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Abstract. This work discusses the limit as p goes to 1 of solutions to problem{
−∆pu = λ|u|p−2u− |u|q−2u, x ∈ Ω,

u = 0 x ∈ ∂Ω,
(P )

where Ω is a bounded smooth domain of RN , λ > 0 is a parameter and the

exponents p, q satisfy 1 < p < q.
Our interest is focused on the radially symmetric case. We prove in this

radial setting that solutions up to (P) converge to a limit u as p → 1+.
Moreover, the limit function u defines a solution to the natural ‘limit problem’

which involves the 1–Laplacian operator. In addition, a precise description of

the structure of the set of all possible solutions to such a problem is achieved.
This is accomplished by means of the the introduction of a suitable energy

condition. Furthermore, a detailed analysis of the profiles of all these solutions

is also performed.

1. Introduction

Since the late seventies, reaction–diffusion systems has been one of the more
active areas in nonlinear analysis ([17], [42], [12], [36], [7]). The so–called logistic
problem is a reference model in the field where a wide variety of techniques have
been tested (sub and super solutions, degree and bifurcation theory, critical point
theory). Under such a term it is understood the nonlinear eigenvalue problem,{

−∆pu = λ|u|p−2u− |u|q−2u x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a bounded smooth domain and the diffusion is governed by the
p–Laplace operator ∆pu = div (|∇u|p−2∇u). Exponents p, q are assumed to satisfy,

1 < p < q.

The number λ > 0 plays the rôle of a bifurcation parameter. In fact, a well–
extended insight in the theory from the very beginning is just observing (1.1) as a
crude perturbation of the “pure” eigenvalue problem,{

−∆pu = λ|u|p−2u x ∈ Ω,

u = 0 x ∈ ∂Ω.
(1.2)

The main objective of the present work is analyzing the fine aspects of the asymp-
totic behavior of problem (1.1) as p→ 1+. In the first place, this involves discussing
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the existence of the limit u = limp→1+ up of a given family up of solutions to (1.1).
In the second place, it should be decided whether such possible limits u solve in
some weak sense the natural “limit problem”. In other words, that one obtained
by directly inserting p = 1 in (1.1),−∆1u = λ

u

|u|
− |u|q−2u x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.3)

where ∆1 = div

(
∇u
|∇u|

)
is the one–Laplacian operator. To complete the analysis,

a third task to be faced is that of describing all of the possible nontrivial solutions
to (1.3).

Previous experiences on the “natural” associated eigenvalue problem,−∆1u = λ
u

|u|
x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.4)

strongly suggests that characterizing the solutions to (1.3) requires imposing certain
restrictions. As a matter of fact, the higher eigenvalues to (1.4) have not been
studied until few years ago ([8], [31], [33], [41]). It was just discovered in [8] that
infinitely many anomalous eigenpairs to (1.4) arise if the corresponding Euler–
Lagrange inclusion is not suitably constrained. The very same phenomenon occurs
in the 1D–version of our problems (1.1), (1.3) as recently remarked in [40]. On the
other hand, our analysis in the present work is an extended nontrivial continuation
of [41]. The radial spectrum of (1.4) is analyzed for the first time in this work.

As for applications, the linear diffusion case p = 2 of (1.1) arises in population
dynamics, where it describes the equilibrium regime of a species subject to logistic
self–regulation and spatial migration ([7], [34, 35]). In reaction dynamics, a solution
to (1.1) furnishes the stationary concentration u of a chemical substance, which
diffuses throughout a reactor Ω ⊂ RN and is subject to parallel competing reactions
([18]). That is why major emphasis has been put on studying its positive solutions
(see [7], [32] for a comprehensive overview in population dynamics). The nonlinear
diffusion case p 6= 2 is comparatively less understood. Most of the results have to
do with positive solutions to (1.1) which has been analyzed in a series of works
([13], [25], [26], [23],[22]).

On the other hand, problems involving the 1–Laplacian are deserving a growing
interest in the literature. Specially after the pioneering works [3], [4], [10]. To
formulate a proper notion of solution to problems as (1.3) counts among the chal-
lenges achieved in these references (see Section 2.3). From the very beginning, the
applications of ∆1 range from image processing ([5], [38]) to elasticity ([27]).

However, the structure of the whole set of nontrivial solutions to (1.1) still re-
mains unknown in many concerns, with the exception of the case N = 1 ([25],
[40]). The problem in a general N–dimensional domain Ω is plagued of obstacles.
To quote only a few, there are not any kind of bifurcation results available from
the higher eigenvalues λn,p of −∆p (bifurcation at the first eigenvalue λ1,p has been
studied in [9], [15]). The only exception is the radially symmetric case where Ω is a
ball ([24], [39]). What is worse, the complete spectrum of −∆p remains nowadays
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undetermined ([30], [16]). That is why there hardly exist results providing the ex-
istence of two signed solutions to (1.1) when λ growths (see [20] where such a kind
of existence issues are addressed in a problem with the same structure).

After these considerations, it seems reasonable that an analysis of problems (1.1)
and (1.3) can only be undertaken in the radially symmetric case. In a first step,
a detailed account of the set of all possible nontrivial radial solutions to (1.1) is
presented in this work. Solutions to this problem in a ball BR ⊂ RN are shown
to be organized in continuous curves emanating from the radial eigenvalues λ̃n,p
to (2.21). More importantly, it is shown that the interval λ > λ̃n,p is the precise
existence domain for each of these curves. In this regard, global existence results
in [24] (valid in the case p > 2) are substantially sharpened for the particular case
of (1.1).

Once the nontrivial solutions to (1.1) are known, two main objectives are pursued
in this work. First, to analyze the limit of these solutions as p → 1+. Second, to
characterize such limits as properly defined solutions to (1.3). It turns out that both
problems are deeply connected. On one hand a compactness type result permits us
extracting limits u of families of solutions up to (1.1) as p→ 1+. Moreover, every
such a limit u defines a solution to (1.3) and so this statement actually constitutes
a true existence tool. In fact, the result is also valid in a general smooth domain
Ω ⊂ RN . On the other hand, an uniqueness result allows us concluding the validity
of the full limit u = limp→1 up. In addition, it furnishes a quite detailed description
of the profile of the limit u. This stage of the analysis heavily rests upon the radial
requirement. It is worth to point out that solutions comprised under the uniqueness
result must satisfy suitable symmetry and energy conditions which are revealed in
this work. In fact, without restrictions, problem (1.3) could exhibit an uncontrolled
number of solutions (Section 5.4).

As a final conclusion, we are able to furnish a rather complete picture of the
nontrivial solutions to (1.3) in a ball BR. It is shown that its radial solutions
satisfying an energy condition are organized in continuous curves. Every such a
curve emanates from a radial eigenvalue λ̄n to −∆1. Moreover, the structure of
solutions lying in the same curve is explicitly described. In particular, solutions
belonging to the same curve undergo the same number of jumps. Of course, this
feature is reminiscent of the nodal properties exhibited by the solutions to (1.1)
lying in a fixed branch.

This work is organized as follows. Next section deals with the preliminaries.
Subsection 2.2 discusses the basic properties of problem (1.1), while the concept of
solution to (1.3) together with the compactness principle satisfied for this problem
(Theorem 5) are presented in Subsection 2.3. It is remarked that the material in
these subsections is valid on a general domain Ω ⊂ RN . The main features reported
here were firstly tested in the one dimensional case ([40]). Due to its intrinsic
interest for our purposes in the present work, a partial overview of the later paper
is contained in Subsection 2.4. Theorem 10 describing the nontrivial radial solutions
to (1.1) is shown in Section 3. It includes important Lemma 9 which introduces
and studies the zeros θn of the solutions to the initial value problem associated
to (1.1). The analysis of the asymptotic behavior of problem (1.1) as p → 1 is
launched in Section 4. Two preliminary results stating the finiteness of the limits
limp→1 θn, limp→1 θn (Theorem 13) and proving the validity of the strict inequality

limp→1 θn < limp→1 θn+1 (Theorem 14) are introduced in this section. Proving the
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main result of this work, Theorem 16, is the objective of Section 5. This task is
performed in two steps. The first one discusses the existence of solutions to the
initial value problem connected to (1.3) (Theorem 18). Relevant Theorem 19 is
the keystone on which the uniqueness feature is built. This second step permits us
obtaining the proof of our main statement.

2. Preliminary facts

2.1. Notation. In what follows we assume N ≥ 2 and denote HN−1 the (N − 1)–
dimensional Hausdorff measure in RN . Bounded domains Ω ⊂ RN are supposed to
be of class C1,α. Thus, an outward unit normal ν(x) is defined for all x ∈ ∂Ω.

Lebesgue and Sobolev spaces are denoted by Lq(Ω) and W 1,p
0 (Ω), respectively.

The space of functions of bounded variation is denoted by BV (Ω). It consists of
those L1–functions whose distributional gradient is a Radon measure with finite
total variation. Even though derivatives of members in BV (Ω) are not functions,
they exhibit traces in L1(∂Ω), while this space enjoys the same ranges of continuous
and compact embeddings than W 1,1(Ω). We regard BV (Ω) endowed with the norm

‖u‖ =

∫
Ω

|Du|+
∫
∂Ω

|u| dHN−1 ,

and refer to [1] for a comprehensive account on the theory of functions of bounded
variation.

A substantial part of this work is focused on radial solutions. So we deal with
a ball in RN centered at the origin and of radius R > 0, it will be denoted by BR.
Observe that a radial function u ∈ W 1,p

0 (BR) can be represented as u(x) = v(|x|)
where v, v′ ∈ Lp((0, R), rN−1dr), v′ being the weak derivative of v, while ∇u(x) =

v′(|x|) x
|x|

(see further details in Section 3). In the same vein, a radial function

u ∈ BV (BR) satisfies u(x) = v(|x|) where v ∈ L1((0, R), rN−1dr). However, v′ is
now a Radon measure in (0, R) with total variation |v′| so that the measure rN−1|v′|
is finite. Moreover, the identity∫

BR

ϕ(|x|)|Du| = NωN

∫ R

0

ϕ(r)rN−1|v′| , (2.5)

where NωN = HN−1(∂B(0, 1)), holds true for all radial test functions ϕ(|x|) in
C∞0 (BR) (precise details are omitted for brevity).

The space of continuous functions C(J) on an interval J is regarded with the
uniform convergence on compacta (a similar remark applies to C1(J)).

Finally, for a given measurable function u in Ω, the notation

v ∈ sign (u)

will be used to mean that v ∈ L∞(Ω) satisfies ‖v‖∞ ≤ 1 and v(x)u(x) = |u(x)| a.
e. in Ω. Accordingly, infinitely many v’s can be found whenever u vanishes in a
positive measure set.

2.2. Logistic p–Laplacian problems. Although we are mainly interested in the
radial case, the introduction of some general properties of the nonlinear problem{

−∆pu = λ|u|p−2u− |u|q−2u x ∈ Ω

u = 0 x ∈ ∂Ω,
(2.6)
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is quite convenient for later reference. Henceforth, exponents p, q fall in the range,

1 < p < q. (2.7)

For its use in this section we introduce the notion of weak solution to (2.6).

Definition 1. A weak solution to (2.6) is defined as a function u ∈W 1,p
0 (Ω)∩Lq(Ω)

such that equality∫
Ω

|∇u|p−2∇u · ∇v = λ

∫
Ω

|u|p−2uv −
∫

Ω

|u|q−2uv, (2.8)

is satisfied for all functions v ∈ C1
0 (Ω).

The requirement u ∈ Lq(Ω) is natural if one thinks of the variational formulation

of (2.6). In addition, since elements v ∈ W 1,p
0 (Ω) ∩ Lq(Ω) can be approximated in

this space by functions of C1
0 (Ω) then test functions in W 1,p

0 (Ω)∩Lq(Ω) can be also
inserted in (2.8). Finally we are next showing that weak solutions lie on L∞(Ω)

and so we can test in (2.6) with arbitrary v ∈W 1,p
0 (Ω).

Some important features of (2.6) are the goal of the following result.

