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Abstract. This work addresses several aspects of the dependence on p of the

higher eigenvalues λn to the Robin problem,
−∆pu = λ|u|p−2u x ∈ Ω,

|∇u|p−2 ∂u

∂ν
+ b|u|p−2u = 0 x ∈ ∂Ω.

Here, Ω ⊂ RN is a C1 bounded domain, ν is the outer unit normal, ∆pu =

div (|∇u|p−2∇u) stands for the p–Laplacian operator and b ∈ L∞(∂Ω). Main

results concern: a) the existence of the limits of λn as p → 1, b) the ‘limit
problems’ satisfied by the ‘limit eigenpairs’, c) the continuous dependence of

λn on p when 1 < p < ∞ and d) the limit profile of the eigenfunctions as

p → 1. The latter study is performed in the one dimensional and radially
symmetric cases. Corresponding properties on the Dirichlet and Neumann

eigenvalues are also studied in these two special scenarios.
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1. Introduction

The analysis of the eigenvalues of the p–Laplacian operator under different sets
of boundary conditions is a challenging topic in nonlinear analysis. Just a distin-
guished example of such problems correspond to the so–called Robin conditions,

−∆pu = λ|u|p−2u x ∈ Ω

|∇u|p−2 ∂u

∂ν
+ b|u|p−2u = 0 x ∈ ∂Ω,

(1.1)

with Ω ⊂ RN a bounded C1 domain, ν being the outer unit normal and b ∈ L∞(Ω).
In most parts of this paper, and unless otherwise stated, coefficient b is nonnegative.

Weak eigenpairs (λ, u) ∈ R×W 1,p(Ω) to (1.1) are defined as follows.

Definition 1. A function u ∈ W 1,p(Ω) \ {0} is an eigenfunction associated to an
eigenvalue λ ∈ R if,∫

Ω

|∇u|p−2∇u∇v dx+

∫
∂Ω

b|u|p−2uv dHN−1 = λ

∫
Ω

|u|p−2uv dx,

for every v ∈W 1,p(Ω).

Problem (1.1) has been exhaustively studied in the linear diffusion case p = 2
([10]). However, the regime p 6= 2 is substantially more complicated, specially when
dealing with higher eigenvalues. It shares many basic features with a broad class
of eigenvalue problems. The most important examples are the Dirichlet problem:−∆pu = λ|u|p−2u x ∈ Ω

u = 0 x ∈ ∂Ω,
(1.2)

and the Neumann problem,
−∆pu = λ|u|p−2u x ∈ Ω

∂u

∂ν
= 0 x ∈ ∂Ω.

(1.3)

Some of these common properties are,

a) All possible eigenvalues λ are nonnegative while there exists a unique principal
eigenvalue λ1. This means an eigenvalue with an associated eigenfunction which
does not change its sign. It is the minimum eigenvalue and is characterized as,

λ1 = inf
u∈W 1,p(Ω)

∫
Ω
|∇u|p +

∫
∂Ω
b|u|p∫

Ω
|u|p

. (1.4)

b) λ1 is a simple and isolated eigenvalue ([3], [32], [30]).

c) There exists a further nondecreasing family λn of eigenvalues, λn → ∞, which
are variationally defined. Corresponding eigenvalues to the Dirchlet and Neumann
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problems are denoted λDn and λNn , respectively. These are the so–called Ljusternik–
Schnirelmann eigenvalues ([2], [24], [23], [30] and Section 2.4 below). However it is
still not known if they are the only possible eigenvalues.

d) Second eigenvalue λ2 in the sequence (2.13) is actually the second eigenvalue.
In other words, no other eigenvalues between λ1 and λ2 exist ([4]).

A discussion of the different aspects of the dependence on p of the eigenvalues
of −∆p has been the subject of recent interest in the literature. It goes back at
least to [17] where the continuity on p of the first Dirichlet eigenvalue λD1 is shown.
A possible failure of the left continuity of this eigenvalue in nonsmooth domains Ω
was discovered in [33], while optimum conditions to achieve such continuity have
been recently given in [15]. As for the higher Dirichlet eigenvalues, continuity of λD2
is stated in [25], being thoroughly discussed in [11] the continuity of the full family
of eigenvalues λDn on p (see also [40] and [14]).

The present work is mainly concerned with the behavior of the eigenvalues to
(1.1) as p→ 1. The interest on this kind of results has its origin in the analysis of
the limit λD1 → λ̄1 of the first Dirichlet eigenvalue as p→ 1 and, more importantly,
the rôle of λ̄1 as the first eigenvalue of the 1–Laplacian operator −∆1 ([19, 20], [28],
[29] and rough preliminary approximations in [25], [31]). As for the higher Dirichlet
eigenvalues λDn , the existence of the limits λ̄Dn = limp→1 λ

D
n together with a varia-

tional expression for such limits were obtained in [38, 39], [34]. Nevertheless, the
mere existence of these limits is deduced in [41] following a direct approach inspired
in [33]. In addition, the identification of λ̄Dn as a critical value of the total variation
functional D(u) (see (6.80)), in the sense of the so–called ‘weak slope’, was also
shown in [34] (see [36] and [12] for related results). In the one–dimensional case, a
complete characterization of the variational Dirichlet eigenvalues was accomplished
in [12], while the limits of eigenvalues and eigenfunctions profiles for a convective
perturbation of −∆1 are addressed in [13].

A further field of research on the p–dependence of eigenvalues consists in de-
termining the possible limit eigenfunctions un associated to a limit eigenvalue
λ̄Dn = limp→1 λ

D
n . It is shown in [41] the existence of such eigenfunctions which

solve a suitable limit problem governed by the 1–Laplacian operator −∆1 (see also
[12], [36]). The natural framework to manage these problems is the space BV (Ω) of
functions of bounded variation (Section 2). A detailed computation of both the lim-
its λ̄Dn and the profiles of the eigenfunctions in a ball is performed in [41], while the
case of annuli has been recently addressed in [27]. Natural nonlinear perturbations
of the Dirichlet eigenvalue problem for −∆1 have also been recently considered in
[43, 42].

Although this kind of results will not be considered in this paper, we would like
to mention that the monotonicity with respect to p of the eigenvalues either to (1.2)
or (1.3), is another area of recent study (see [26], [35], [27]).

