu 0<x<1
Ux| /5 [ul (1.4)
u(0) =u(l1)=0.

According to results going back to [19] (see also [9], [1#)E structure
of the nontrivial solutions set to (1.3) is essentially dtetd by the eigen-
value problem,

—(Jux|P2uy)x = A u[P~2u O<x<1
u(0) = u(1) = 0,

More precisely, nontrivial solutions are organized in symmetric curves
(invariant with respect ta — —u). Each of these curves is associated to
a fixed eigenvalu@, to (1.5). Then—th curve can be regarded as a defor-
mation of then—th eigenspace which bifurcates fram= 0 atA = Ap. In
this regard, the nonlinear diffusion case reproduces tttenpa already ob-
served in the linear diffusion case where- 2 andq satisfies (1.2) (see [7],
[24] for pioneering results on the subject).

Our main results here state that a similar picture occursnwhe deal
with the nontrivial solutions to (1.4). Such solutions aeguired to satisfy
a sort of energy condition providing us a uniqueness cuteriln addition,

(1.5)
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they are characterized as the limit of solutions to (1.3) as1. We are able
to show that solutions are also organized in explicitly cated curves. As
in the case of problem (1.3) these curves emanate by bifarciiom zero,

at the eigenvalues, = 2n to one—dimensional 1-Laplacian:

- (i) =A U O<x<1
‘UX| X ‘U‘ (1-6)
u(0) =u(l)=0.

It should be mentioned that a detailed discussion on theeaiod distri-
bution of the eigenvalues to (1.6) was addressed in [6] aod sesults has
been recently extended in several directions (see [8], §2@] references
therein).

This work is distributed as follows. Section 2 presents &eatained
analysis of problem (1.3). Proofs included there have bpecially adapted
to the purposes of this paper. Limits ps— 1 of the solutions to problems
(2.3) and (1.5) are studied in Section 3 (Theorem 6). The epinof so-
lution to (1.4) is introduced in Section 4. It belongs to tlengral theory
developed in [2, 3] (see also [10]). The main features canogrthe non-
trivial solutions to (1.4) are stated in Theorem 8.

2. PRELIMINARY FACTS

In this section we are concerned with the problem (1.3) witexd! be
always assumed that exponepts satisfy (1.2). As we are interested in
letting p go to 1, only the regime ¥ p < 2 should be analyzed in detail.
However, as already mentioned, the complementary rang@ enjoys es-
pecial phenomena. They are just reviewed at the end of thies¢Remark
2).

For a weak solution € Wol’p(O, 1) to (1.3) it is understood that relation

1 1 1
/O|ux|'°‘2uxvxz)\/O u'o‘zuv—/0 ud—2uv (2.1)

holds for every € Wol’p(o, 1). Due to the fact thaWol’p(O, 1) C L*(0,1)
it can be shown that weak solutions become genGfheolutions provided
1< p<2([18]). Thus, we are plainly referring to ‘solutions’ to.8) in the
sequel.

For later use the next well-known result is stated. It sunmeathe main
features on the Dirichlet eigenvalues of the one—dimehgrhaaplacian.
See for instance [11], [23], [19], [9] for background ma&taon the subject.

Theorem 1. The eigenvalue proble(i.5)satisfies the following properties.
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i) The full set of eigenvalues ¢1.5) consists in the sequenéa,}:

B 2(p—1)T13 m

7
p  sing

i) Every eigenvalud, is simple, i. e. eigenfunctions associatedfare a
scalar multiple of a normalized eigenfunctiop(x).
iii) un vanishes exactly at the pointgx ‘ﬁ k=0,...,n.

A corresponding “perturbed” version of the preceding resuthe next
one, of bifurcation—type nature. As pointed out in Sectiptihére is a clear
difference in the response of problem (1.3) depending orttveng > 2 or
1< p< 2. Since we want to lgb — 1+, the latter case is the one that most
concerns us in this work.

Some of the forthcoming assertions are essentially wetiwkr(see [19]).
Nevertheless, an independent self—contained proof i®sedlfor our sub-
sequent arguments.