Theorem 2. Problem (2.6) exhibits the next features.

i) All possible solutions u belong to L∞(Ω) and satisfy the estimate

‖u‖∞ ≤ λ
1

q−p . (2.9)

ii) Nontrivial solutions are only possible for λ > λ1,p, λ1,p being the first Dirichlet
eigenvalue of −∆p.

iii) For fixed λ > λ1,p there exists 0 < β < 1 not depending on λ varying in bounded
intervals such that the whole set of nontrivial solutions to (2.6) constitutes a com-
pact set in C1,β(Ω).

iv) For every λ > λ1,p there exists a unique positive solution uλ to (2.6). Family uλ
is smooth and increasing in λ while

lim
λ→λ1,p

‖uλ‖∞ = 0, λ−
1

q−puλ → 1 λ→∞, (2.10)

uniformly on compact sets of Ω.

Proof. We first observe that v = (|u| − λ
1

q−p )+sign u ∈ W 1,p
0 (Ω) ∩ Lq(Ω). Then it

can be inserted in (2.8) as a test function leading to:∫
Ω

|∇(|u| − λ
1

q−p )+|p =

∫
Ω

(
λ|u|p−1 − |u|q−1

)
(|u| − λ

1
q−p )+

=

∫
{|u|≥λ

1
q−p }

|u|p−1
(
λ− |u|q−p

)
(|u| − λ

1
q−p )+ ≤ 0.

Thus (|u| − λ
1

q−p )+ = 0 which amounts to |u| ≤ λ
1

q−p .

By choosing v = u in (2.8) we obtain:∫
Ω

|∇u|p − λ
∫

Ω

|u|p = −
∫

Ω

|u|q < 0,

and so we deduce

λ1,p

∫
Ω

|u|p < λ

∫
Ω

|u|p.

Hence, λ > λ1,p.
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The assertion of the C1,β smoothness of solutions follows from the estimate (2.9)
and the classical results in [43], [14].

The existence of a positive solution when λ > λ1,p is obtained by using, say the
method of sub and super solutions. See for instance [11] and [23] (see also [12]
provided that p ≥ 2). It is sufficient to choose u− = εφ1(·), ε > 0 small enough, φ1

a first positive eigenfunction, as a sub solution and u+ = λ
1

q−p as a super solution.

Uniqueness of a positive solution is a consequence of [13]. The family uλ is
increasing in λ. Indeed, it is implicit in the fact that uλ0

becomes a sub solution of
(2.6) for λ > λ0. Finally, asymptotic estimate (2.10) and further features on (2.6)
are addressed in [22]. �

Remark 1. Only the regime 1 < p ≤ 2 is our main concern in this work. However,
the complementary range p > 2 enjoys especial phenomena, the most relevant being

that the flat core Oλ = {uλ(x) = λ
1

q−p } becomes nonempty and converges to Ω as
λ→∞ ([26], [22]).

Remark 2. By means of variational methods one can show the existence of further
nontrivial (two–signed) solutions to (2.6), for λ as large as desired. In fact, the
number of these solutions growths beyond any bound as λ → ∞. See for instance
[20] for this kind of results.

2.3. The 1–Laplacian limit problem. The main objective of this work is to
let p go to 1 in problem (2.6) and obtaining limits of solutions. Accordingly, an
important part of our endeavor will be to analyze the resulting Dirichlet problem
deduced from (2.6) as p→ 1. Namely:

−div

(
Du

|Du|

)
= λ

u

|u|
− |u|q−2u in Ω,

u = 0 on ∂Ω .

(2.11)

The concept of solution to this problem relies on Anzellotti’s theory (see [6]), which
we next recall. Given z ∈ L∞(Ω,RN ) and u ∈ BV (Ω), it was introduced a dis-
tribution in [6] which resembles the dot product z · Du for pairs (z, u) satisfying
certain compatibility conditions. For instance, div z ∈ LN (Ω) and u ∈ BV (Ω) or

div z ∈ Lr(Ω) and u ∈ BV (Ω) ∩ Lr′(Ω). The distribution (z, Du) : C∞0 (Ω)→ R is
defined by:

〈(z, Du), ϕ〉 = −
∫

Ω

uϕdiv z−
∫

Ω

u z · ∇ϕ, ∀ϕ ∈ C∞0 (Ω) . (2.12)

When z and u are compatible every integral in (2.12) is well–defined. It is proved
in [6] that (z, Du) is a Radon measure with finite total variation. More precisely,
it is shown that for every Borel B set with B ⊆ U ⊆ Ω (U open) it holds∣∣∣∣∫

B

(z, Du)

∣∣∣∣ ≤ ∫
B

|(z, Du)| ≤ ‖z‖L∞(U)

∫
B

|Du| . (2.13)

A further feature of the theory in [6] is the notion of weak trace on ∂Ω of the normal
component, denoted [z, ν], of a field z ∈ L∞(Ω,RN ). In fact, under the assumption
that div z is a finite Radon measure, the trace is appropriately defined, satisfies
[z, ν] ∈ L∞(∂Ω) and ‖ [z, ν] ‖L∞(∂Ω) ≤ ‖z‖L∞(Ω,RN ). Most importantly, a Green
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formula connecting the measure (z, Du) and the weak trace [z, ν] is established in
[6]. Namely: ∫

Ω

(z, Du) +

∫
Ω

udiv z =

∫
∂Ω

u [z, ν] dHN−1, (2.14)

for those pairs (z, u) satisfying the conditions already mentioned (see [6]).

We are now ready to introduce the notion of solution to (2.11) which is based
on that introduced in [4].

Definition 3. A function u ∈ BV (Ω) ∩ Lq(Ω) is said to be a solution to problem
(2.11) if there exist z ∈ L∞(Ω,RN ) and β ∈ L∞(Ω) satisfying:

1) ‖z‖∞ ≤ 1 and ‖β‖∞ ≤ 1,

2) −div z = λβ − |u|q−2u in D′(Ω),

3) (z, Du) = |Du| as measures and βu = |u| a.e. in Ω,

4) [z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω.

Remark 3. Conditions z ∈ L∞(Ω,RN ), with ‖z‖∞ ≤ 1, and (z, Du) = |Du| indi-

cate that the vector field z plays the rôle of
Du

|Du|
. In fact, they are equal when

u ∈ W 1,1(Ω) and {∇u = 0} is a set of measure zero since then ‖z‖∞ ≤ 1 and

z · ∇u = |∇u| imply z =
∇u
|∇u|

. For a general u ∈ BV (Ω),
Du

|Du|
cannot belong to

L∞(Ω,RN ). A similar observation applies to β which plays the rôle of
u

|u|
and they

have the same value when {u = 0} is a null set.

Remark 4. We point out that the Radon measure (z, Du) is well–defined since

div z ∈ Lq′(Ω) and u ∈ BV (Ω)∩Lq(Ω). Moreover, (z, Dv) is defined too whenever
v ∈ BV (Ω) ∩ Lq(Ω) and so equation in 2) together with (2.14) imply that the
equality ∫

Ω

(z, Dv)−
∫
∂Ω

v [z, ν] dHN−1 =

∫
Ω

(λβ − |u|q−2u)v, (2.15)

holds for all these test functions v in BV (Ω) ∩Lq(Ω). For the moment, we are not
allowed to consider (z, Dv) for an arbitrary v ∈ BV (Ω). Nevertheless, the next
result implies that actually div z ∈ L∞(Ω), so that (z, Dv) has always a meaning
for every v ∈ BV (Ω).

In the next statement λ1 denotes the first Dirichlet eigenvalue of −∆1 in Ω ([28],
[8], [41]). As shown in [28], λ1 coincides with the Cheeger constant of Ω and is
variationally expressed by,

λ1 = min
v∈BV (Ω)\{0}

∫
Ω
|Dv|+

∫
∂Ω
|v| dHN−1∫

Ω
|v| dx

.

Theorem 4. Let q > 1. Then problem (2.11) exhibits the following features.

i) All possible solutions u belong to L∞(Ω) and satisfy the estimate

‖u‖∞ ≤ λ
1

q−1 . (2.16)

ii) Nontrivial solutions are only possible for λ > λ1.
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Proof. i) Set Gk(t) = (|t| − k)+sign (t), k > 0, and choose v = Gk(u) ∈ BV (Ω) ∩
Lq(Ω) as a test function in (2.15). Then,∫

Ω

(z, DGk(u))−
∫
∂Ω

Gk(u)[z, ν] dHN−1 =

∫
Ω

(λβ − |u|q−2u)Gk(u).

Now, it follows as a consequence of [29, Proposition 2.7] (see also [6, Proposition
2.8]) that that equality (z, Du) = |Du| as measures implies that (z, DGk(u)) =
|DGk(u)| and so,∫

Ω

|DGk(u)|+
∫
∂Ω

|Gk(u)| dHN−1 = λ

∫
{|u|>k}

(
1− |u|

q−1

λ

)
(|u| − k).

Observe that |u| ≥ λ
1

q−1 implies 1 − |u|q−1

λ ≤ 0; in this case, the right hand side
becomes nonpositive, while the left hand side is always nonnegative. So it is enough

with choosing k = λ
1

q−1 to conclude that ‖Gk(u)‖BV (Ω) = 0 what entails the desired
estimate.

ii) Let u be a nontrivial solution to (2.11). By using u as a test function in Green’s
formula (2.15), it yields∫

Ω

(z, Du)−
∫
∂Ω

u[z, ν] dHN−1 = λ

∫
Ω

|u| dx−
∫

Ω

|u|q dx < λ

∫
Ω

|u| dx.

Resorting to conditions 3) and 4) of Definition 3, we get∫
Ω

|Du|+
∫
∂Ω

|u| dHN−1 < λ

∫
Ω

|u| dx . (2.17)

Thus we infer from (2.17) that

λ1

∫
Ω

|u| dx < λ

∫
Ω

|u| dx ,

and the result follows. �

We are next stating that solutions (λp, up) to (2.6) converge as p→ 1 and up to
subsequences, to a solution (λ, u) to (2.11), provided that λp → λ.

Theorem 5. Let {(λp, up)}p>1 be a family of nontrivial solutions to (2.6) with
λp > λ1,p, the first Dirichlet eigenvalue of −∆p, such that limp→1+ λp = λ. Then,
up to a sequence, there exist u ∈ BV (Ω), z ∈ L∞(Ω,RN ) and β ∈ L∞(Ω) with
‖z‖∞ ≤ 1, ‖β‖∞ ≤ 1 such that the following properties hold.

1) up → u strongly in Ls(Ω) for all 1 ≤ s <∞.

2) |up|p−2up ⇀ β weakly in Ls(Ω) for all 1 ≤ s < ∞. Moreover βu = |u| a. e. in
Ω.

3) |∇up|p−2∇up ⇀ z weakly in Ls(Ω,RN ) for all 1 ≤ s <∞.

4) limp→1+

∫
Ω
ϕ|∇up|p =

∫
Ω
ϕ|Du| for every nonnegative ϕ ∈ C∞0 (Ω).

Furthermore, u defines a solution to problem (2.11) by choosing z and β as the
functions referred to in Definition 3.

Remark 5. It is worth remarking that the above theorem could yield the trivial
solution. This occurs, for instance, when limp→1 λp = λ1. Notice that limp→1 λ1,p =
λ1 ([28, Corollary 6]). Accordingly, obtaining a nontrivial solution u requires some
extra computations. Indeed, it can be shown that for every λ > λ1 the limit as
p → 1 of the family of positive solutions uλ to (2.6) defines a nonnegative and
nontrivial solution u to (2.11). Details are omitted for brevity.
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Proof. By setting v = up in (2.8) and taking into account (2.9) we achieve a uniform
estimate of the form ∫

Ω

|∇up|p ≤M, (2.18)

for a no depending on p positive constant M . This implies that up is bounded in
BV (Ω) and modulus a subsequence we find u ∈ BV (Ω) such that up → u both a.

e. and in Lr(Ω) as p→ 1, provided that r < N
N−1 . However, since up is uniformly

bounded in L∞(Ω) such a convergence is upgraded to Ls(Ω) for all s ≥ 1.