The contents of this work deals with the topics described above. One of our
main results, Theorem 20, both states the existence of the limits λ̄n = limp→1 λn,p
of the Robin eigenvalues together with the variational expression (6.79) for such
limits. As shown in Theorem 18, Corollary 23 and it is going to be observed in
the course of Sections 3 and 4, the relative values of b with respect to unity exert
a strong influence on the expression and behavior of λ̄n. In addition, it turns out



4 J.C. SABINA DE LIS, S. SEGURA DE LEÓN

when proving Theorem 20 that eigenvalues λn,p are right continuous as functions of
p > 1 (Theorem 26). Analysis of the full continuity of λn,p is delayed to Theorem
31 in Section 7 and this is the only part of the work dealing with Γ-convergence.

The connection between the limits λ̄n and the 1–Laplacian is confined to Section
5. We do not need there the existence of limp→1 λn,p. Rather, the weaker assump-
tion that λ̄ = limm→∞ λn,pm where n is fixed and pm → 1. Thus, the existence of
such limit values λ̄ is simply ensured through uniform estimates of λn,p as p → 1
(Lemma 6). Main result of the section, Theorem 18, states that an eigenfunction
u ∈ BV (Ω) can be found so that (λ̄, u) defines an eigenpair of the ‘natural’ bound-
ary value problem associated to −∆1 (see (5.76) and (5.78)). In this problem, the
boundary conditions depend significantly on the relative values of b with respect to
unity. More precisely, if 0 < b < 1 on Γ1 and b ≥ 1 on Γ, Γ1, Γ being open parts of
∂Ω with Γ1 ∪ Γ = ∂Ω, then (λ̄, u) solves,


−∆1u = λ

u

|u|
x ∈ Ω,

u = 0, on Γ,

Du

|Du|
ν + b

u

|u|
= 0, on Γ1.

Here ∆1 stands for the 1-Laplacian operator which is formally defined as div
(
Du
|Du|

)
.

A precise definition of the concept of solution to this problem is presented in Section
5.

To attain a deeper insight on the profiles of the limit eigenfunctions, the one
dimensional and the radial versions of (1.1) are considered in Sections 3 and 4. In
dimension N = 1, Theorems 8 and 9 describe the exact values of λ̄n, the profile
and the exact position of the zeros of the limit eigenfunctions u. On the other
hand, analysis of the radial Robin eigenvalues is much harder to carry out. It is
clear from the start that a fine knowledge of the asymptotic behavior of both the
Dirichlet and Neumann eigenvalues is also required. Accordingly, we develop a
unified approach to study all these three problems. By using previous results in
[41], which clarify the Dirichlet problem, a very precise computation of the limit

values λ̄Nn = limp→1 λn,p
N and λ̄n = limp→1 λn,p is provided in Theorems 14 and

15, respectively. Results also include recurrence relations to determine the exact
limit positions of the eigenfunction zeros. In addition, Theorem 16 accounts for the
limit profile of the eigenfunctions. It should be stressed that both in Sections 3 and
4, coefficient b is not restricted to be positive.

This paper is organized so that special cases are presented before the more
general statements. In addition, most of the sections can be independently read.
Section 2 is devoted to auxiliary results. Sections 3 and 4 deal with the one di-
mensional and radial cases, respectively. It must be remarked that Section 4 also
contains a detailed analysis of the Neumann eigenvalue problem. The limit version
as p → 1 of problem (1.1) and its connection with −∆1 are studied in Section 5.
The existence of the limit of λn,p as p → 1 is presented in Section 6. Finally, the
continuity of λn,p with respect to p is addressed in Section 7.
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2. Estimates and technical results

As a matter of notation Lp(Ω) and W 1,p(Ω) will designate the standard Lebesgue
and Sobolev spaces in a bounded domain Ω ⊂ RN with exponent 1 ≤ p ≤ ∞. Their
norms are denoted by ‖ · ‖p and ‖ · ‖1,p, respectively. If µ is a Radon measure in
Ω, |µ| stands for its total variation. For an open set G ⊂ Rk convergence of a
sequence un → u in Cm(G) means that un together with their derivatives up to the
order m converge uniformly in compact sets of G to the corresponding ones of u.
Finally, integrals of functions on the boundary ∂Ω will be understood in the sense
of the Hausdorff measure HN−1. An explicit reference to this fact will be generally
omitted to brief the notation.

2.1. Dependence on p of a well–known inequality. We begin with a basic
well–known estimate. Very attention is put on the dependence on p.

Lemma 2. Assume that Ω ⊂ RN is a bounded smooth domain. Then there exists
a constant CΩ, only depending on Ω such that,∫

∂Ω

|u|p ≤ 2p−1CΩ

(∫
Ω

|∇u|p + (2p− 1)

∫
Ω

|u|p
)
, (2.5)

for all u ∈W 1,p(Ω), p > 1.

Proof. Choose {(Ui, Hi)}mi=1, Ui ⊂ RN , Hi : Ui → B, y = Hi(x), a C1 diffeomor-
phism, a coordinate system for ∂Ω so that ∂Ω ⊂ ∪Ui and Hi(Ui ∩ Ω) = B+ while
Hi(Ui ∩ ∂Ω) = B ∩ {yN = 0} for all 1 ≤ i ≤ m. Here B stands for the unit ball of
RN . Let also (Ui, ϕi) be a partition of unity associated to {Ui}. Then,∫

∂Ω

|u|p dx ≤ 2p−1
∑∫

∂Ω∩Ui
|ui|p dx = 2p−1

∑∫
{yN=0}

|ũi|pJi(y′) dy′,

where ui = uϕi, ũi = ui ◦ H−1
i , y′ = (y1, . . . , yN−1) and the Ji’s are positive

functions associated to the transformation of integrals rule. By estimating the
functions Ji from above and taking into account that,∫

{yN=0}
|ũi|p dy′ ≤ p

∫
RN+
|ũi|p−1|∂nũi| dy ≤ pCi

∫
Ui∩Ω

|ui|p−1|∇ui|

≤ pCi
∫
Ui∩Ω

(
|u|p + |u|p−1|∇u|

)
≤ Ci

∫
Ω

|∇u|p + Ci(2p− 1)

∫
Ω

|u|p,

where value of Ci may possible change in the course of the computation, we finally
find that, ∫