An=(tu(p)?,  t(p) n=12.. (22

Theorem 2. Let0O < A1 < A < --- be the sequence of eigenvalue$id).
Then, problen{1.3)in the regimel < p < 2, satisfies the following proper-
ties.

i) Nontrivial solutions are only possible A > A1. Moreover, all solutions
to (1.3) verify the estimate

ulle < A, (2.3)
i) For everyA > A; there exists ainiquepositive solution ﬁ) satisfying

WY s0ash 5 M+ & ATes|uY]| s lasA s (24)

iii) For everyA > Ap, n> 2, aside ofiug\l) there exist n- 1 pairs iug\k),

2 < k < n, of nontrivial solutions tq1.3) where Lik) is normalized so as
(ug\k))x(O) > 0. In addition, for all2 <k <n,

P —0asA > A+ & A es|ul| S lash s, (25)

Moreover, forAy < A < An.1 the uniquenontrivial solutions to(1.3) are
k
exactly{iug )}1§k§n.
iv) Forevery k and\ > Ay, solution L;k) in the k—th branch vanishes exactly

I
atx=—-,1<I|<k.
X=plsl=

Proof. Let us introduce the scaling

u(x) :)\qflpv(t) t = Adx
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Then problem (1.3) is transformed into the equivalent one,

1
—(Iwe|P~2w)e = V[P~V — V|92, O<t<Ar,
1 (2.6)
v(0) =v(Ar)=0.
To analyze (2.6) we first discuss the initial value problem,
_ P=2y. ), — |v|P—2y — |y|9—2
(V[P = [V[P v — V[T, t>0, 2.7)
v(0)=a, w(0)=0.

The existence and uniqueness of a maximal solution for tidsaaslightly
larger class of problems have been considered in the litergsee [18],
[25]). However, we can proceed here in a direct way. In fdat,ftinction
E(v,v) defined by

Evw) = WPV, V=PI (@28)
o P q
is conserved through the solutions to (2.7). To ascertanréisponse of
problem (2.7) it is enough to assume that 0 since the equation is invari-
ant with respect to the change— —v. According to the values aff > 0
and employing the fact that

E(v.w) =V(a), (2.9)
three cases are possible.

a) o = 1 which impliesv = 1. In this regard, the restrictiond p < 2
is crucial (see Remark 2 below).
b) a > 1. A unique solutiorv exists, it is increasing, satisfiggv) <
V(a) and blows—up at= w(a),
@) =)+ [ cw
@ (V(a)=V(s)®

c) O0< a < 1. Again, a unique solutionm exists which decreases from

. T . o
o to —a when 0<t < T, vanishes at = 5 IS symmetric with
respect td = T and becomes periodic with period 2vhere

T=T@=2p)F [ @i
0 (V(a) = V(s)?

Coming back to (2.6), let be any of its nontrivial solutions. It can be
assumed without loss of generality that it verifig€) > 0. Such solution
mustnecessarilyexhibit a first maximum at= ty, > 0 with valuev(ty) = a.
Sincev'= v(t —ty) solves (2.7) them must satisfy:

O<a<l
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This assertion meag(t)| < a < 1 and so, changing the scale baekx)| <
A qflp, which proves estimate (2.3). Moreover, there must existN such
that .

AP =nT(a). (2.11)
We now claim thafT (a) is increasing in(0,1), limg_,0T = t1(p) where
t1(p) is the value introduced in (2.2) while lign,; T = c. Latter asser-
tion is delayed to Lemma 3 below. To show the increasing ctarafT,
we rather substitute the grogp(u) — ¢4(u) by ¢p(u)g(u) whereg is a de-
creasing function inu > 0. Notation used meangs (u) = |u|"~%u (r > 1).

Then,
—2(p}- /
(/£ 8p(D)g(an) dr)

whence the increasing variation becomes evident, soltf@t< T(a). In
our precise example,

=2(p} / =
(J TP~ (ar)o-P) dr)

)

ol

Rl

Settinga = 0:
11 ds
T =2p-17 [ = ~t(p).
0 (1-)p
Appealing to (2.11) and Theorem 1, we deduce
AYP > T(a) > T(0) =ty(p) = AL/P.