The remaining assertions of the theorem are shown by employing similar argu-
ments as in [4] (see also [41, Theorem 6]). Accordingly, their proof are omitted. �

2.4. Review of the one–dimensional case. For future reference as auxiliary
tools, some features of the one–dimensional version of problem (2.6),{

−(|ux|p−2ux)x = λ|u|p−2u− |u|q−2u, 0 < x < 1,

u(0) = 0 = u(1),
(2.19)

are next reported (see [40] for a detailed account and [21] for related one dimensional
problems).

To begin with, the one–dimensional version the the eigenvalue problem is{
−(|ux|p−2ux)x = λ|u|p−2u x ∈ (0, 1)

u(0) = u(1) = 0.
(2.20)

Its full set of eigenvalues consists in the sequence {λ̂n,p}:

λ̂n,p = (nt1(p))
p
, t1(p) =

2(p− 1)
1
p

p

π

sin π
p

, n = 1, 2, . . . (2.21)

Notice that limp→1 t1(p) = 2, hence limp→1 λ̂n,p = 2n for every n ∈ N.

As for (2.19), the scaling u(x) = λ
1

q−p v(t), t = λ
1
px leads to the equivalent form,{

−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, 0 < t < λ
1
p ,

v(0) = v(λ
1
p ) = 0.

(2.22)

Solutions to (2.19) satisfy the estimate ‖u‖∞ < λ
1

q−p and hence corresponding
solutions to (2.22) verify ‖v‖∞ < 1.

To study (2.22) it is quite convenient to consider the following initial value
problem: {

−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, t > 0,

v(0) = α, v′(0) = 0,
(2.23)

where 0 < α < 1 plays the rôle of ‖v‖∞ and is regarded as a parameter. It can be
shown that to every α in this range corresponds a unique solution v0(t). Such a
solution is described in terms of the function:

T (α) = 2{p′}−
1
p

∫ α

0

ds

(V (α)− V (s))
1
p

, (2.24)

where V (v) = 1
p |v|

p − 1
q |v|

q
. As key properties, v0(t) decreases from α to −α when

0 ≤ t ≤ T , vanishes at t =
T

2
, is symmetric with respect to t = T and becomes

periodic with period 2T .
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Going back to (2.22), all the relevant information concerning this problem can
be now expressed in terms of v0(t). In this regard, notice that

v0

(
− T (α)

2

)
= v0

(
− T (α)

2
+ nT (α)

)
= 0 , n ≥ 1 ,

so that v0 vanishes exactly at the points t = −T (α)
2 + nT (α). Hence, solutions

to problem (2.22) can be viewed as a shift of v0. It should be remarked that this
solution v0 depends on α, which plays the rôle of the amplitude of v0. Taking these
facts into account, one deduces the following features.

1) Function

v(t) = v0

(
t− T (α)

2

)
, (2.25)

solves (2.22) if and only if there exists n ∈ N such that α solves the equation:

λ
1
p = nT (α) . (2.26)

Moreover, (2.25) is the unique solution to (2.22) normalized so as vt(0) > 0, fulfilling

max v = α and vanishing n− 1 times in (0, λ
1
p ).

2) Zeros of v are exactly t = kT (α), 0 ≤ k ≤ n, v attains its maximum α at
t =

(
1
2 + 2k

)
T (α), 0 ≤ k ≤

[
1
2 (n− 1

2 )
]

and its minimum −α at t =
(

3
2 + 2k

)
T (α),

0 ≤ k ≤
[

1
2 (n− 3

2 )
]

(here [·] denotes the integer part).

3) Function v is increasing in
[
0, T (α)

2

]
and is expressed in this interval by

(p′)−
1
p

∫ v(t)

0

ds

(V (α)− V (s))
1
p

= t . (2.27)

The left hand side can be alternatively written as ψ0(v(t)) where ψ0 : [0, α] →[
0, T (α)

2

]
is the inverse of v.

Property 1) asserts that solving (2.22) amounts to discuss the solutions to (2.23).
Next result is just introduced for this and further purposes of the present paper
(see [40, Lemma1]).

Proposition 6. Assume that 1 < p ≤ 2. Then function T : (0, 1)→ R is continu-
ous and increasing. In addition,

T (0) := lim
α→0+

T (α) = t1(p),

t1(p) being the value in (2.21), while

lim
α→1−

T (α) =∞.

It should be remarked that eigenvalues λ̂n,p to (2.20) can be expressed as λ̂n,p =
(nT (0))p. These are just the values referred to in the next statement where the
solvability of equivalent problems (2.19) and (2.22) is completely described. Its
proof reduces to analyze the solutions to (2.23) and is a direct consequence of
Proposition 6.

Proposition 7. Problems (2.19) and (2.22) admit a nontrivial solution if and only
if,

λ > λ̂1,p.
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Moreover, to every

λ̂n,p < λ ≤ λ̂n+1,p

there corresponds exactly n solutions u (respectively v) to (2.19) (r. (2.22)) satis-
fying the normalizing condition ux(0) > 0 (r. vt(0) > 0).

The following auxiliary result address the limit behavior as p goes to 1 (see [40,
Lemma 2] for a proof). It will be instrumental in the arguments of Sections 4 and
5.

Proposition 8. Assume that 1 < p ≤ 2. Then the following properties hold.

a) Function T introduced in (2.24) verifies:

T (α) := lim
p→1

T (α) =
2

1− αq−1
for all 0 < α < 1. (2.28)

b) For 0 < α < 1 the function v defined by (2.27), alternatively v = ψ−1
0 (t), satisfies:

lim
p→1

v(t) = α,

where the convergence holds in C1
(

0, 1
1−αq−1

)
.

3. Radial solutions

In this section we study (2.6) in a ball BR = B(0, R) ⊂ RN :{
−∆pu = λ|u|p−2u− |u|q−2u x ∈ BR,
u = 0 x ∈ ∂BR.

(3.29)

As was pointed out in Theorem 2 problem (2.6) exhibits a unique positive solution.
Thus, it must be radial if Ω = BR. In fact, uniqueness is in principle necessary
since the validity of Gidas–Ni–Nirenberg symmetry for equations −∆pu = f(u)
requires suitable conditions on the nonlinear term f ([19]). Nevertheless we are
further interested in solutions with both signs and therefore we focus our attention
on radial solutions.

Assume that ũ ∈W 1,p
0 (B) is a radially symmetric solution to (3.29), then ũ can

be a. e. identified with a function u(r), r = |x|, such that u, |ur|p−2ur ∈ C1[0, R],
ur(0) = u(R) = 0 and pointwise solves,

− (|ur|p−2ur)r −
N − 1

r
|ur|p−2ur = λ|u|p−2u− |u|q−2u, 0 < r < R. (3.30)

Moreover, we are only concerned with the parameter range 1 < p ≤ 2. In this case
ur = |w|p′−2w where p′ = p

p−1 and w = |ur|p−2ur. Thus u ∈ C2[0, R].

On the other hand, nontrivial solutions u satisfy the estimate ‖u‖∞ ≤ λ
1

q−p

(Theorem 2). Hence, by introducing the scaling

u(r) = λ
1

q−p v(t), t = λ
1
p r, (3.31)

nontrivial solutions are sought in the range ‖v‖∞ ≤ 1. In addition, it should be
remarked that the decreasing character of the energy E(v, vt) below (see (3.38) and
(3.37)) implies that solutions u to (3.29) satisfying u(0) > 0 achieve their maximum
at r = 0. Accordingly, α = v(0) is a natural parameter to describe normalized
solutions (3.31). Observe that unlike the one dimensional case (problems (2.22)
and (2.23)), a sift is not necessary now.
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So, to handle (3.29) and (3.30), we are led to the initial value problem−(|vt|p−2vt)t − N−1
t |vt|

p−2vt = |v|p−2v − |v|q−2v, t > 0,

v(0) = α, vt(0) = 0.
(3.32)

with 0 < α < 1. Notice that when α = 1 the solution to (3.32) is given by v(t) = 1.

Main features on (3.32) are next depicted. The sequence of radial eigenvalues

λ = λ̃n,p to the Dirichlet problem in the ball BR (see [2], [9], [44]),{
−∆pu = λ|u|p−2u x ∈ BR,
u = 0 x ∈ ∂BR,

(3.33)

is involved in the next and forthcoming statements. Observe that λ̃n,p = R−pλ̃n,p(B1)

where λ̃n,p(B1) are the Dirichlet eigenvalues of −∆p in the unit ball B1.

Due to our purposes here, exponent p is restricted to the range 1 < p ≤ 2.

Lemma 9. Assume that p, q satisfy (2.7) while 1 < p ≤ 2. Then for every 0 <
α < 1 problem (3.32) satisfies the following properties.

i) It admits a unique solution v = v(·, α) which is defined and C2 in [0,∞). More-
over,

lim
t→∞

(v(t), vt(t)) = (0, 0). (3.34)

ii) Solution v is oscillatory, i. e., it exhibits a sequence of infinitely many simple
zeros,

0 < θ1 < θ2 < · · · ,
such that θn →∞.

iii) The asymptotic estimate

lim
n→∞

∆θn = t1(p) (3.35)

holds true, where ∆θn = θn − θn−1 and t1(p) is the value introduced in (2.21). In
particular,

θn ∼ nt1(p) as n→∞.

iv) Every θn defines a continuous function of α and,

lim
α→0+

θn(α) = ωn & lim
α→1−

θn(α) =∞, (3.36)

where ωn = λ̃n,p(B1)
1
p and λ̃n,p(B1) is the n–th radial eigenvalue of −∆p in B1.

In addition, function θ1 is increasing in α.

Proof. The existence and uniqueness of a local solution v to this problem have been
largely discussed in [37] and [23]. That such a solution can be extended to all t > 0
is a consequence of the relation,

dE

dt
= −N − 1

t
|vt|p, (3.37)

which express the decaying along solutions of the total energy E defined by

E(v, vt) =
1

p′
|vt|p + V (v), where V (v) =

1

p
|v|p − 1

q
|v|q. (3.38)
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We next describe the oscillatory character of v. From the equation we get,

v′ = −ϕp′
(∫ t

0

(τ
t

)N−1

f(v(τ)) dτ

)
.

Here v′ = vt, ϕr(t) = |t|r−2t and f(v) = |v|p−2v − |v|q−2v.

Observe that f(v(t)) > 0 implies v′(t) < 0. Hence, it follows from 0 < α < 1
that f(v(t)) must be positive for t small enough, wherewith v′ < 0 and v decreases
in the same interval. Next, we are showing that v must vanish at finite time.
Otherwise 0 < l < v(t) < α and so f(v) ≥ δ > 0 for all t > 0. Then one finds

v′(t) ≤ −ϕp′
(
δ
N

)
tp
′−1 and consequently

v(t) ≤ α− 1

p′
ϕp′

(
δ

N

)
tp
′
, t > 0,

which is not possible. Thus a first zero t =: θ1 arises. In addition a first value
t =: τ1 > θ1 exists such that v′(τ1) = 0. Otherwise, v′ < 0 for all t ≥ θ1 and
f(v(t)) ≤ −η for t ≥ t1 := θ1 + ε. Then,

v′(t) ≥ v′(t1) + ϕp′

(
η

N

(
1− tN1

tN

))
tp
′
, t > t1.

This is again not possible. Finally, by doing v → −v, the conditions on −v for
t ≥ τ1 are just the same as those for v at the beginning of the reasoning at t = 0.
This shows that v exhibits infinitely many simple positive zeros θn (notice that
v′(θn) 6= 0). But v can not accumulate zeros in (0,∞) since the only solution to
(3.32) with initial data v(t0) = v′(t0) = 0 is v = 0. Thus θn → ∞. Moreover, a
careful review of the proof permits us concluding the existence of a unique critical
point τn ∈ (θn, θn+1) of v for every n. Additionally, the continuous dependence of
v on α ([37], [23]) entails that every θn depends continuously on α.