∂Ω

|u|p ≤ 2p−1C

(∫
Ω

|∇u|p + (2p− 1)

∫
Ω

|u|p
)
,

where C comprises both m and an estimate of the Ci’s. �

2.2. BV–functions and pairings. The space of all functions of finite variation,
that is the space of those u ∈ L1(Ω) whose distributional gradient is a Radon
measure with finite total variation, is denoted by BV (Ω). It is the natural energy
space to deal with problems involving the 1–Laplacian operator. As it is going to
be shown in Section 5, the limit of (1.1) as p goes to 1 constitutes an important
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example of such problems. We recall that the notion of trace can be extended to
any u ∈ BV (Ω) and this fact allows us to interpret it as the boundary values of u
and to write u

∣∣
∂Ω

. By means of the trace, the expression,

‖u‖BV (Ω) =

∫
∂Ω

|u| dHN−1 +

∫
Ω

|Du| ,

furnishes a norm forBV (Ω). Here
∫

Ω
|Du| stands for the total variation of the vector

Radon measure Du and HN−1 is the (N − 1)-dimensional Hausdorff measure.

Instead of the norm convergence, it is more convenient to deal with the strict
convergence in BV (Ω): we say that a sequence un strictly converges to u if

un → u strongly in L1(Ω)

and

lim
n→∞

∫
Ω

|Dun| =
∫

Ω

|Du| .

For further information on functions of bounded variation, we refer to [1] and
[22].

In addition, the concept of solution to problems as (5.76) in Section 5 relies
on Anzellotti’s theory (see [6]), which we next recall. For u ∈ BV (Ω) and z ∈
L∞(Ω,RN ) such that div z ∈ LN (Ω), a pairing (z,Du) was defined: it is a Radon
measure over Ω which is nothing else than the dot product z ·∇u when u ∈W 1,1(Ω).
This pairing satisfies the inequality |(z,Du)| ≤ ‖z‖L∞(Ω,RN )|Du| as measures.

A further notion of the theory in [6] is that of the weak trace on ∂Ω of the normal
component of a bounded vector field z whose divergence belongs to LN (Ω). It is a
bounded function, denoted by [z, ν], which satisfies ‖ [z, ν] ‖L∞(∂Ω) ≤ ‖z‖L∞(Ω,RN ).
Most importantly, a Green formula connecting the measure (z,Du) and the weak
trace [z, ν] is established in [6, Th. 1.9]. Namely:∫

Ω

(z,Du) +

∫
Ω

u div z =

∫
∂Ω

u [z, ν] dHN−1. (2.6)

2.3. Approximation lemmas. Our next result is a corrected version of [34, Lemma
4.1], [40, Prop. 3.1] and [38, Ths. 2.12 and 2.17] where defective proofs are pro-
vided (specifically, the one corresponding to the ‘limsup inequality’). Observe that
no sign restriction is imposed to the coefficient b.

Lemma 3. Let Ω ⊂ RN be a bounded domain which satisfies the graph property
while b ∈ L∞(∂Ω). Consider p ≥ 1 and a fixed sequence pn → p+. Then,

a) For every u ∈ W 1,p(Ω) there exists un ∈ C1(Ω) such that un → u in W 1,p(Ω)
and ∫

Ω

|∇u|p = lim
n→∞

∫
Ω

|∇un|pn &

∫
∂Ω

b|u|p = lim
n→∞

∫
∂Ω

b|un|pn . (2.7)

b) If u ∈ BV (Ω) and p = 1, then there also exists a sequence un ∈ C1(Ω) such that
un → u in the strict topology of BV (Ω) together with∫

Ω

|Du| = lim
n→∞

∫
Ω

|∇un|pn &

∫
∂Ω

b|u| = lim
n→∞

∫
∂Ω

b|un|pn , (2.8)

where
∫

Ω
|Du| stands for the total variation of Du.
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Proof. Case a). Choose vn ∈ C1(Ω) satisfying vn → u in W 1,p(Ω). Let εn > 0 be a
decreasing sequence so that εn → 0. Fixed n there exists a member vkn such that,∫

Ω

|∇u|p dx+ εn >

∫
Ω

|∇vkn |p,∫
∂Ω

b|u|p + εn >

∫
∂Ω

b|vkn |p,

together with ‖vkn − u‖1,p < 1
n . Notice that traces theorem has been employed in

the last assertion. Observe also that,∫
Ω

|∇vkn |p = lim
l→∞

∫
Ω

|∇vkn |pl ,
∫
∂Ω

b|vkn |p = lim
l→∞

∫
∂Ω

b|vkn |pl .

as shown in Remark 1 below. Hence, associated to n there corresponds ϕ(n) ∈ N
such that ∫

Ω

|∇u|p dx+ εn >

∫
Ω

|∇vkn |pl ,

and, ∫
∂Ω

b|u|p + εn >

∫
∂Ω

b|vkn |pl ,

in both cases for every l ≥ ϕ(n).

In the next step we take vkn+1
such that ‖vkn+1

− u‖1,p < 1
n+1 and∫

Ω

|∇u|p + εn+1 >

∫
Ω

|∇vkn+1 |p,∫
∂Ω

b|u|p dx+ εn+1 >

∫
∂Ω

b|vkn+1
|p,

are satisfied while,∫
Ω

|∇vkn+1
|p = lim

s→∞

∫
Ω

|∇vkn+1
|ps ,

∫
∂Ω

b|vkn+1
|p = lim

s→∞

∫
∂Ω

b|vkn+1
|ps .

Thus, ϕ(n+ 1) > ϕ(n) exists such that∫
Ω

|∇u|p dx+ εn+1 >

∫
Ω

|∇vkn+1 |pl ,

and ∫
∂Ω

b|u|p + εn+1 >

∫
∂Ω

b|vkn+1
|pl for all l ≥ ϕ(n+ 1).