Let us denote by(t, a) the solution to the equation in (2.6) satisfying
Vt(0) > 0 and||v|| = o with 0 < a < 1. It has been shown thatufsolves
(1.3) then necessarily > A;. In addition,u can be expressed in the form,

uix)=A qupv()\ %x, a)

wherea — A~ @s |ull.,» A anda being coupled by equation (2.11). Notice
that it follows from this fact that

A > (nT(0))P = Ay,
An denoting then—th eigenvalue of (1.5). On the other hand,
u(lﬁ() :)\Flpv(kT(a),a):O 1<k<n.
In conclusion, assertions of the theorem hold by defining

(n) 1 1
Uy’ (X) = AaPV(APX, a), AP =nT(a).
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Relations (2.4), (2.5) follow from the limit behavior df at o = 0 and
o=1. U

Remarkl. Solutionsiuf\”) arise by bifurcation from zero aX, asA in-
creases.

Lemma 3. The behavior of Ta) asa — 1is dictated by:
0 l<p<2,
a“ar?fT<a) B z{p’}%/l ds I p>2
O (V(1)-V(s)?
Proof. By choosings > 0 small enoughC. :=q— p+¢ > 0, then we find
C.(1-vy<vwil_wl<c,i-v) 1-6<v<i,
for certain 0< 0 < 1. FunctionT can be written as

T2 ) V(@) d—i/<s>>%'

In addition,
<C£> s /:5 V(@) isv<s>>% : <C£> E

a s
J= &  _aa %/1 @
10 ([d2(1—v)dv)» 1 (t12—1)p

after performing the change=1— (1— a)t. It can be checked that— o
asa — 1—-if1 < p<2while

where

if p> 2. Therefore whem > 2 we obtain
1-5
m T§2{p’}%’/ ds L met s,
a1 0 (V(1)-V(s)P

M being a constant. By letting — O we conclude

o 1
im T gz{p'}—ﬁ/ ds |

o O (V(1)-V(s)?

A symmetric reasoning yields the complementary estimate. U
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Remark2. In the case > 2 the convergence of the integiial1) referred to
in Lemma 3 introduces strong differences regarding themedi< p < 2.
The main point is that the initial value problem (2.7) extsbifor a €
{—1,1}, infinitely many solutions in the strip-1 < v < 1. Just for com-
pleteness, a result describing the nature of the solutm(is 3) is presented
below. With a slightly different statement it is contained19]. We point
out that an independent proof can be obtained with the saas®neng as
in Theorem 2, complemented with the ideas in [16]. Nevee$&lprecise
details are omitted.

Theorem 4. Assume that p- 2. Then problen{1.3) exhibits the following
features.
i) Nontrivial solutions u only exist & > A1 while all of them fulfill||u||, <

1
A @p. Moreover, a unique positive solutiorﬁlhexists for allA > A4 satis-
fying,

P, —=0  asA — Ay,

while 4 = 237 in the whole interval| T§2A 5,1 1A 5] if A >
T(1)P.

i) For A > Ap, n> 2, two symmetric and ‘multivalued’ familieﬁu&n) of
solutions bifurcate from zero at = A,. More precisely,

a) If An <A < (nT(1))P, the family reduces to a single solutiorhuuf\”)

which satisfiegu”)«(0) > 0, vanishes at x ¥, 1 <k <n—1and

UV 50 as A oAy, AEsul”| 51 as A — (nT(1)P.

b) For everyA > (nT(1))P and every family4,... 1, of disjoint closed
subintervals of0, 1) (some of them possibly reduced to a single point) such
that

dist ({0}, 17) = dist ({1}, In) = @)\%,

dist(le_1,l) = T(DA B, fora<k<n,
and

_1
P,

I+ +|ln| =1—nT(1)A
there exists a unique solution u in the famig)?)usuch that w(0) > 0 while

for every k= 1,...,n, u achieves the valug-1)k"1A T in the whole in-
terval . Finally, u vanishes exactly at-a1 points of(0, 1) the k— 1-th of
them,éx_1, located midway betweep I, and k.
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3. LIMIT PROFILES ASp— 1

It is assumed henceforth that<lp < 2 and we are going to study the
limit as p — 1 of the solutions to (1.3) described in Theorem 2. A first
auxiliary result is the following.