To prove (3.34) assume on the contrary that infR+ E > 0. Then

inf
n∈N

(−1)nv(τn) =: inf
n∈N

αn = α > 0.

Moreover, infR+ E = V (α). Define

vn(t) = (−1)nv(t+ θn), t ≥ 0.

Sequence {vn} is bounded in C1[0, b] for all b > 0. In addition, v = vn(t) solves{
−(|vt|p−2vt)t − N−1

t+θn
|vt|p−2vt = |v|p−2v − |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = (−1)nvt(θn).

Let us point out that Ascoli–Arzelà’s Theorem implies that

vn(t)→ v∞(t), t ∈ [0, b],

in C1[0, b], for all b > 0. On the other hand, inequalities E(θn) ≥ E(τn) ≥ E(θn+1)
yield

lim
n→∞

E(θn) = lim
n→∞

E(τn).

Hence,

lim
n→∞

(−1)nvt(θn) = lim
n→∞

(p′V (αn))
1
p = (p′V (α))

1
p =: v′∞ > 0.
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By taking into account both (−1)nvt(θn) → v′∞ and θn → ∞, together with the
uniform convergence of functions vn and their derivatives, it follows that v = v∞(t)
solves the problem,{

−(|vt|p−2vt)t = |v|p−2v − |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = v′∞.

By choosing b > T (α), T (·) being the function defined in (2.24), we obtain

lim
n→∞

∆θn = lim
n→∞

(θn+1 − θn) = T (α).

We next observe that∫ θn+1

θn

N − 1

τ
|vt(τ)|p dτ = −

∫ θn+1

θn

dE

dt
(τ) dτ = E(θn)− E(θn+1)

and, by proceeding as in telescoping series, it leads to

∞∑
n=1

∫ θn+1

θn

N − 1

τ
|vt(τ)|p dτ ≤ E(θ1) <∞.

Performing a change of variable, we deduce

∞∑
n=1

∫ θn+1

θn

N − 1

τ
|vt(τ)|p dτ =

∞∑
n=1

∫ ∆θn

0

N − 1

s+ θn
|vt(s+ θn)|p ds =:

∞∑
n=1

an,

and
∑∞
n=1 an converges. However,

an ∼

{
(N − 1)

∫ T (α)

0

|v′∞(s)|p ds

}
1

θn
, n→∞,

while by Cesàro’s Theorem

lim
n→∞

θn
n

= T (α).

Thus the series
∑∞
n=1 an diverges. The contradiction has arisen from assuming that

α > 0. Therefore, inf αn = 0.

To show (3.35) set βn = (−1)nvt(θn). Then, due to the fact that

max

{
1

p′
|vt(t)|p, V (v(t))

}
≤ 1

p′
βpn, t ≥ θn,

together with βn → 0 and V (v) ∼ 1
p |v|

p as v → 0, we find that the sequence of

functions,

ṽn(t) =
1

βn
v(t+ θn)

is bounded in C1[0, b] for all b > 0. On the other hand, v = ṽn(t) solves the
problem,{

−(|vt|p−2vt)t − N−1
t+θn
|vt|p−2vt = |v|p−2v − βq−pn |v|q−2v, 0 < t < b,

v(0) = 0, vt(0) = 1.

A compactness argument again permits us ensuring that

ṽn(t)→ ṽ(t),
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in C1[0, b] where v = ṽ(t) is the solution to problem{
−(|vt|p−2vt)t = |v|p−2v, 0 < t < b,

v(0) = 0, vt(0) = 1.

This implies that

lim
n→∞

∆θn = t1(p),

as desired.

The fact θ1(α) → ∞ as α → 1− follows from the continuous dependence of
v(·, α) on the parameter α (see [23]). On the other hand, that θ1 increases with α
is a consequence of the uniqueness of a positive solution to the Dirichlet problem,{

−∆pu = λ|u|p−2u− |u|q−2u x ∈ B,
u = c x ∈ ∂B,

where c ≥ 0 is constant and B an arbitrary ball (see [13]).

Finally and arguing as above, vα(t) := 1
αv(t, α) solves,{

−(|vt|p−2vt)t − N−1
t |vt|

p−2vt = |v|p−2v − αq−p|v|q−2v, 0 < t < b,

v(0) = 1, vt(0) = 0,

and in the limit as α → 0+, vα converges in C1[0, b] for all b > 0 to the solution
φ(t) to {

−(|vt|p−2vt)t − N−1
t |vt|

p−2vt = |v|p−2v, 0 < t < b

v(0) = 1, vt(0) = 0.

It is well–known that φ exhibits a sequence of positive zeros ωn →∞ and that the
sequence λ̃n,p = ωpn just defines the eigenvalues of −∆p in B1 ([9], [41]). On the
other hand, the convergence vα → φ in C1 together with the simplicity of all of the
zeros involved entail that θn(α)→ ωn as α→ 0+ for all n ∈ N. �

Theorem 10. Assume that 1 < p ≤ 2. Then, problem (3.29) exhibits the following
properties.

i) [Range and amplitude] Nontrivial solutions u are only possible when λ > λ̃1,p

while their normalized amplitude,

α := λ−
1

q−p ‖u‖∞,

satisfies 0 < α < 1.

ii) [Positive solutions] There exists a unique positive (radial) solution u1,λ for all

λ > λ̃1,p. Moreover,

‖u1,λ‖∞ → 0 as λ→ λ̃1,p & λ−
1

q−p ‖u1,λ‖∞ → 1 as λ→∞. (3.39)

iii) [Existence of branches] For every n ≥ 2 two symmetric families ±un,λ(r) of

nontrivial radial solutions exist which are exactly defined for all λ > λ̃n,p and
satisfy,

‖un,λ‖∞ → 0 as λ→ λ̃n,p & λ−
1

q−p ‖un,λ‖∞ → 1 as λ→∞. (3.40)

iv) [Nodal properties] Every solution un,λ(r) satisfies un,λ(0) > 0 and vanishes ex-
actly at n− 1 values rk ∈ (0, R).
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v) [Continuity] The n–th family un,λ can be globally parameterized, in terms of the
normalized amplitude α ∈ [0, 1), as a continuous curve

(λ, u) = (λn(α), un(·, α))

in R× C2[0, R], that is, un,λ = un(·, α) when λ = λn(α). Moreover,

λn(α) > λ̃n,p, for all 0 < α < 1. (3.41)

vi) [Uniqueness] Let u be a nontrivial solution to (3.29). Then u belongs to some of
the families ±un,λ, n ∈ N, introduced in ii) and iii).

Proof. According to the change (3.31) a nontrivial radial solution u to (3.29) is
represented as:

u(r) = λ
1

q−p v(λ
1
p r, α), (3.42)

where 0 < α < 1 and

λ
1
pR = θn(α), (3.43)

for some n ∈ N. Equations (3.42), (3.43) define a continuous curve of solutions
(λn(α), un(·, α)) parameterized in α ∈ (0, 1). This proves the first assertion in
v) while (3.41) is a consequence of inequality (4.53) to be shown in next section.
Notice that this curve can be alternatively represented as a (possibly multivalued)
family un,λ when λ is regarded as the governing parameter.

From (3.43) one finds that un,λ is defined for λ
1
pR > ωn while the asymptotic

behaviors in either (3.39) or (3.40) are a consequence of iv) in Lemma 9. In addition,
every solution in un,λ vanishes at,

rk = R
θk(α)

θn(α)
, 1 ≤ k ≤ n− 1.

The uniqueness of a positive solution to (3.29) was already established in Theorem
2.

The characterization of nontrivial solutions asserted in vi) is achieved when such
solutions are observed as solving the initial value problem (3.32). �

Remark 6. First limits in (3.39) and (3.40) assert that the n–th family bifurcates

from u = 0 at λ = λ̃n,p. It was stated in [24] (see also [39]) that such a bifurcation

locally occurs in the direction λ > λ̃n,p. However, inequality (3.41) substantially

improves this result since it implies that un,λ is only defined when λ > λ̃n,p.

Remark 7. In the regime p > 2, radial solutions u to (3.29) may develop a central

core {u = ±λ
1

q−p } as λ is large.

4. Limit as p→ 1: direct approach

It this section the more subtle question of finding the limit profiles as p→ 1+ of
the branches of solutions un,λ of Theorem 10 is addressed. Our first results provide
some partial answers to this problem.

In the forthcoming statements a reference to p is incorporated to the notation
whenever it is necessary. For instance vp(t, α) stands for the solutions to (3.32)
while θn,p(α) designates its n–th zero. They are just new names for the former
v(t, α) and θn(α), respectively.
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Lemma 11. Let vp(t, α) be the solution to (3.32) and let θ1,p(α) designate its first
zero. Then

1

1− αq−1
≤ lim
p→1+

θ1,p(α) ≤ lim
p→1+

θ1,p(α) ≤ N

1− αq−1
. (4.44)

Moreover,

vp(·, α)→ α as p→ 1+, (4.45)

the convergence being in the topology of C1
[
0, T (α)

2

)
where T (α) is the value intro-

duced in (2.28).

Proof. The energy E in (3.38) is decreasing along v(t) = vp(t, α) while relation

|v′|p−2v′ = −
∫ t

0

(τ
t

)N−1

f(v(τ)) dτ, (4.46)

where f(v) = |v|p−2v−|v|q−2v, reveals that v decreases up to t = θ1,p (α is removed
to brief). In fact, v decreases until its first critical point t = τ1 ∈ (θ1,p, θ2,p). Thus,

− 1

(p′)
1
p

(−v′) < (V (α)− V (v))
1
p ,

which implies that,

1

(p′)
1
p

∫ α

v(t)

ds

(V (α)− V (s))
1
p

< t, 0 < t < τ1. (4.47)

In particular, by setting t = θ1,p we get

θ1,p >
T (α)

2
.

Hence, the first inequality in (4.44) follows by taking limits and observing that

lim
p→1

T (α)

2
=
T (α)

2
=

1

1− αq−1
.

Set now,

ψ0(v) =
1

(p′)
1
p

∫ v

0

ds

(V (α)− V (s))
1
p

, 0 < v < α.

Function v = ψ−1
0 (t), t ∈

[
0, T (α)

2

]
, defines the solution to equation in (2.22) having

v′(0) > 0 and max v = α > 0 (Section 2.4). On the other hand, (4.47) implies that

v(t) > ψ−1
0

(
T (α)

2
− t
)
, 0 < t <

T (α)

2
,

while Proposition 8 asserts ψ−1
0 → α as p→ 1+.

In addition, equation (4.46) yields,

|v′|p−2v′ → −(1− αq−1)
t

N
as p→ 1+,

for 0 < t < T (α)
2 . All these facts put together entail (4.45).

The complementary upper estimate in (4.44) is a consequence of Theorem 13
below. �
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Our next result states the finiteness of the limits,

θ̄−n (α) = lim
p→1+

θn,p(α), θ̄+
n (α) = lim

p→1+
θn,p(α), (4.48)

for all n ∈ N. This is a quite delicate question. Its proof relies upon the following
result, one of the featured achievements in [41]. Notice that relevant quantities, e.

g. the radial eigenvalues λ̃n,p, are labeled with subindex p to stress its dependence
on p.

Theorem 12. Let

λ̃n,p = (ωn,p)
p, n ∈ N,

be the sequence of Dirichlet radial eigenvalues of the p–Laplacian in the unit ball
B1 ⊂ RN . Then, the limits

lim
p→1

ωn,p = ω̄n,

exist for all n. Moreover, ω̄n is increasing, ω̄n →∞ and,

lim
n→∞

∆ω̄n = 2, (4.49)

where ∆ω̄n = ω̄n − ω̄n−1.

We now prove that limits in (4.48) are finite.

Theorem 13. For all n ∈ N and 0 ≤ α < 1, limits θ̄±n (α) in (4.48) are finite.
Moreover,

ω̄n ≤ θ̄−n (α) ≤ θ̄+
n (α) ≤ 1

1− αq−1
ω̄n. (4.50)

In particular θ̄±n (α)→∞ as n→∞.