An increasing sequence:

ϕ(n) < ϕ(n+ 1) < · · ·ϕ(n+ h) < · · · , ϕ(n)→∞,

is found such that ‖u− vkn+h
‖1,p < 1

n+h jointly with,∫
Ω

|∇u|p + εn+h >

∫
Ω

|∇vkn+h
|ps ,∫

∂Ω

b|u|p + εn+h >

∫
∂Ω

b|vkn+h
|ps ,

for every s ≥ ϕ(n+ h). The desired sequence is defined as

um = vkn+h
for ϕ(n+ h) ≤ m < ϕ(n+ h+ 1).
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It is quite clear that∫
Ω

|∇u|p ≥ lim
m→∞

∫
Ω

|∇um|pm ,
∫
∂Ω

b|u|p ≥ lim
m→∞

∫
∂Ω

b|um|pm ,

On the other hand, the converse inequalities,∫
Ω

|∇u|p ≤ lim
m→∞

∫
Ω

|∇um|pm ,
∫
∂Ω

b|u|p ≤ lim
m→∞

∫
∂Ω

b|um|pm ,

are checked without difficulty.

Case b). If u ∈ BV (Ω) there exists vn ∈ C∞(Ω)∩BV (Ω) approaching u in the strict
topology ([1], [22]). In addition every such vn can be also arbitrarily approached in
W 1,1(Ω) by a function in C1(Ω). This follows from the fact that Ω fulfils the graph
property ([45]). Hence it can be assumed from the start that vn ∈ C1(Ω). Now, by
replacing the norm ‖ · ‖1,p in W 1,p(Ω) by the strict distance (see [1]),

d(u, v) = ‖u− v‖1 +

∣∣∣∣∫
Ω

|Du| −
∫

Ω

|Dv|
∣∣∣∣ , u, v ∈ BV (Ω),

in the argument of case a), one achieves as well the existence of un ∈ C1(Ω) such
that ∫

Ω

|Du| ≥ lim
n→∞

∫
Ω

|∇un|pn , (2.9)

together with, ∫
∂Ω

b|u| ≥ lim
n→∞

∫
∂Ω

b|un|pn . (2.10)

In fact, to check the last assertion one employs the continuity of the trace mapping
with respect the strict topology (see [1]) to conclude that∫

∂Ω

b|u| = lim
n→∞

∫
∂Ω

b|vn| .

Then the first election of vnk in the proof of case a) should now further include the
requirement: ∫

∂Ω

b|u| + εn ≥
∫
∂Ω

b|vnk | = lim
s→∞

∫
∂Ω

b|vnk |ps .

The remaining steps keep the same.

Converse estimates to (2.9) and (2.10) are straightforward. �

Remark 1. If v ∈ C1(Ω) then,

‖∇v‖p−pn∞

∫
Ω

|∇v|pn ≤
∫

Ω

|∇v|p ≤ |Ω|1−
p
pn |∇v|ppn , pn > p.

That is why, ∫
Ω

|Dv|p = lim
n→∞

∫
Ω

|Dv|pn .

By employing a more direct argument than the one in Lemma 3 the following
improved statement can be shown.

Lemma 4. Suppose pn → p− and so p > 1 while un ∈ C1(Ω) is any sequence so
that un → u in W 1,p(Ω). Then un satisfies the identities (2.7).
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Proof. By observing that,∫
Ω

|∇un|pn ≤ |Ω|1−
pn
p

(∫
Ω

|∇un|p
) pn

p

,

together with, ∫
∂Ω

b±|un|pn ≤
(∫

∂Ω

b±
)1− pnp (∫

∂Ω

b±|un|p
) pn

p

,

it follows that,

lim
n→∞

∫
Ω

|∇un|pn ≤
∫

Ω

|∇u|p, lim
n→∞

∫
∂Ω

b±|un|pn ≤
∫
∂Ω

b±|u|p.

In the previous relations b± stand for b± = max {±b, 0}. To complete the proof
leading to (2.7) we take ε > 0 small enough and observe that,∫

Ω

|∇un|p−ε ≤ |Ω|1−
p−ε
pn

(∫
Ω

|∇un|pn
) p−ε

pn

.

Since un → u in W 1,p−ε(Ω) then,∫
Ω

|∇u|p−ε ≤ |Ω|
ε
p

(
lim
n→∞

∫
Ω

|∇un|pn
) p−ε

p

.

By taking limits as ε→ 0+ we achieve,∫
Ω

|∇u|p = lim
ε→0+

∫
Ω

|∇u|p−ε ≤ lim
n→∞

∫
Ω

|∇un|pn .

The same argument shows that,∫
∂Ω

b±|u|p = lim
ε→0+

∫
∂Ω

b±|u|p−ε ≤ lim
n→∞

∫
∂Ω

b±|un|pn .

�

In some steps of our forthcoming results we need to know wether the convergence
un → u in Lp0(Ω) implies,

lim
n→∞

∫
Ω

|un|pn =

∫
Ω

|u|p0 , provided pn → p0. (2.11)

Next statement is an improved version of [39, Lemma 5.9].

Lemma 5.

a) Assume that pn → p0− together with un → u in Lp0(Ω). Then the equality (2.11)
holds.

b) Suppose that un → u in Lp0(Ω) when pn → p0+, p0 ≥ 1. If the extra condition∫
Ω

|un|p0+δ ≤M, n ∈ N, (2.12)

is satisfied for some small δ > 0, then (2.11) also holds.

Proof. In case a) and after extraction of a subsequence, there exists h ∈ Lp0(Ω)
such that |un| ≤ h a.e. in Ω ([9, Theorem 4.9]). In addition, we may assume
un(x)→ u(x) for almost all x ∈ Ω. Since,

|un|pn ≤ χ{h≤1} + χ{h>1}h
p0 ∈ L1(Ω),
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then the stated equality holds for this particular sequence. The uniqueness of the
limit implies that the whole sequence un (not merely a subsequence) satisfies (2.11).

For b), (2.12) implies the estimate,∫
A

|un|pn ≤ |A|
p0+δ−pn
p0+δ

(∫
A

|un|p0+δ

) pn
p0+δ

≤ |A|
δ/2
p0+δ max {1,M},

for large n provided |A| < 1. Hence, the family |un|pn is equi integrable. This
entails (2.11). �

Remark 2. A relaxed version of (2.12) as∫
Ω

|un|pn = O(1), as n→∞,

does not suffice for the validity of (2.11).

2.4. Eigenvalue estimates. Our main objective is to describe the limit of eigen-
values to problem (1.1) as p → 1. Of course, we focus on those eigenvalues λn
variationally defined using the Ljusternik–Schnirelmann theory. In this subsection,
we begin by introducing these eigenvalues and stating rough estimates for the be-
havior of λn as p→ 1.