Remark3. Forl< p<2andO< a < 1let T(a) be the integral defined in
(2.10) Then,

where
0<s< 1

g(u) == O<u<l

Functiong is increasingg(0) = g and lim,—,1—g(u) = 1. Thus,
O _+ (a) < L);
(1_aaq—p) (L—a9P)p

SinceT (0) = t1(p), t1 being the value given in (2.2), it can be shown by
direct computation that lign,1 T(0) = 2. Thus,

Tl

— 2
— < lim T(a) < Iim T(a) < ——. 3.1
We are next refining the lower estimate in (3.1). Gigen 0, takeps > 1
so thatg— § < g- < gand then using

get 0< n < 1 satisfying

g—e<
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q

. 1—ur . .
Observing that for all 6< u < 1 the group 1 uup increases in value as
p — 1+, we infer that

q
1-ur @
—& — 1- 1 1 .
q <1—u<p<q’ n<u<ld <P<Ppe
Hence,
1 d
lim T(a) = lim 2(p-1)p [ 42
p—1+ p—1+ (1-n)P h(s)p(1—sP)P

1
2(p—1)°p /1 ds
(

> lim i 11
p—1 {1_ p(Q*f)aq—p}_p 1-n)P (]__Sp)_p
q

1
Lo
= lim 2 1/ (PP g 2
P P(a—¢) ,q-pl P70 P —q
{1—Taq p}

By taking limits ase — 0+ we finally achieve that

< 2
~1-ad 1

lim T(a)
p—1+

U

Our next result reviews the limit behavior of the eigenp&rgroblem
(1.5) asp — 1. Interested reader is referred to [6], [26] for detail®e(akso
[8] for further developments in a convective variant of {).5

Theorem 5. Let (Ap, un) be the n—th eigenpair tL.5)whereA, = An(p) is
givenin(2.2)and let y = Uy be its associated eigenfunction normalized
according to @, (0) > 0 andsupun = 1. Then, the following properties are
satisfied.

i) Limit values ofA,, are given by,

)Tn = 1lim Ap(p) = 2n, neN. (3.2)
p—1
i) Limit profiles of eigenfunctions are,
n
— . _ k-1
Un = ngnlun = k;( D" "Xk (3.3)
where xi is the characteristic function of = (k;nl, 'ﬁ) and the sequences

un and Uy converge tal, anduny = O, respectively, uniformly on compact
sets of(0,1)\ {1,..., =11,
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Remarkd. A description on the status ())_\n, un) as the natural set of eigen-
pairs of the 1-Laplacian is contained in Section 4.

Main result of this section can already be stated.

Theorem 6. Assume that < p < 2 and let L;”) be the branch of solutions

to (1.3), normalized as{ugn))x(O) > 0, that bifurcates from zero at = Ay.
Then, for allA > A,

n du™
) ) e akeliy  oreh - duy
W= L'Lnlu)\ —k;( DA —2n)a1xy, Llinl ol M CA)

where both limits hold uniformly on compact sets(@f1) \ {1,..., "1}
and xk is the characteristic function of the interv&t! < x < X,

Proof of Theorem 6Fix A > Xn. ThenA > Ap = An(p) for p close enough
to 1 and the corresponding solutiuﬂ) can be expressed in the form,

My — X 55 s
Uy’ (X) =A@pv(t, a), t=Arx

wherev(-, a) is the solution to the equation in (2.6) such thgD) > 0,

1
V|l = a whereA P =nT(a). Notice thatv(-, a) also depends op, but an
explicit reference to this parameter has been omitted fortsBy setting,

- 2
T(a) = 1_ga-1’
and doingp — 1 in AP = nT(a) we get the relatiom = (1— %)Fll be-
tweenA and the amplituder of limp_,1v(-, a).