Proof. Write again θn = θn,p(α) for short. Define,

u(r) = vp(θnr, α) 0 ≤ r ≤ 1.

Then, u solves the eigenvalue problem{
−Lpu+ q(r)|u|p−2u = λ|u|p−2u 0 < r < 1

u′(0) = 0, u(1) = 0,
(4.51)

where operator Lp is defined by (the radial p–Laplacian):

Lpu = (|u′|p−2u′)′ +
N − 1

r
|u′|p−2u′,

the weight q is defined by

q = −θpn(1− |u|q−p),
and λ = 0. Notice now that u vanishes exactly at n− 1 points in the interval (0, 1)
and that problem (4.51) has a unique eigenvalue exhibiting an eigenfunction with
that property ([44]). Namely, the n–th eigenvalue λn(q). Therefore,

λn(q) = λn(−θpn(1− |u|q−p)) = 0.

Now,

− θpn ≤ −θpn(1− |u|q−p) ≤ −θpn(1− αq−p). (4.52)

But λn(q) is increasing in the weight q ([44]). Thus:

λn(−θpn) < 0 < λn(−θpn(1− αq−p)).
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The first inequality implies that

ωpn,p < θn,p(α). (4.53)

Thus,
lim
p→1

ωn,p ≤ lim
p→1

θn,p(α),

and so,
ω̄n ≤ θ̄−n (α).

The second inequality entails,

θn,p(α)p <
1

1− αq−p
ωn,p,

whence,

θ̄+
n (α) ≤ 1

1− αq−1
ω̄n.

To achieve (4.44) in Lemma 11 observe that ω̄1 = N ([41]). �

We now analyze the gap between the values θ̄n(α)± and its behavior as n becomes
large.

Theorem 14. Limits θ̄±n (α) in (4.48) satisfy,

θ̄+
n−1(α) < θ̄−n (α),

for all ∈ N. Moreover, for n fixed

∆θn(α) := lim
p→1

∆θn,p(α) ≥ 1, (4.54)

where ∆θn,p(α) = θn,p(α)− θn−1,p(α), while

∆θ̄n(α) := lim
p→1

∆θn,p(α) ≤ 2

(1− αq−1)N

(
ω̄n
ω̄n−1

)N−1

. (4.55)

Furthermore,

lim
n→∞

∆θ̄n(α) ≤ 2

(1− αq−1)N
. (4.56)

Proof. A variant of the argument in the proof of Theorem 13 is going to be em-
ployed. Define λ1(m, q) the first eigenvalue of the problem,{

−(m(t)|u′|p−2u′)′ + q(t)|u|p−2u = λ|u|p−2u t ∈ J
u|∂J = 0,

(4.57)

where J = (a, b) is a finite interval, m, q ∈ C(J). It is well–known that λ1,p(m, q)
is increasing in m and q.

Let v(t) be the solution to (3.32) (subscript p will be omitted whenever possible)
and consider the particular case of problem (4.57) where m = tN−1, q = −tN−1(1−
|v|q−p) and J = Jn := (θn−1, θn). Then it holds that its main eigenvalue is:

λ1,p(m, q) = 0,

and has u = v|Jn as an associated main eigenfunction. Setting

αn−1 = max
Jn
|v|,

the estimates

− θN−1
n ≤ q(t) ≤ −θN−1

n−1 (1− αq−pn−1) ≤ −θN−1
n−1 (1− αq−p), (4.58)
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hold true.

The monotonicity of λ1 in (m, q) then implies,

θN−1
n−1 λ1,p(Jn)− θN−1

n ≤ 0 ≤ θN−1
n λ1,p(Jn)− θN−1

n−1 (1− αq−p), (4.59)

where λ1,p(Jn) = λ1,p(m, q) for the choices m = 1, q = 0. Thus,

λ1,p(Jn) =
t1(p)p

(∆θn)p
,

t1(p) being the value provided in (2.21).

The second inequality in (4.59) says that

(∆θn)p

t1(p)p
≤ 1

(1− αq−p)

(
θn
θn−1

)N−1

.

By taking lim sup as p→ 1 we find,

lim
p→1

∆θn ≤
2

(1− αq−1)

(
θ̄+
n (α)

θ̄−n−1(α)

)N−1

≤ 2

(1− αq−1)N

(
ω̄n
ω̄n−1

)N−1

,

which proves (4.55).

Estimate (4.56) follows from (4.55) by noticing (Theorem 12) that ω̄n−ω̄n−1 → 2
as n→∞.

As for (4.54) suppose that v > 0 in Jn (otherwise replace v → −v), set as above
αn−1 = maxJn v and τn−1 the critical point in Jn. From the fact that v decreases
in [τn−1, θn] an that

1

p′
(−v)p + V (v) < V (αn−1), t ∈ (τn−1, θn],

we obtain that

1

(p′)
1
p

∫ αn−1

v(t)

ds

(V (αn−1)− V (s))
1
p

< t− τn−1,

for τn−1 < t < θn. In particular,

1 =
1

2
T (0) <

1

2
T (αn−1) < θn − τn−1, (4.60)

whence (4.54) follows by taking limits as p→ 1. �

Remark 8. Upper estimate in (4.50) and the corresponding ones in (4.54) and
(4.55) can slightly be refined. By observing that the upper estimate in (4.58) may
be replaced by

−θpn(1− |u|q−p) ≤ −θpn(1− αq−pn−1),

we obtain the sharper one

θ̄+
n (α) ≤ 1

1− ᾱq−1
n−1

ω̄n,

where ᾱn−1 = limp→1 αn−1. This in turn implies,

lim
p→1

∆θn,p(α) ≤ 2

(1− ᾱq−1
n−1)N−1

(
ω̄n
ω̄n−1

)N−1

,
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a better alternative than (4.55). Moreover, since limn→∞ αn = 0 it should be
expected that limn→∞ ᾱn = 0. This together with (4.56) would lead to:

lim
n→∞

∆θ̄n(α) ≤ 2.

Similarly, it follows from (4.60) that for fixed n,

lim
p→1

∆θn,p(α) ≥ 1

1− αq−1
n−1

,

with αn−1 = limp→1 αn−1.

We stress that in Section 5 a sharpened version of all of the previous estimates
will be stated.

Remark 9. Numerical simulations in Figures 1 and 2 strongly suggest that all of
numbers θn,p(α) and αn,p stabilize to single values as p→ 1+. In addition, solution
vp(t, α) develops flat patterns between consecutive values of the limits of θn,p. This
issue is addressed in detail in the next section.

5. Limit as p→ 1: the BV framework

Two main objectives of this work are now to be accomplished. First, to show the
existence of the limit as p→ 1 of the solutions un,λ to (3.29) obtained in Theorem
10. Second, to prove that these limits define solutions ūn,λ to the limit problem,−div

(
Du

|Du|

)
u = λ

u

|u|
− |u|q−2u, x ∈ BR,

u = 0, x ∈ ∂BR.
(5.61)

Resulting families ūn,λ give rise to continuous curves bifurcating from the eigenval-
ues to −∆1. In fact, radial eigenvalues λ = λ̄n to−div

(
Du

|Du|

)
u = λ

u

|u|
, x ∈ BR,

u = 0, x ∈ ∂BR.
(5.62)

have been recently introduced in the form ([41]):

λ̄n = lim
p→1

λ̃n,p = R−1ω̄n,

ω̄n being the values referred to in Theorem 12.

As it is the case when the operator −∆1 is involved in the equations, problem
(5.61) has a tendency to exhibit an uncontrolled amount of solutions. See for
instance [8] dealing with eigenvalue problems, [40] on the one dimensional case
(2.19) or Remark 14 below. To identify proper solutions, we handle an energy
condition (see (5.67) below) similar to that introduced in [41].

In order to formulate a uniqueness result, we also require suitable symmetry
restrictions on the solutions.

Definition 15. A solution u ∈ BV (BR) to (5.61) is said to be radial if aside from
u, function β and field z referred to in Definition 3 are also radial. In the latter
case this means that,

z = w̃(r)
x

r
, lim

r→0
w̃(r) = 0, (5.63)

where w̃ ∈ L∞(0, R).
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Remark 10. Condition (5.63) is reminiscent of the fact that for a radial C1 function

u(x) = v(r) one has ∇u = v′(r)
x

r
where v′(0) = 0.

In the next statement, solutions to (5.61) are understood to be radial in the
sense of Definition 15. The continuity mentioned in the point iii) below is regarded
in the sense of the strict topology of the space BV (BR) ([1]).

Theorem 16. The problem (5.61) exhibits the following properties.

i) [Range of existence and amplitude estimate] Nontrivial solutions u ∈ BV (BR) ∩
Lq(BR) are only possible if λ > λ̄1. Normalized amplitude α = λ−

1
q−1 ‖u‖∞ of

solutions satisfies 0 < α < 1.

ii) [Existence] To every eigenvalue λ̄n there corresponds a symmetric family ±ūn,λ
of nontrivial solutions bifurcating from u = 0 at λ̄n which is exactly defined for
λ > λ̄n. Moreover, the normalized amplitude of ūn,λ satisfies

lim
λ→∞

λ−
1

q−1 ‖ūn,λ‖∞ = 1. (5.64)

iii) [Continuity of branches] Family ūn,λ can be represented as a continuous curve

(λ, u) = (λ̄n(α), ūn(·, α)) ∈ R×BV (BR),

when parameterized by the normalized amplitude 0 < α < 1. This means that
ūn,λ = ūn(·, α) when λ = λ̄n(α). More precisely,

λ̄n(α) = R−1θ̄n(α), ūn(r, α) = λ
1

q−1

n∑
k=1

(−1)kαk−1χIk(λr), (5.65)

χIk(t) being the characteristic function of the interval,

Ik =

(
R
θ̄k−1(α)

θ̄n(α)
, R

θ̄k(α)

θ̄n(α)

)
,

and where αk, θ̄k are smooth functions of the amplitude α.

iv) [Convergence of branches and zeros] For every n and 0 < α < 1

lim
p→1

θn(α) = θ̄n(α), (5.66)

while the family un,λ converges to the family ūn,λ as p→ 1+ in the sense:

lim
p→1

(λn(α), un(·, α)) = (λ̄n(α), ūn(·, α)),

λn, un being the functions introduced in v) of Theorem 10.

v) [Uniqueness] Every nontrivial solution u fulfilling the ‘energy’ condition,

d

dr

(
λ|u| − |u|

q

q

)
= −N − 1

r
|ur| in D′(0, R), (5.67)

necessarily belongs to some of the previous families ±ūn,λ.

The remaining of this section is devoted to the proof of Theorem 16. Section
5.2 states a compactness result which entails the existence of solutions. The key
uniqueness result is presented in Section 5.3.
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5.1. An initial value problem. We are mimicking the existence analysis in Sec-
tion 3. Our reference initial value problem (3.32) there:{

−(|vt|p−2vt)t − N−1
t |vt|

p−2vt = |v|p−2v − |v|q−2v, t > 0,

v(0) = α, vt(0) = 0.

is more conveniently written now in the equivalent formw = |v′|p−2v′ v(0) = α,

w′ = −f(v)− N−1
t w w(0) = 0,

t > 0, (5.68)

where f(v) = |v|p−2v − |v|q−2v, 0 < α < 1. In addition, notation ′ =
d

dt
will be

often used with the meaning v′ = vt.

A formal expression for the limit problem of (5.68) as p→ 1 reads as follows, w ∈ sign (v′) v(0) = α,

−
(
w′ + N−1

t w − |v|q−2v
)
∈ sign (v) w(0) = 0,

t > 0, (5.69)

where v, w vary in suitable spaces of functions defined in (0,∞) and equations
are understood in distributional sense. Precise details to clarify the meaning of a
solution to (5.69) are next explained. Of course, we are keeping in mind Definition
3.

As it turns out from the results below, a convenient space for the solutions (v, w)
to (5.69) is

BVloc(0,∞)×W 1,∞
loc (0,∞),

where we denote,

BVloc(0,∞) =
⋂
b>0

BV (0, b), W 1,∞
loc (0,∞) =

⋂
b>0

W 1,∞(0, b).