For p > 1, the sequence of the Ljusternik–Schnirelmann eigenvalues is defined as

λn = inf
A∈An

max
u∈A

∫
Ω
|∇u|p +

∫
∂Ω
b|u|p∫

Ω
|u|p

, (2.13)

where An = {A ⊂W 1,p(Ω) : A = −A, A compact, γ(A) ≥ n}, and γ(A) stands for
the Krasnoselskii genus of A ([44]). It should be observed that Neumann eigenvalues
λNn are obtained from (2.13) by choosing b = 0. Moreover, Dirichlet eigenvalues λDn
are obtained by taking b = 0 in (2.13) and changing the class An by

ADn = {A ⊂W 1,p
0 (Ω) : A = −A, A compact, γ(A) ≥ n},

that is,

λDn = inf
A∈ADn

max
u∈A

∫
Ω
|∇u|p∫

Ω
|u|p

. (2.14)

When b is nonnegative on ∂Ω, it can be checked by direct inspection that:

λNn ≤ λn ≤ λDn , n ∈ N. (2.15)

In the sequel, generic dependence on p will be denoted by adding a subindex p
when it is necessary to stress this fact. It should be remarked that the existence and
finiteness of both limits limp→1 λ

D
n,p and limp→1 λ

N
n,p have been stated in [41, Cor.

3, Rem. 3] (see also [34] and [38] for the Dirichlet case). An immediate consequence
of (2.15) is the following observation.

Lemma 6. Estimate,

0 < λ̄Nn := lim
p→1

λNn,p ≤ lim
p→1

λn,p ≤ lim
p→1

λn,p ≤ λ̄Dn := lim
p→1

λDn,p,

holds true for every n ∈ N.

Remark 3. Owing to the lower estimate of the second eigenvalue λ2,p
N in [8, Th.

1.1] it can be assured that the limits limp→1 λn,p are bounded away from zero for
n ≥ 2. In addition, that limp→1 λ1,p > 0 follows Corollary 27 if b  0 (see Remark
12 for a finer estimate when b(x) ≥ b− > 0).
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3. The one–dimensional setting

As a first stage in the analysis of (1.1) as p→ 1 we are addressing the symmetric
version of the Robin problem (1.1) in the unit interval. That is,

−(|u′|p−2u′)′ = λ|u|p−2u 0 < x < 1,

u′(0) = 0,

|u′(1)|p−2u′(1) = −b|u(1)|p−2u(1),

(3.16)

where for the moment b is a positive constant and ′ = d
dx . We will later suppress

this restriction on b (see Section 3.1). It can be shown that a weak eigenfunction
u ∈W 1,p(0, 1) satisfies u ∈ C1[0, 1] with |u′|p−2u′ ∈ C1[0, 1] (see [16]).

To find out the eigenpairs (λ, u) to (3.16) it is convenient introducing the nor-
malized equation,

(|v̇|p−2v̇)̇ + |v|p−2v = 0, (˙ =
d

dt
), (3.17)

subject to initial data,

v(0) = 1, v̇(0) = 0. (3.18)

It follows from phase portrait analysis (see [16], [13]) the existence of a unique
solution v(t) to (3.17), (3.18) which satisfies the following properties.

i) v(−t) = v(t) and |v(t)| ≤ 1 for t ∈ R.
ii) v is 2πp periodic with,

πp
2

= (p− 1)
1
p

∫ 1

0

ds

(1− |s|p)
1
p

.

iii) v is decreasing in 0 ≤ t ≤ πp and it is implicitly defined as,

(p− 1)
1
p

∫ 1

v

ds

(1− |s|p)
1
p

= t, 0 ≤ t ≤ πp.

Moreover, zeros of v and v̇ are,

t =
πp
2

+ kπp, and t = kπp, k ∈ Z,

respectively.

Solutions w(t) to (3.17) keep constant the energy E(w, ẇ) = 1
p′ |ẇ|

p + 1
p |w|

p.

Thus v satisfies,

(p− 1)|v̇(t)|p + |v(t)|p = 1, t ∈ R. (3.19)

For next use it is appropriate to introduce the functions,

v(t) = cosp t, −(p− 1)
1
p v̇(t) = sinp t, tanp t =

sinp t

cosp t
.

It should be noted that this is a simple matter of ‘ad hoc’ notation. See for in-
stance [21, Chapter 1] where a slight modified version are termed as the ‘half–linear’
trigonometrical functions. It is then clear that sinp t is an odd, 2πp periodic function
such that the fundamental relation,

| cosp t|p + | sinp t|p = 1, t ∈ R, (3.20)

holds.
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Now, to solve (3.16) we first observe that all eigenvalues are positive if b > 0.
Moreover,

u(x) = cosp(λ
1
px),

both satisfies the equation and the initial condition u′(0) = 0. The boundary
condition at x = 1 reads as,

λ
1
p tanp(λ

1
p ) = (p− 1)

1
p b

1
p−1 . (3.21)

Some few features of the function tanp t should be highlighted. As in the ‘circular’
case, tanp t turns out to be a πp periodic function. In fact, it follows from assertion
iii) that,

cosp(πp − t) = − cosp t, sinp(πp − t) = sinp t.

Thus,

tanp(t− πp) = − tanp(πp − t) = tanp t, (3.22)

and tanp t is πp periodic. In addition, relation (3.20) entails that both sinp t and

tanp t are increasing in 0 ≤ t <
πp
2 . Hence tanp t is increasing in |t| < πp

2
and it

follows from cosp(πp/2) = 0 that

lim
t→πp

2 ±
tanp t = ±∞.

On the other hand, a few of calculus leads to the formulas,

(p− 1)
1
p
d

dt
(sinp t) = | tanp t|2−p cosp t,

and

(p− 1)
1
p
d

dt
(tanp t) = | tanp t|2−p + tan2

p t,

which agree with the circular case as p = 2.

By taking into account the periodicity of tanp t we conclude that equation (3.21)
exhibits an increasing sequence λm of positive solutions such that,

(m− 1)πp < λm
1
p <

(
m− 1

2

)
πp, m ∈ N. (3.23)

Moreover, there only exists a unique root in this interval, as illustrated in Figure 2.