On the other hand the autonomous character of (2.7) implaagaor ev-
ery 1<k<n,

vit,a) = (~D Wt — (k—1)T(a),a), (k-1)T(a)<t<kT(a).

Thus, the behavior ag — 1+ of v in the whole interval0,nT(a)] is dic-
tated by the corresponding behavior in the intefQal (a)].
Let us show that(t,a) — a asp — 1+ uniformly on compact sets of

T . —
(O,%). To this end, fore > 0 so small as X a — € < a, sett; €

<O, @) the point where(t, o) achieves the value — €. Then,

a—¢ dS

te = b <.
{p}/o (V(a)—V(s))r
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FIGURE 1

Hencet; — 0 asp — 1+. The symmetry of the solution leads to the de-
sired assertion in the whole intervi@, T (a)]. This shows (3.4). Second
convergence in (3.4) is a consequence of the conservatiémof2.9). [

Graphics of the solution to (2.7) are shown in Figure 1. \aldeosen
areq=2.5,a = 0.5, together witpp=2, p=1.5andp = 1.1. The smaller
p, the flatter the graphic.

4. ANALYSIS OF THE LIMIT PROBLEM

In this section we are dealing with problem (1.4),

_<i) — A~ 2y 0<x<1
ud Jx ]
u(0) =u(1) =0,

which is the formal limit of (1.3) ap — 1. The natural setting to study
this problem isBV(0, 1), the space of functions< L*(0,1) so that its dis-
tributional derivativeuy is a finite Radon measure. We point out that ev-
ery u € BV(0,1) coincides a. e. with a function € L*(0,1) which is of
bounded variation in the classical sense ([1]). Thus, bptifieng u with
g, it can be assumed that the set of discontinuities & at most denu-
merable and consists only of jump discontinuities. In jgattiru possesses
finite side limitsu(x£) at anyx € [0, 1]. It is also recalled that functions in
WL*(0,1) can be identified with Lipschitzian functions & 1].

After these remarks, the notion of solution to (1.4) (addgtem [2, 3])
is formulated as follows.
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Definition 7. A function ue BV(0, 1) defines a solution t(l.4)if there exist
zcW1*(0,1) andB € L*(0, 1) satisfying] z|| < 1and||B||» < 1 together
with:

1) —zx=AB —|u|92uin 2'(0,1),

2) (z,ux) = |ux| as measures anfu = |u| a.e.,

3) z(0) € sign(u(0+)) and—2z(1) € sign(u(1-)).

Remarks.

1) Conditionz € W*(0,1) is coherent with the right hand side of equation
in1).

2) Forve BV(0,1) andz € W1*(0,1), (z,vx) stands for the distribution,

1 1
(@w.0) == [ Wz~ [ vegr  9eCHOD. (@)

Sincez is continuous, it can be shown by an approximation argunfett t
(z,vx) = zvx as measures. A further reasoning leads to the Green formula,

1 1
| @w+ [ vex=vzlg =v(1-)z(1) ~v(o+)z(0),  @42)
0 0

the first term meaningvy(0,1). Both (4.1) and (4.2) were introduced in
[4] in a more generaN—dimensional framework. Moreover, by using an
arbitraryv € B(0,1) as a test function in equation 1) we achieve,

[ @wo—vali= [ g2 “3)

3) Last requirement in Definition 7 is a weak form of the Ditethbound-
ary condition. Terminology € signu meansz = ﬁ if u#£0,ze[-1,1]
otherwise.

A further relevant subject to be reviewed is the eigenvaloblem (1.6)
for the one dimensional 1-Laplacian. Namely,

—(3) :)\i O<x<1
Ux| /Ul
u(0) =u(l)=0.

In [6], a definition of the full set of eigenvalues to (1.6) wassented for the
first time. They consist of the critical values of the ‘totariation’ func-
tional, constrained under suitable restrictions. A masulein [6] states
that the set of eigenpaifd ,u) € R x BV(0,1) to (1.6) just coincides with
the limits (An, un) given in (3.2) and (3.3) (see Theorem 5 above). It is also
shown in [6] that any eigenpaj , u) solves (1.6) in the sense of Definition
7 (see also [26], [8] for related problems).