According to Section 2.3, a function u belongs to BV (I) with I = (0, b) if u ∈ L1(I)
and its distributional derivative u′ is a Radon measure with finite total variation
|u′|(I). As customary, W 1,∞(I) denotes the space of functions w ∈ L∞(I) with a
weak derivative w′ ∈ L∞(I).

It can be shown that every function u ∈ BV (I) can be identified a. e. with a
function ũ which is of bounded variation in the classical sense in I (see [1]). The
identification of u with ũ is henceforth assumed without further comments. In
particular BV (I) ⊂ L∞(I).

On the other hand, we point out that the first equation in (5.69) will be satisfied
in the sense that the total variation |v′| is equal to the product wv′. When u ∈
BV (I) and w ∈W 1,∞(I) such a product is naturally defined as 〈wv′, ϕ〉 = 〈v′, wϕ〉,
ϕ ∈ C∞0 (I), since w is a Lipschitz function. Moreover, by suitably approximating
w, it follows from the definition of v′ in the sense of distributions that∫

I

ϕwv′ = −
∫
I

v(w′ϕ+ wϕ′) for all ϕ ∈ C∞0 (I) .

Hence, wv′ coincides with the definition of the pairing (w, v′) introduced in Section
2.3 (see (2.12)). It should be also recalled that (w, v′) is a Radon measure in I such
that,

|(w, v′)|(J) ≤ ‖w‖∞,J |v′|(J),
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for all open interval J ⊂ I, where | · | means the total variation of the corresponding
measure.

Equation (3.37) for the dissipation of the energy

Ep(v, v
′) =

1

p′
|v′|p +

1

p
|v|p − 1

q
|v|q,

plays a substantial rôle in the forthcoming considerations. More properly the formal
limit equation of (3.37) as p → 1 will play such a rôle. This formal limit is given
by

d

dt

(
|v| − 1

q
|v|q
)

= −N − 1

t
|v′|. (5.70)

For a function v ∈ BVloc(0,∞) equation (5.70) is understood in distributional sense.
Notice that the power term is well defined as v ∈ L∞(0, b) for each b > 0.

The next definition is an adaptation of a corresponding one in [41] where it was
proposed for the study of the limit of the eigenvalue problem (3.33) as p→ 1.

Definition 17. A couple of functions (v, w) ∈ BVloc(0,∞) ×W 1,∞
loc (0,∞) defines

a solution to (5.69) provided that the following conditions hold.

i) Function ‖w‖∞ ≤ 1 while,

(w, v′) = |v′| in D′(0,∞). (5.71)

ii) There exists β ∈ L∞(0,∞) satisfying ‖β‖∞ ≤ 1, βv = |v| and such that v solves
the equation

w′ +
N − 1

t
w − |v|q−2v = −β, in D′(0,∞) . (5.72)

iii) Initial conditions are fulfilled in the following sense,

v(0+) = α, w(0) = 0.

Remark 11. We are showing in Section 5.4 that any radial solution in the sense of
Definition 15 gives rise, up to scaling, to a solution of problem (5.69).

5.2. Existence results. Our next statement furnishes the existence of a solution
to (5.69).

Theorem 18. Fix 0 < α < 1 and for 1 < p ≤ 2 let (vp, wp) ∈ C1([0,∞))2 be the
solution to the initial value problem (5.68). Then, up to subsequences,

(vp, wp)→ (v, w) as p→ 1,

and (v, w) solves (5.69). More precisely, the following properties hold true.

i) For each b > 0, vp → v in L1((0, b), tN−1 dt) where v ∈ BVloc(0,∞).

ii) There exists β1 ∈ L∞(0,∞) with ‖β1‖∞ ≤ 1 such that |vp|p−2vp ⇀ β1 weakly in
Ls((0, b), tN−1 dt) for all 1 ≤ s <∞ and b > 0. Moreover,

β1v = |v|.

iii) wp ⇀ w weakly in Ls((0, b), tN−1 dt) for all 1 ≤ s < ∞ and all b > 0, where

w ∈ L∞(0,∞) ∩W 1,∞
loc (0,∞), ‖w‖∞ ≤ 1 and solves the equation,

− w′ − N − 1

t
w + |v|q−2v = β1, in D′(0,∞). (5.73)

iv) Identity (w, v′) = |v′| is fulfilled in D′(0,∞).

v) ‖v‖∞ = α while the energy equation (5.70) is satisfied in the sense of D′(0,∞).
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Remark 12. Convergence in i) actually holds in Ls((0, b), tN−1 dt) for all 1 ≤ s <∞.

Proof of Theorem 18. We begin by observing that θ̄+
n (α) → ∞ as n → ∞ (see

Theorem 13). Thus, if we prove the desired claims on each interval (0, θ̄+
n (α)), then

it will hold on every (0, b) (b > 0).

Fix n ∈ N and set:

λp =
θn,p(α)p

Rp
, up(x) = λ

1
q−p
p vp(λ

1
p
p r, α), (5.74)

r = |x|. Then up defines a solution to (3.29) with λ = λp. Take a suitable
subsequence as p → 1 (denoted with the same index) to get lim

p→1
θn,p(α) = θ̄+

n (α)

and define λ = lim
p→1

λp. Now observe that hypotheses of Theorem 5 holds, so that

(2.18) implies the estimate ∫ θn,p

0

|v′p|ptN−1 dt ≤M, (5.75)

from where, by Young’s inequality, we deduce an estimate of {vp} in BV (σ, θn,p)
for all σ > 0. On the other hand, applying Theorem 5, we may choose a further
subsequence and find radial functions u ∈ BV (BR), β ∈ L∞(BR) and a field
z ∈ L∞(BR,RN ) satisfying ‖z‖∞ ≤ 1, ‖β‖∞ ≤ 1 so that assertions 1) to 4) in
the theorem are satisfied. Thus, by extracting again a subsequence if necessary, we
infer that up(x)→ u(x) a.e. in BR. Summarizing, a sequence pm, no depending on
n, can be found so that all of the previous limits hold true as pm → 1+ (subindex
m will be omitted).

In the sequel and by abuse of notation, up(r) and u(r) are replacing up(x) and
u(x) when necessary. The same criterium will be applied to other possible radial
functions.

We now set,

v(t, α) = λ−
1

q−1u(λ−1t), t ∈ (0, θ̄+
n (α)) .

Assertions i) to v) are next to be verified. Explicit reference to α will be avoided
whenever possible.

i) The L1–convergence up → u implies

lim
p→1

∫ R

0

|λ
1

q−p
p vp(λ

1
p
p r)− λ

1
q−1 v(λr)|rN−1 dr = 0 ,

and so,∫ θn,p

0

|λ
1

q−p
p vp(t)− λ

1
q−1 v(σpt)|tN−1 dt = o(1), σp = λλ

− 1
p

p , (5.76)

as p→ 1. Since σp → 1 and v(t) is continuous in (0, θ̄+
n ) up to a numerable set we

observe that, ∫ θn,p

0

|v(σpt)− v(t)|tN−1 dt = o(1), as p→ 1.
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From the estimate,

λ
1

q−1 |vp(t)− v(t)|

≤ |λ
1

q−1 − λ
1

q−p
p ||vp(t)|+ |λ

1
q−p
p vp(t)− λ

1
q−1 v(σpt)|

+ λ
1

q−1 |v(σpt)− v(t)|,

and (5.76) we obtain that,∫ θn,p

0

|vp(t)− v(t)|tN−1 dt = o(1), as p→ 1.

As θn,p → θ̄+
n then we find that vp → v in L1((0, θ̄+

n ), tN−1dt). This L1–convergence
jointly with our BV –estimate gives v ∈ BV (σ, θ̄+

n ) for all σ > 0. We recall that

Lemma 11 yields v(t) = α on
(

0, 1
1−αq−1

)
. Therefore, v ∈ BV (0, θ̄+

n (α)). Finally,

as pm → 1 no depends on n, then v is actually defined on the whole interval (0,+∞)
and v ∈ BVloc(0,∞).

ii) By putting β1(t) = β(λ−1t) one finds that β1 ∈ L∞(0, θ̄+
n (α)), ‖β1‖∞ ≤ 1, while

the identity β1v = |v| is a straightforward consequence of the identity βu = |u| a.e.
in BR.

We also need to connect test functions on (0, θ̄+
n (α)) and test functions on BR.

Given ψ ∈ C∞0 (0, θ̄+
n (α)), consider ϕ(x) = ψ(λ|x|). Owing to Theorem 5, Property

2), we obtain

lim
p→1+

∫
BR

|up(x)|p−2up(x)ϕ(x) dx =

∫
BR

β(x)ϕ(x) dx .

Passing to polar coordinates, we get

lim
p→1+

∫ R

0

λ
p−1
q−p
p |vp(λ

1
p
p r)|p−2vp(λ

1
p
p r)ψ(λr)rN−1 dr =

∫ R

0

β1(λr)ψ(λr)rN−1 dr

and so, by scaling separately each integral we arrive at,

lim
p→1+

Ap

∫ θn,p

0

|vp(t)|p−2vp(t)ψ(σpt)t
N−1 dt =

∫ θ̄+n

0

β1(t)ψ(t)tN−1 dt,

where σp = λλ
− 1

p
p , Ap = λ

p−1
q−p
p σNp . We next observe that both Ap → 1 and σp → 1

while θn,p → θ̄+
n . In addition, ψ(σpt)→ ψ(t) for each t. Thus,

lim
p→1+

∫ θ̄+n

0

|vp(t)|p−2vp(t)ψ(t)tN−1 dt =

∫ θ̄+n

0

β1(t)ψ(t)tN−1 dt .

The desired convergence follows by directly employing ψ ∈ Ls′(0, θ̄+
n ) in the previ-

ous argument.

iii) First observe that z(x) · x|x| is a weak limit of radial functions and so defines a

radial function w̃(r). If w(t) = w̃(λ−1t) then w ∈ L∞(0, θ̄+
n ) with ‖w‖∞ ≤ 1. A

similar procedure than that developed above gives the weak convergence. To check
that equation (5.73) holds, take ψ ∈ C∞0 (0, θ̄+

n ) and consider

ϕ(x) =
1

|x|N−1
ψ (λ|x|) if x 6= 0, ϕ(0) = 0. (5.77)
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As u solves (2.11), we get∫
BR

z · ∇ϕ = λ

∫
BR

(β − |u|q−2u)ϕ.

Passing to polar coordinates leads to∫ R

0

λψ′(λr)w(λr) dr −
∫ R

0

N − 1

r
ψ(λr)w(λr) dr

= λ

∫ R

0

(β1(λr)− |v(λr)|q−2v(λr))ψ(λr) dr.

By setting t = λr it is found that w solves (5.73). Observe that then

w′ = −N − 1

t
w − β1 + |v|q−2v

and the right hand side is bounded on any interval (a, θ̄+
n ) with a > 0. Moreover,

we deduce from Lemma 11 that

−w′ − N − 1

t
w = 1− αq−1 t ∈

(
0,

1

1− αq−1

)
whose solution satisfying w(0) = 0 is given by

w(t) = − 1

N
(1− αq−1)t.

Thus w′ is bounded on (0, θ̄+
n ) and so w ∈W 1,∞(0, θ̄+

n ). Actually, w ∈W 1,∞(0,+∞)
since bounds do not depend on the interval.

iv) Choose ψ ∈ C∞0 (0, θ̄+
n ) and define ϕ ∈ C∞0 (BR) as in (5.77). It follows from the

identity |Du| = (z, Du) as measures that∫
BR

ϕ|Du| =
∫
BR

ϕ(z, Du) = −
∫
BR

uϕdiv z dx−
∫
BR

u z · ∇ϕ dx .