Theorem 7. Problem (3.16) admits an increasing sequence of positive eigenval-
ues λ = λm which are defined by the solutions to equation (3.21). An associated
eigenfunction u to λ = λm, normalized as u(0) = 1, is defined by,

um = cosp(λm
1
px), m ∈ N.

Eigenfunction um vanishes m− 1 times in the interval 0 < x < 1 at the points,

xk =

(
k − 1

2

)
πp

λm
1
p

, k = 1, . . . ,m− 1.

Moreover,

0 < (−1)m−1um(1) < 1, m ∈ N. (3.24)
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Remark 4. In the Neumann problem u′(1) = 0 replaces the boundary condition in
(3.16). The eigenvalues are,

λNm = {(m− 1)πp}p, m ∈ N,
while the corresponding Dirichlet eigenvalues (in this case u(1) = 0 in (3.16)) are,

λDm =

[(
m− 1

2

)
πp

]p
, m ∈ N.

Thus, relation (3.23) is the well–known relative distribution (2.15) of Neumann,
Dirichlet and Robin eigenvalues.

We are now going to elucidate the limit behavior of the eigenvalues to (3.16) as
p→ 1+. To emphasize their dependence on p we are writing λm,p instead of λm.

Theorem 8. Let λm,p be the m–th eigenvalue to problem (3.16). Then,

i) For b > 1,

lim
p→1

λm,p = lim
p→1

λm,p
D = 2m− 1, m ∈ N.

ii) For 0 < b ≤ 1,

lim
p→1

λm,p = lim
p→1

λm,p
N + b = 2(m− 1) + b, m ∈ N. (3.25)

Proof. Our first goal is expressing equation (3.21) in a more manageable way. We

observe that roots λm,p
1
p fall on an interval:

Im = {t : (m− 1)πp ≤ t ≤ (m− 1

2
)πp},

where cosp t is decreasing when m = 2̇ + 1 while cosp t is increasing in this interval

provided m = 2̇. By employing the boundary condition we conclude that,

0 < (−1)m−1 cosp(λm,p
1
p ) < 1, m ∈ N.

The 2πp periodicity of v(t) = cosp t, condition iii) and the symmetry relation
cosp(πp − t) = − cosp t altogether imply,

(p− 1)
1
p

∫ 1

v

ds

(1− |s|p)
1
p

= t− (m− 1)πp, t ∈ Im,

provided m = 2̇ + 1 while if m is even then,

(p− 1)
1
p

∫ v

−1

ds

(1− |s|p)
1
p

= t− (m− 1)πp, t ∈ Im.

Coming back to the boundary condition and employing the energy conservation
(3.19) we find that,

cosp(λm,p
1
p ) = (−1)m−1

[
λm,p

(p− 1)bp′ + λm,p

] 1
p

,

where the remark on the sign of cosp(λm,p
1
p ) has been used. By resorting to a

symmetry argument in the integral we achieve the following alternative version of
equation (3.21),

(p− 1)
1
p

∫ 1

(−1)m−1 cosp(λm,p
1
p )

ds

(1− |s|p)
1
p

= λm,p
1
p − (m− 1)πp. (3.26)
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At this point observe that,

lim
p→1

cosp(λm,p
1
p ) = 0,

provided that b > 1. Hence, on account of limp→1 πp = 2 we arrive at,

λ̄m := lim
p→1

λm,p = lim
p→1
{(m− 1)πp +

πp
2
} = 2m− 1, m ∈ N.

According to [12], [41], values λ̄m coincide with the Dirichlet eigenvalues of the
1–Laplacian in the unit interval. This proves part i).

The remaining cases are more delicate. We are first assuming m ≥ 2 since this
implies that λm,p

−1 remains bounded as p→ 1. By setting,

A =

[
λm,p

(p− 1)bp′ + λm,p

] 1
p

.

we then notice that limp→1A = 1 for every m ≥ 2 as 0 < b ≤ 1. By an elementary
estimate we get,

lim
p→1

(p− 1)
1
p

∫ 1

A

ds

(1− |s|p)
1
p

≤ lim
p→1

(p− 1)

∫ 1

A

ds

(1− s)
1
p

= lim
p→1

p(1−A)
1
p′ .

We now write,

1−A = 1− 1

[(p− 1)µpbp
′ + 1]

1
p

,

where µp = λ−1
m,p <

[
λNm,p

]−1
and so µp = O(1) as p→ 1. Thus,

ln(1−A) = ln
(

[(p− 1)µpb
p′ + 1]

1
p − 1

)
+ o(1), as p→ 1,

since (p− 1)µpb
p′ = o(1) as p→ 1.

On the other hand,

[(p− 1)µpb
p′ + 1]

1
p = 1 +

p− 1

p
µpb

p′ + o
(

(p− 1)µpb
p′
)
,

and so,

ln(1−A) = ln

(
p− 1

p
µpb

p′
)

+ o(1) = p′ ln b+ ln

(
p− 1

p
µp

)
+ o(1).

Gathering together the previous estimates,

(1−A)
1
p′ = e

1
p′ ln(1−A)

= e
ln b+ 1

p′ ln
(
µp
p′

)
+o(1)

.

This implies that,

lim
p→1

p(1−A)
1
p′ = b.

Therefore,

lim
p→1

(p− 1)
1
p

∫ 1

A

ds

(1− |s|p)
1
p

≤ b.

To check the complementary estimate we first observe that,

1− sp = p

∫ 1

s

xp−1 = p

∫ (1−s)

0

(t+ s)p−1 < p(1 + δ)p−1(1− s),
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provided that 1 − δ < s. Thus, for δ > 0 and p close enough to unity we achieve
that,

lim
p→1

(p− 1)
1
p

∫ 1

A

ds

(1− |s|p)
1
p

≥ lim
p→1

p− 1

p
1
p (1 + δ)

1
p′

∫ 1

A

ds

(1− s)
1
p

= b.

This completes the checking of ii) for m ≥ 2.