The main statement of the section is the following resulprdvides us a
genuine extension of Theorem 2 to the 1-Laplacian setting.
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Theorem 8. LetA, = 2n be the sequence of eigenvalues ofltHeaplacian.
The structure of the set of nontrivial solutions to problén%) can be de-
scribed in the following terms. .

i) Nontrivial solutions u= BV(0,1) are only possible ik > A; = 2. More-
over, all solutions tq1.3) verify the estimate

lull, < AT (4.4)

iiy Limit family (3.4)obtained in Theorem 6" = 57, (—1)<"1(A —2n) &1y,
define a branch of nontrivial solutions {&.4)for A > A,. In addition,

7" Y a1t
Juy’[|, —0asA = Ant+ & A Lu7|| —1lasA — . (4.5)

Moreo!er,lf}\n) changesits signatx &, 1<k<n-—1.
i) ForAn < A < Apyg,
u=+", 1<m<n,

are theuniquenontrivial solutions tq1.4) satisfying the extra condition,
|u| = constant (4.6)

Remark6. Some observations on the uniqueness requirement (4.6h are |
order. As observed in the proof of Theorem 2, functidaglv, v;) defined

in (2.8), is conserved through the solutions to (1.3). Byrfally letting

p — 1 we obtainEp(v,vt) — |v| — é\v\q. The latter quantity is conserved

only when|v| keeps constant. That is why (4.6) seems reasonable and may
be regarded as an energy condition.

A further reflection on condition (4.6). Itis said th@t,u) € R x BV(0,1),
u =0, is a weak eigenpair to (1.6) ([26], [8]) provided thasolves (1.6)
in the sense of Definition 7, wherez, = A 3 replaces the equation in 1).
As already pointed out, the\n, u,)’s obtained in Theorem 5 define weak
eigenpairs. However, it was discovered in [6] thkivaluesA > 2 are weak
eigenvalues. It is amazing that extra condition (4.6) disicrates the gen-
uine ‘variational’ eigenvalues,, = 2n from the remaining ‘artificial’ weak
eigenvalues in2, «).

Finally, an example of a family of nontrivial solutions ta4) which does
not satisfy condition (4.6) is presented in Remark 7 below.

Proof of Theorem 8Let u be a nontrivial solution. By choosing= u in
(4.3), the variational characterization Af ([6]) leads to:

_ 1 1 1
Alfo \u\s/o \ux|+\u(0)\+|u(1)|<)\/0 ul.

Thus, the existence of a nontrivial solution implies- )Tl.
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1
To prove (4.4) we set = max{u— A a1 0} as a test function. It can
be shown that 2) also entailg,vyx) = |vx| ([21, Proposition 2.7]). From
equation (4.3) we arrive at:

1 1 1
/0 vy < A /o (B— (A T TU))\v

where ¢q4(t) = |t|92t. Therefore,v = 0 and sou < A T5. The comple-
mentary estimate > —A = is obtained in a similar way and so (4.4) is
shown.

We are next checking that = Gg”)(x) defines a solution to (1.4). By
choosingB = 7, (—1)kLxy it is clear that] 8| < 1 andBa” = [a{"|.
The scalar fieldz can be found by solvmg 1) separately on each interval

(k=1 K] with the initial conditiorz= (—1)*~* atx = k-1, and the restriction

|z||, < 1. We arrive in this way at
A 2k—1
— —Dkon(x—"2 =
2= 3 (vt (x- 2 )xk

and souﬁﬂ), B andz are linked by condition 1). Notice that{0) =1 =
signu(0+) andz(1) = (—1)" = —signu(1—) so the boundary conditions
3) are satisfied.

We are checking condition 2). For= _(” and ¢ € CZ(0,1), identity
(4.1) implies

1 n 1
s UX )y - - X= - _1k_1)\_2 g-1 o
(2 u).9) / u(z) k;( a2zl

1

i A 2n)a-1z
i

_ n—1 N
= 20—ty Z 20020 (84,9) = (U 8).