Performing the same manipulations as above and employing (2.5) we obtain,∫ θ̄+n

0

ψ|v′| =
∫ θ̄+n

0

vψ(β1 − |v|q−2v) dt

+

∫ θ̄+n

0

(
N − 1

t

)
vψw dt−

∫ θ̄+n

0

vwψ′ dt

= −
∫ θ̄+n

0

vψw′ dt−
∫ θ̄+n

0

vw(t)ψ′ dt =

∫ θ̄+n

0

ψ(w, v′) ,

and we are done.

v) For a nonnegative ψ ∈ C∞0 (0, θ̄+
n (α)) choose now the variant,

ϕ(x) =
1

|x|N
ψ
(
λ|x|

)
if x 6= 0, ϕ(0) = 0,

of the test function defined in (5.77). By Theorem 5, Property 4), and taking once
again a subsequence, ∫

BR

ϕ|Du| = lim
p→1

∫
BR

ϕ|∇up|pdx .
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Passing to polar coordinates, performing separate scalings in the integrals and
multiplying by N − 1 we deduce∫ θ̄+n

0

N − 1

t
ψ|v′| = lim

p→1

∫ θn,p

0

N − 1

t
ψp|v′p|pdt

= lim
p→1

∫ θn,p

0

ψp

(
− dEp

dt

)
dt = lim

p→1

∫ θn,p

0

ψ′pEp dt ,

where:

ψp(t) = λ
q

q−p
p λ−

q
q−1ψ(σpt), σp = λλ

− 1
p

p .

Hence,∫ θ̄+n

0

N − 1

t
ψ|v′| = lim

p→1

1

p′

∫ θn,p

0

ψ′p|v′p|p dt

+ lim
p→1

∫ θn,p

0

ψ′p

[
1

p
|vp|p −

1

q
|vp|q

]
dt . (5.78)

Now recalling (5.75) and taking into account that ψp → ψ in C∞0 (0, θ̄+
n ) as p → 1

and in particular, that its support is bounded away from zero, we find that the first
limit in (5.78) vanishes. On the other hand, by Lebesgue’s theorem we obtain,

lim
p→1

∫ θn,p

0

ψ′p

[
1

p
|vp|p −

1

q
|vp|q

]
dt =

∫ θ̄+n

0

ψ′
[
|v| − 1

q
|v|q
]
dt .

Thus we conclude from (5.78) that,∫ θ̄+n

0

N − 1

t
ψ(t)|v′| =

∫ θ̄+n

0

ψ′(t)

[
|v(t)| − 1

q
|v(t)|q

]
dt .

and the energy identity (5.70) is proved.

Finally, the other assertion of v) follows immediately from the fact that ‖vp‖∞ =
α for all 1 < p ≤ 2. �

Figure 1 shows the profiles of vp(t, α) corresponding to α = 0.5, q = 2.5, N = 2
and decreasing values of p ∈ (1, 2]. Flat plateaus arise when p becomes close to one.
In strong difference with the 1D case (problem (2.23)) a decaying in the amplitude
of the solutions to (3.32) is observed and this feature is transmitted to the limit as
p→ 1+.

5.3. A uniqueness result. The next one is a sort of uniqueness statement for the
initial value problem (5.73).

Theorem 19. Let 0 < α < 1. Then the initial value problem (5.69) admits a

unique solution (v, w) ∈ BVloc(0,∞)×W 1,∞
loc (0,∞) satisfying the energy condition

(5.70). Moreover, there exist positive monotone sequences αn and θn which verify

αn → 0, θn →∞,

such that the following properties are satisfied.

i) v(t) = (−1)n−1αn−1 on each interval (θn−1, θn) wherein α0 = α and θ0 = 0.

ii) w ∈W 1,∞(0,∞), w is strictly monotone on each interval (θn−1, θn) while w(θn) =
(−1)n for every n ≥ 1.
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Figure 1. Profiles of vp corresponding to N = 2, q = 2.5, α = 0.5
and p = 2, p = 1.5 and p = 1.1.

iii) Sequences αn and θn satisfy the recurrence relations:

h(αn−1)

N
θNn − θN−1

n =
h(αn−1)

N
θNn−1 + θN−1

n−1 n ≥ 1, (5.79)

where θ0 = 0, α0 = α, h(x) = sign x− |x|q−2x while

g(αn) +
N − 1

θn
αn = g(αn−1)− N − 1

θn
αn−1 n ≥ 1, (5.80)

with g(x) = |x| − 1
q |x|

q.

iv) θn satisfies the following asymptotic estimate,

lim
n→∞

(θn − θn−1) = 2. (5.81)

v) For every n ≥ 1 both θn and αn are smooth functions of α ∈ [0, 1). Moreover,

lim
α→0+

θn = ω̄n, (5.82)

ω̄n being the reference values introduced in Theorem 12.

Proof of Theorem 19. As a first remark, let (v, w) be any possible solution to (5.69)
where 0 < α < 1. Since v satisfies the energy equation (5.70), it follows that
g(v) = |v|− 1

q |v|
q is non increasing along the solution. As the function g is increasing

in (0, 1) we deduce that |v| is nonincreasing; in particular |v(t)| ≤ α for all t ≥ 0.

We are now following the argument of the proof of [41, Theorem 19].

1) Function v is constant in every component of the set C := {t : |w(t)| < 1}. In
fact, let (a, b) be any of such components, J ⊂ (a, b) an arbitrary open interval.
Then,

|v′|(J) = (w, v′)(J) ≤ ‖w‖∞,J |v′|(J).
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Since ‖w‖∞,J < 1 then |v′|(J) = 0. Thus, v is constant in J .

2) Nature of (v, w) in the initial component of C. Since |w| < 1 near t = 0 there
exists a first component (0, b) in C. From v(0+) = α it follows from 1) that v = α
in (0, b) while direct integration of (5.72) yields

w(t) = −h(α)

N
t b =

N

h(α)
, (5.83)

for t ∈ (0, b), the last equality being implied by the relation w(b) = −1. Thus we
set θ1 = b. Notice that b > N since h(α) < 1. We next use (5.72) to observe that,

|w′(t)| ≤ 1

N ′
h(α) + 1 + αq−1 = 1 +

1

N ′
+

1

N
αq−1 ≤ 2,

for t ≥ θ1. This together with (5.83) implies that,

‖w′‖∞,(0,∞) ≤ 2. (5.84)

3) Let (a, b) be a component of C where v(t) = c, c 6= 0, is a constant. Then we
claim the validity of the following facts.

a) (a, b) is finite while b− a ≥ 1.
b) sign c = sign w(a), being (sign c)w(t) decreasing in (a, b).
c) The following relation holds true:

h(|c|)
N

bN − bN−1 =
h(|c|)
N

aN + aN−1. (5.85)

The finiteness of (a, b) is consequence of the representation

w(t) =

(
w(a) + a

h(c)

N

)(a
t

)N−1

− h(c)

N
t, (5.86)

which holds in (a, b) and the fact that |w| < 1. Furthermore, (5.84) implies the
second assertion in a) since

2 = |w(b)− w(a)| ≤ 2(b− a) .

To check b), observe first that sign c = sign h(c) when |c| < 1. If w(a) = 1 and
c < 0, then

w′(a+) = −N − 1

a
+ h(|c|) > 0,

due to a ≥ θ1 and |c| ≤ α. This would imply that w > 1 near t = a which is not
possible. A similar argument allows to deal with the case w(a) = −1 and c > 0.
Thus, w(a) = sign c. On the other hand,

w(a)w(t) =

(
1 + a

h(|c|)
N

)(a
t

)N−1

− h(|c|)
N

t,

which is decreasing. Since (sign c)w(t) = w(a)w(t), point b) is proven.

Finally, (5.85) follows by direct integration of (5.72).

4) Solution v can not undergo a discontinuity at θ ≥ θ1 such that v(θ−) = c 6= 0
and v(θ+) = 0. In fact, since v only has jump discontinuities, that fact and (5.70)
would imply

|c| − |c|
q

q
=
N − 1

θ
|c|,
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and so

1− |c|
q−1

q
≤ 1

N ′
(1− αq−1).

Hence,

1− 1

N ′
≤
(

1

q
− 1

N ′

)
αq−1 <

1

q
− 1

N ′
,

which is not possible. We stress that condition (5.70) is essential in this step (see
Remark 14 below).

5) If either w(t) = 1 or w(t) = −1 in an whole interval I = (a, b) then v(t) = 0
there. Assume that w(t) = 1. Then from (w, v′) = |v′| one learns that v′ = |v′| and
so v is nondecreasing in I. However, (5.72) implies that

|v|q−2v ∈ sign v +
N − 1

t
, t ∈ I.

If v(t0) 6= 0 at some t0 ∈ I, then (near t0) |v|q−2v would be strictly decreasing and
this is not possible. The case w(t) = −1 is similarly handled.

6) Components of C are contiguous in the sense that the upper end of one component
coincides with the lower end of another. More precisely, beyond every component
(a, b) in C where v(t) = c 6= 0 there exists a further component (b, d) where v(t) = c′

and cc′ < 0 holds. The assertion is a consequence of 3), 4) and 5) (see [41]).

Proof of i), ii), iii)–(5.79).

Starting at the first interval (0, θ1) with α0 = α and by employing step 6), we
are attaching successive components, named In := (θn−1, θn). Function v attains
the constant value (−1)nαn in In, with αn > 0 since signs on these intervals are
alternated. Energy condition (5.70) implies that αn is not increasing. By (5.85)
it is found that θn follows the recursive law (5.79). Observe that this law gives
θ1 = N

h(α) as expected.

Proof of iii)–(5.80), dependence θn(α), αn(α) and v).

We first discus equation (5.79) to show that every θn can actually be computed.
Given αn−1 and θn−1, the new term x = θn must be found by solving

h(αn−1)

N
xN − xN−1 =

h(αn−1)

N
θNn−1 + θN−1

n−1 .

By setting y = h(αn−1)x, θ̃n−1 = h(αn−1)θn−1 such an equation is transformed
into

1

N
yN − yN−1 =

1

N
θ̃Nn−1 + θ̃N−1

n−1 . (5.87)

It is rather clear that this equation possesses a unique root y = θ̂n > N which is a
smooth function of θ̃n−1. This implies that

θn =
θ̂n

h(αn−1)

is the next term in the sequence. Moreover, it also defines a smooth function of
both αn−1, θn−1.

We emphasize that it follows from θn ≥ 1+θn−1 (see 3) a)) that limn→∞ θn =∞.
Thus, v is defined in (0,∞).
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Function v exhibits a jump at every θn. Thus, the energy relation (5.70) implies
that

g(αn)− g(αn−1) = −N − 1

θn
(αn−1 + αn),

which can be written as (5.80):

g(αn) +
N − 1

θn
αn = g(αn−1)− N − 1

θn
αn−1.

We now check that this recursive relation certainly produces a decreasing sequence
0 < αn < α. Proceeding by induction, assume that both 0 < αn−1 < α and θn > θ1

have already been found. Then,

g(αn−1)− N − 1

θn
αn−1 > 0.

In fact this inequality amounts to

1− 1

q
αq−1
n−1 −

N − 1

θn
> 0.

But θn >
N

h(αn−1) , so that

1− 1

q
αq−1
n−1 −

N − 1

θn
> 1− 1

q
αq−1
n−1 −

1

N ′
(1− αq−1

n−1) > 0,

as q > 1.

Next, it can be checked that the function x 7→ g(x) + N−1
θn

x is increasing in the

interval 0 ≤ x ≤
(

1 + N−1
θn

) 1
q−1

. Thus, equation

g(x) +
N − 1

θn
x = g(αn−1)− N − 1

θn
αn−1

has a unique solution x in the range 0 < x < 1, and such a root must be x = αn.
Moreover, we deduce

d

dx

(
g(x) +

N − 1

θn
x

)
x=αn

> 0.

This means that αn is a smooth function of both θn, αn−1. In addition, since
αn lies in the range where g(·) + N−1

θn
· is increasing, it follows from (5.80) that

0 < αn < αn−1.

We now proceed recursively and use the dependence of θn on θn−1 and αn−1

shown above, to conclude that αn and θn are smooth functions of α. Moreover, in
the particular case n = 1 both functions are increasing in α.

Estimate (5.82) in assertion v) is shown by direct substitution and the help of
[41, Theorem 19].