Only remains studying λ1,p when 0 < b ≤ 1. From the equation (3.17),

|v̇p(t)|p−2v̇p(t) = −
∫ t

0

|vp|p−2vp > −t,

where vp(t) = cosp t. This implies v̇p(t) > −t
1
p−1 and so we get that the inequalities,

1 > vp(t) > 1− p− 1

p
tp
′

hold. Hence, both vp → 1 and |v̇p(t)|p−2v̇p(t) → −t uniformly in [0, 1] as p → 1.
Since,

−tp−1 |v̇p|p−2v̇p
|vp|p−2vp

→ t, as p→ 1,

uniformly in [0, 1], it follows that λ1,p → b as p→ 1 when 0 < b ≤ 1. �

Let us review next the limit profiles of the eigenfunctions as p→ 1.

Theorem 9. Let um,p be the eigenfunction to (3.16) associated to λm and normal-
ized as um,p(0) = 1. Then,

lim
p→1

um,p =

m∑
k=1

(−1)k−1χDk , (3.27)

χDk being the the characteristic function of the interval Dk = (x̄k−1, x̄k), where

x̄k =


2k − 1

2m− 1
b > 1,

2k − 1

2(m− 1) + b
0 < b ≤ 1,

1 ≤ k ≤ m. (3.28)

Moreover, the convergence (3.27) holds in C1(Dk) for 1 ≤ k ≤ m.

Proof. It is consequence of the fact,

lim
p→1

cosp t =
∑
k∈Z

(−1)k−1χ(ξk−1,ξk)(t),

ξk = 2k − 1, where the convergence holds in C1(ξk−1, ξk) for all k ∈ Z (see [41,
Prop. 9] and Figure 1). �
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0 2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1. Function v(t) = cosp t for p = 1.001. In this case, πp = 2.0138.

3.1. The case when b is negative. If b < 0 all eigenvalues λ = λm to (3.16) for
m ≥ 2 are positive, solve

λ
1
p tanp λ

1
p = −|b|

1
p−1 (p− 1)

1
p ,

and satisfy (see Figure 2),

λDm−1 < λm < λNm , m ≥ 2.

Conclusions of Theorem 8 remain true if conditions b > 1 and 0 < b ≤ 1 in items
i) and ii) change to b < −1 and −1 ≤ b < 0, respectively. Notice that in the
latter case, estimate (3.25) retains its meaning. The same happens to Theorem 9 if
inequalities b > 1 and 0 < b ≤ 1 in (3.28) are replaced by b < −1 and −1 ≤ b < 0,
respectively.

However, as b < 0 a further negative eigenvalue λ1 exists. In fact, to find out
negative eigenvalues λ we try,

u(x) = v(t), t = |λ|
1
px,

as eigenfunctions, where v solves,{
(|v̇|p−2v̇)̇− |v|p−2v = 0, t > 0,

v(0) = 1, v̇(0) = 0.
(3.29)

This hyperbolic version of (3.17), (3.18) has a unique solution v(t) globally defined
in t ∈ R. Since |v̇|p−2v̇ is increasing and v̇(0) = 0 then v is increasing in t ≥ 0. In
addition,

v̈ =
1

p− 1

∣∣∣∣ v̇v
∣∣∣∣2−p v > 0,
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Figure 2. Function tanp t vs sign b
|b|

1
p−1 (p− 1)

1
p

t
as b changes sign.

and so v is convex and diverges to ∞ as |t| → ∞. Moreover, v is implicitly defined
through,

(p− 1)
1
p

∫ v

1

ds

(sp − 1)
1
p

= t, t ∈ R.

By similarity with the previous section we set,

v(t) = coshp t, (p− 1)
1
p v̇(t) = sinhp t, tanhp t =

sinhp t

coshp t
.

Then, the equivalent to the fundamental relation, that is,

| coshp t|p − | sinhp t|p = 1,

holds true. Setting u(x) = coshp(|λ|
1
px), u satisfies the equations and the condition

u′(0) = 0. The other boundary condition for the negative eigenvalues λ becomes,

|λ|
1
p tanhp |λ|

1
p = |b|

1
p−1 (p− 1)

1
p . (3.30)

Our next result discuses the existence of negative eigenvalues.

Theorem 10. Assume b < 0. Then, problem (3.16) admits a unique negative
eigenvalue λ1,p with corresponding normalized and positive eigenfunction,

u1,p(x) = coshp(|λ1,p|
1
px).

Moreover,

i) limp→1 λ1,p = b if −1 ≤ b < 0.

ii) limp→1 λ1,p = −∞ as b < −1.

iii) limp→1 u1,p = 1 in C1[0, 1] provided −1 < b < 0 while such convergence holds in
C1[0, 1) when b = −1.

iv) On the contrary,

lim
p→1

u1,p(x) =∞, for each 0 < x ≤ 1,

when b < −1.
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Proof. Owing to,

(p− 1)
1
p
d

dt
(tanhp t) = tanh2

p t
1

| sinhp t|p
,

together with,

tanhp t =

(
1− 1

coshpp t

) 1
p

, t > 0, (3.31)

it follows that equation,

t tanhp t = |b|
1
p−1 (p− 1)

1
p , (3.32)

has a unique positive root t = tb (which depend on p). Indeed, the left hand side
is increasing while t tanhp t ∼ t as t→∞. Thus,

λ1,p = −tpb ,
is the unique negative eigenvalue.

On the other hand, we deduce from (3.31) and (3.32) that t = tb satisfies,

tp − |b|p′(p− 1)

tp
=

1

coshpp t
. (3.33)

In particular,

tpb > |b|
p′(p− 1),

and tb →∞ as p→ 1 when b < −1. This proves ii).

To show i) we notice that,

tb = (p− 1)
1
p

∫ B

1

ds

(sp − 1)
1
p

,

with B = coshp tb. We now claim that,

lim
p→1

B = lim
p→1

[
tpb

tpb − |b|p
′(p− 1)

] 1
p

= 1 provided −1 ≤ b < 0.

By assuming this fact we first observe that,

tb ∼ (p− 1)

∫ B

1

ds

(sp − 1)
1
p

≤ (p− 1)

∫ B

1

ds

(s− 1)
1
p

= p(B − 1)
1
p′ ,

as p → 1. Now, an argument similar to the one leading to (3.25) in Theorem 8
shows that,

1

p′
ln(B − 1) = ln |b|+ p− 1

p
ln

(
(p− 1)

p

1

tb

)
+ o(1),

as p→ 1. This implies that,

lim
p→1

tb ≤ |b|.