1

KA —=2n)TTZ (X 1) b (Xc-1)

I\)M:

wherexy = '5 In the last inequalityd,, stands for Dirac’s delta located at

X = Xp. Therefore,uﬁﬂ) defines a nontrivial solution to (1.4) for > )\n.
Remaining properties in ii) are a consequence of the exgligression of
=)
u

We are next showing theniquenessassertion iii). Thus, let be a solu-
tion to problem (3.2) with constant modullilg = &. No generality is lost
if we assumai(0+) = & > 0.
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We claim that O< & < Ae1. In fact, it follows fromu(0+) = & that
—zy = A —&97L, Thus, conditiong(0) = 1 and|z| < 1 imply £4-1 < A.
Moreover, ifA = €971, thenz, = 0 and consequently(x) = 1. Condition
2) in Definition 7 implies thatik = |ux|, uis nondecreasing and sx) = &
for all x € (0,1). However, this solution is not possible becangb) = 1
—1=sign(—u(1-)) and so the boundary condition is not satisfierd-at1.
Therefore, the claim follows.

Next observe that solutions with constant absolute valwe baly a fi-
nite number of changes of sign owing to belong3¥(0,1). Hence, two
possibilities must be analyzed.

a) u does not change its sigiProblem—z, = A — £971, z(0) = 1 has the
solutionz(x) = — (A — £971)x+ 1. Assume that there exists < 1 such that
z(xp) = —1. Sincez is decreasing, we getx) < —1 for all x € (xp, 1) con-
tradicting the conditioriz| < 1. On the other hand, the boundary condition
atx=1reads ag(1) = —1. Hence,

—1=—(A-&%H 41
and this fact implied > 2 andé = (A — Z)Fll, I e,u= Lf/\l).
b) u changes its sign m 1 times (m> 2). In this case we know that the
solutionu can expressed as

m
u= Z (_1)k_1EXJk7
K=1
for some intervalSk = (Xk_1, %), with xo = 0 andx,, = 1. We are searching
for the value of and the endpoints.
In the first intervald; = (0,x1) the solution is positive and sezy =
A —&9-1 holds and it implies

z(x) = —(A —E9 )x+ 1.

Notice thatz(%;) = —1 wherexj = ﬁzq,l Thus, |z(x)| < 1 for all x €
(0,%X1) and, as a consequence of conditi@uy) = |uy|, we getu = £ in
(0,%X1). This means that;"< x;. However it is not possible thag < X,
otherwisez < —1 in the intervalX, x1) contradicting thatz(x)| < 1 for all
0 <x< 1. Thusx; = X; and from the very definition of;, u jumps fromé
to —¢ at this point.

In the second interval, = (x1,X2) the solution is negative and so the
problem forz becomesgy, = A — €971, z(x;) = —1 whose solution ig(x) =
(A — E971)x— 3. By a similar argument, we infer thatchanges again its
sign atxp = Proceeding inductively, it is found that changes of sign

4
A—gal
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occur successively a = ﬁkq,l k=1,...,m—1, being the length of the
intervals|Jy| = ﬁzq,l In particular,
2m
A g1 b
Henced9 1 =) —2mandx = % k=1,...,m—1. We both conclude that
A >2mandu= Lf)\m) (x) hold, and so we are done. O

Remark?7. To illustrate the role of condition (4.6), we are showingtth
problem (1.4) exhibits further families of nontrivial stilkns aside the ones

referred to in Theorem 8. In fact, choose<Oo < 1 and setA*(a) =

2
1

u:)\ﬁax[o7¥](x), A>A(a), 4.7)

constitutes a family of nontrivial solutions havidg= A*(a) as the onset
critical value. Obviously, solutions in (4.7) do not safi$#.6). To check
that conditions in Definition 7 are fulfilled it is enough witising,

1—2%x OSXS)\T
B=Xgu(® and  z= A"
-1 O§T§x§1,

as the corresponding functions alluded to in the definiti@ther further
families, showing more complicated patterns, can be alsodmut. Of
course, none of them satisfies (4.6).
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