Proof of αn → 0 and estimate (5.81). By setting,

an =
θn
θn−1

> 1,

then (5.79) leads to

aNn

(
1− N

h(αn−1)θn

)
= 1 +

N

h(αn−1)θn−1
,
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whence lim an = 1. On the other hand,

θn − θn−1 =
1

h(αn−1)

N(aN−1
n + 1)∑N−1

k=0 aN−1−k
n

→ 2

h(ᾱ)
, (5.88)

as n → ∞ where ᾱ = limαn = inf αn. We are next showing that ᾱ = 0 so the
proof of estimate (5.81) is attained.

Accordingly, let us verify that ᾱ = 0. For n fixed choose 0 < a < b so that,

a < θ1 < · · · < θn < b < θn+1.

The decaying character of the energy E:

E = |v| − |v|
q

q
,

and equation (5.70) imply that,∫ b

a

N − 1

t
|v′| ≤ E(a)− E(b) < E(0) < α,

and so,

(N − 1)

n∑
k=1

αk + αk−1

θk
=

∫ b

a

N − 1

t
|v′| ≤ α.

Thus the series
∞∑
n=1

αn + αn−1

θn

converges. On the other hand, it follows from (5.88) and Cesàro’s Theorem that
limn→∞

θn
n = 2

h(ᾱ) . Hence,

αn + αn−1

θn
∼ C ᾱ

n

for a certain constant C > 0. Therefore ᾱ must be zero.

�

Remark 13. For 0 < α < 1 the sequence θn of values obtained in Theorem 19 are
denoted in the sequel as θ̄n(α). This is done to highlight on the one hand their
dependence on α, and on the other its rôle as a limit when p→ 1. Next statement
clarifies this last remark. Notations vp(·, α) and θn,p(α) (beginning of Section 4)
are going to be employed.

Corollary 20. Fixed 0 < α < 1, let vp(t, α) be the solution (5.68) while v(t, α)
designates the solution to (5.69) computed in Theorem 19. Then the whole family
vp, not merely a subsequence, satisfies

vp → v as p→ 1, (5.89)

in L1((0, b), tN−1 dt) for every b > 0. Moreover,

lim
p→1

θn,p(α) = θ̄−n (α) = θ̄+
n (α) = θ̄n(α), (5.90)

for all n ∈ N, where θn,p(α) denotes the sequence of zeros of vp.
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Figure 2. Drawing of vp(t, α) for N = 2, q = 2.5, α = 0.5 and
p = 1.001. Profile is dramatically steepened.

Proof. Convergence assertion (5.89) is a consequence of the uniqueness shown in
Theorem 19.

To prove (5.90) we proceed by induction and firstly check that θ̄±1 = θ̄1 (α is
omitted for simplicity). Thus, choose a subfamily vp′ so that θ̄1,p′ → θ̄+

1 while
vp′ → ṽ a. e. in (0,∞) (Theorem 18). Thanks to Theorem 13 (finiteness of limits)
and Theorem 14 (gaps between the limits), ṽ ≥ 0 in an interval (θ̄+

1 − δ, θ̄
+
1 ) while

ṽ ≤ 0 in (θ̄+
1 , θ̄

+
1 + δ) for certain δ > 0. But uniqueness entails that ṽ = v and so

θ̄+
1 must coincide with θ̄1. Otherwise a discrepancy in signs should arise. By the

same token, θ̄−1 must be θ̄1.

Assume now that θ̄±k = θ̄k for 1 ≤ k ≤ n. We are proving that θ̄+
n+1 = θ̄n+1. In

fact, choose again a subfamily vp′′ so that vp′′ → v̂ and satisfying θn+1,p′′ → θ̄+
n+1

(Theorem 13). Then, Theorem 14 provides some η > 0 such that (−1)n+1v̂ ≥ 0 in
(θ̄+
n+1, θ̄

+
n+1 + η) and (−1)n+1v̂ ≤ 0 in (θ̄+

n+1 − η, θ̄
+
n+1) (in fact this is just the sign

in the whole interval (θ̄n, θ̄
+
n+1)). But again v̂ = v and necessarily θ̄+

n+1 = θ̄n+1, to

avoid inconsistency in the signs. For θ̄−n+1 = θ̄n+1 the argument is the same. �

Figures 2 and 3 show plottings of vp(t, α) and wp(t, α) with the parameters of
Figure 1 but p reduced to p = 1.001.

5.4. Proof of Theorem 16. Let (v(t), w(t)) be the solution to (5.69) introduced
in Theorem 19. By setting,

u = ūn,λ(r) = λ
1

q−1 v(λr, α), with λ = λ̄n(α) = R−1θ̄n(α), (5.91)

we are checking that the assertions in Theorem 16 hold true.
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Figure 3. Drawing of wp(t, α) for N = 2, q = 2.5, α = 0.5 and
p = 1.001. The Lipschitz nature of wp is clearly reflected.

Regarding the property of being a solution to (5.61) we choose

z = w̃(r)
x

r
, β(x) = β1(λr),

where w̃(r) = w(λr) and β1(t) is just the function,

β1 =

∞∑
n=1

(−1)n−1χ(θ̄n−1(α),θ̄n(α)).

It is clear then that βu = |u|.
On the other hand, distributions div z, (z, Du) and |Du| are invariant under

rotations in RN (a detailed checking of this and forthcoming similar assertions is
omitted to brief). Accordingly, they are equal provided that take the same values
when acting on radial test functions ϕ ∈ C∞0 (BR), ϕ(x) = ψ(|x|). Thus, to check
that (5.61) holds we observe that both v and w are smooth enough up to t = 0 and
that equality

−(tN−1w)′ = tN−1(β1 − |v|q−2v),

is satisfied. It is equivalent to,

−(rN−1w̃)′ = rN−1(λβ − |u|q−2u).

Multiplying by a test function ψ ∈ C1[0, R] which vanishes near r = R and inte-
grating by parts we obtain,∫ R

0

w̃ψ′rN−1 dr =

∫ R

0

(λβ − |u|q−2u)ψrN−1 dr,

which is the weak version of −div z = λβ − |u|q−2u in polar coordinates.

Regarding the identity (z, Du) = |Du| it suffices with checking it in D(σ) :=
BR \Bσ for 0 < σ < R small since it is clearly true near zero. Thus, define ϕ as in



36 J. SABINA DE LIS, S. SEGURA DE LEÓN

(5.77) where ψ ∈ C∞0 (λσ, θ̄n(α)). Then ϕ ∈ C∞0 (D(σ)) while some computations
show that

〈(z, Du), ϕ〉 = −
∫
D(σ)

u(x)ϕ(x)div z(x) dx−
∫
D(σ)

u(x)z(x) · ∇ϕ(x) dx

= −NωNλ
1

q−1

∫ λR

λσ

v(t)ψ(t)

(
wt(t) +

N − 1

t
w(t)

)
dt

−NωNλ
1

q−1

∫ λR

λσ

v(t)w(t)

(
ψt(t)−

N − 1

t
ψ(t)

)
dt

= NωNλ
1

q−1

[
−
∫ λR

λσ

v(t)ψ(t)wt(t) dt−
∫ λR

λσ

v(t)w(t)ψt(t) dt

]
= NωNλ

1
q−1 〈(w, vt), ψ〉.

Taking the same test functions ψ and ϕ, it can be seen that

〈|Du|, ϕ〉 = NωNλ
1

q−1 〈|vt|, ψ〉 .

Since (v, w) is the solution to (5.69), it follows that (w, vt) = |vt| and so (z, Du) =
|Du| as measures in D(σ). It yields (z, Du) = |Du| as measures in BR, so that the
required coupling between z and |Du| is verified.

The validity of the energy relation (5.67) is proven by a direct scaling argument
based on (5.70).

Regarding the boundary condition, it follows from [1, Theorem 3.87] that the
trace of u at R is given by:

u|r=R = lim
r→R−

u(r) = λ
1

q−1 lim
t→θ̄n(α)

v(t, α) = (−1)n−1αn−1λ
1

q−1 .

Hence,

sign u|r=R = (−1)n−1 = −[z, ν],

since [z, ν] = w̃(R) = w(θ̄n(α)) = (−1)n.

Parametrization (5.65) for ūn,λ together with its continuity in α are provided by
the expression for v(t, α) and the smoothness of θ̄n and αn with respect to α stated
in Theorem 19. In addition, crucial relation (5.66) was the objective of Corollary
20.

The fact that ūn,λ bifurcates from zero at λ = λ̄n follows from (5.91) and the
convergence λ̄n(α)→ 0 as α→ 0+. Similarly, that λ̄n(α)→∞ as α→ 1− proves
(5.64).

We next address the uniqueness issue in v). So, let u ∈ BV (BR) be a radial
solution in the sense of Definition 15, with associated function β(r) and field z =
w̃(r)xr . It is also supposed that u satisfies the energy relation (5.67).

We start with the equation,

−div z = λβ − |u|q−2u.

By testing with radial functions ψ(|x|) ∈ C∞0 (BR) we obtain,∫ R

0

w̃(r)ψ′(r)rN−1 dr =

∫ R

0

(λβ − |u|q−2u)ψ(r)rN−1 dr.
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By using the limit condition in (5.63) we arrive at:

w̃(r) = −
∫ r

0

(s
r

)N−1

(λβ − |u|q−2u) ds.

Since u ∈ L∞(BR) (Theorem 4) it follows that w̃ ∈ W 1,∞(0, R). Moreover, equa-
tion

−w̃r −
N − 1

r
w̃ = λβ − |u|q−2u, 0 < r < R,

is satisfied in weak sense.

Define now,

α = lim
r→0+

λ−
1

q−1u(r).

Such a limit exists because u is chosen to be of bounded variation in classical sense.
In addition |α| < 1 due to (2.16) (Theorem 4) and no generality is lost if we assume

that α ≥ 0. We now observe that (5.67) implies that the group λ|u| − |u|
q

q is non

increasing. Therefore,

λ−
1

q−1 |u(r)| ≤ α, r > 0.

This in particular rules out the option α = 0.

Let us introduce now the scalings,

v(t) = λ−
1

q−1u(λ−1t), w(t) = w̃(λ−1t), β1(t) = β(λ−1t).

Then it is found that the pair (v, w) fulfills the properties i), ii) and iii) in Definition
17, where β1 assumes the rôle of β in iii), being (0, Rλ) the reference interval. In
addition, a scaling computation ensures us that the energy relation (5.70) holds.
Finally, the boundary condition:

− w(b)v(b−) = |v(b−)|, (5.92)

is satisfied at the endpoint b = Rλ. We now come back to the proof of Theorem
19 and observe that dispose of enough conditions to conclude that v(t) exactly
matches, in the interval (0, Rλ), the solution obtained in this theorem. Since the
boundary condition (5.92) is only fulfilled at the points θ̄k(α) there must exist some
n so that,

Rλ = θ̄n(α).

Thus, we have shown that solution u = ūn,λ with λ = R−1θ̄n(α). This finishes the
proof of Theorem 16.

Remark 14. If we drop condition (5.67) then further families of solutions than
those in Theorem 16 can be found. The most simple example is extracted from the
solution (v, w) to problem (5.69) defined by

v(t) = αχ(0,θ̄1(α))(t), θ̄1(α) =
N

1− αq−1
, α > 0,

together with

w(t) =

−
t

θ̄1(α)
0 ≤ t ≤ θ̄1(α)

−1 t > θ̄1(α),

β(t) =


1 0 ≤ t ≤ θ̄1(α)

N − 1

t
t > θ̄1(α).



38 J. SABINA DE LIS, S. SEGURA DE LEÓN

Then,

ûλ(r) = λ
1

q−1 v(λr),

defines a solution to (5.61) in every ball whose radius is greater than R provided
that

λ ≥ λc := R−1θ̄1(α) > λ̄1.

Observe that a dead core {ûλ = 0} propagates towards x = 0 as λ → ∞. Many
other families of solutions can be obtained. Of course, none of them satisfying the
energy condition (5.67).
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