For the complementary limit one uses the inequality,

xp − 1 ≤ p(1 + δ)p−1(x− 1), 1 ≤ x ≤ 1 + δ,

to achieve the lower estimate,

tb ∼ (p− 1)

∫ B

1

ds

(sp − 1)
1
p

≥ (p− 1)

p
1
p (1 + δ)

p−1
p

∫ 1+δ

1

ds

(s− 1)
1
p

,
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where we identify B = 1 + δ. Then the previous computation shows that,

lim
p→1

tb ≥ |b|.

The proof of i) is thus completed.

To show the claim we notice that both the increasing character of v = coshp t
and the equation imply that,

(v̇(t))p−1 =

∫ t

0

v(s)p−1 < tv(t)p−1, t > 0.

Hence, (
t
v̇

v

)p−1

< tp, t > 0. (3.34)

By setting t = tb in this inequality and resorting to (3.32) we find the estimate,

|b| < tpb ,

which implies that,

lim
p→1

tb ≥ |b|.

Then,

lim
p→1

B = lim
p→1

1[
1− |b|p′(p− 1)t−pb

] 1
p

= 1,

and the claim is proved.

To show the remaining assertions we first deduce from (3.34) that,

1 < v(t) < e
tp
′

p′ , t > 0, (3.35)

and so,

lim
p→1

v = 1, lim
p→1

v̇ = 0,

in both cases in C[0, 1]. Since v = coshp t one concludes iii).

As for iv) we are showing that v = coshp t→∞ uniformly on compacta of t > 1
as p→ 1. In fact, choose A > 1 and set tA > 0 such that,

coshp tA = A.

Because of (3.35) we find that,

lim
p→1

tA ≥ 1.

On the other hand,

tA = (p− 1)
1
p

∫ A

1

ds

(sp − 1)
1
p

< (p− 1)
1
p p′(A− 1)

1
p′ .

Hence,

lim
p→1

tA ≤ 1.

Since limp→1 tA = 1 we achieve the desired divergence to∞ of coshp t in the interval
(1,∞). See Figure 3. �
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Figure 3. Function v = coshp t corresponding to p = 1.008. No-
tice the difference between the scales in the axis together with the
graph of the function v = 1.

4. Radially symmetric eigenvalues

When searching for radial eigen pairs (λ, u), we denote u = u(r), r = |x| in
Ω = B a ball (assume it is the unit ball). Then (1.1) is expressed in the form,

−(|u′|p−2u′)′ − N − 1

r
|u′|p−2u′ = λ|u|p−2u, 0 < r < 1,

u′(0) = 0,

|u′|p−2u′ = −b|u|p−2u , at r = 1.

(4.36)

As in the previous section the influence of the sign of b on the eigenvalues will be
closely analyzed. Weak radial eigenfunctions u ∈ W 1,p(B) exhibit the smoothness
u ∈ C1[0, 1], |u′|p−2u′ ∈ C1[0, 1]. Thus, solvability of (4.36) can be understood in
a classical sense.

By patterning the argument in Section 3 we consider the initial value problem,−(|v̇|p−2v̇)̇− N − 1

r
|v̇|p−2v̇ = |v|p−2v, t > 0,

v(0) = 1, v̇(0) = 0,
(4.37)

where v = v(t). Then, eigenfunctions u to (4.36) corresponding to positive eigen-
values λ, when properly normalized, can be expressed as,

u(r) = v(t), t = λ
1
p r, λ > 0.

It is warned that all eigenvalues are positive if b > 0. When b < 0 positive and
negative eigenvalues must be separately studied.
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On the other hand, existence of a unique global solution v to (4.37) is stated
in [41, Lemma 10] (see also [17]). Among other features, such a solution satisfies
|v(t)| ≤ 1 in t ≥ 0 and possesses a sequence of simple zeros,

0 < θ1 < θ2 < · · · , θn →∞.

We now claim the existence of a unique zero t = σi of v̇ in the interval (θi−1, θi)
for every i ∈ N. In fact, equation (4.37) can be written as,

−(tN−1|v̇|p−2v̇)̇ = tN−1|v|p−2v.

Beginning with the interval (0, θ1) we find that v̇ < 0 there, even up to t = θ1.
Since v(θ1) = v(θ2) = 0 a zero of v̇ exists in (θ1, θ2). Assume t = σ2 is the first one,
then v̇ > 0 in (σ2, θ2) up to t = θ2. Hence σ2 is the unique zero of v̇ in θ1 ≤ t ≤ θ2.
The claim is proved by repeating the argument in the other intervals. Thus, the
following distribution of zeros of v and v̇ is deduced,

0 = σ1 < θ1 < σ2 < θ2 < · · · , σn →∞.

Note that the σi is ’simple’ in the sense (tN−1|v̇|p−2v̇)̇|t=σi 6= 0 for all i. Moreover,
relations,

(−1)i−1v(t) > 0, θi−1 < t < θi,

and

(−1)i−1v̇(t) > 0, σi−1 < t < σi,

hold true for every i, where θ0 = 0 in the first inequality. It should be remarked
that in the case Ω = B, Dirichlet and Neumann ‘radial’ eigenvalues correspond to
the values,

λDm = θpm, λNm = σpm, m ∈ N. (4.38)

Remark 5. Radial eigenvalues in B could be computed by means of the Ljusternik–
Schnirelmann approach (Section 2.4). In this case classes ADn and An should be
further subject to radial symmetry. This procedure gives rise to radial Dirichlet
or Neumann eigenvalues that exactly coincide with (4.38). See [41, Th. 12] for a
detailed account on this assertion.

We now observe that u(r) = v(λ
1
p r) satisfies the Robin condition if t = λ

1
p solves

the equation,

− tp−1 |v̇|p−2v̇

|v|p−2v |t=λ
1
p

= b (4.39)

wherewith

− t v̇(t)

v(t) |t=λ
1
p

= sign b|b|
1
p−1 . (4.40)

As a consequence of the nodal behavior of v and v̇ described before, when b > 0 we

conclude the existence of at least a solution λ
1
p
m to (4.40) satisfying,

σm < λm
1
p < θm, m ∈ N. (4.41)

Bearing in mind (4.38), this fact fits with (2.15). On the contrary, when b < 0

there exists a infinite sequence of positive roots t = λm
1
p , m ≥ 2, to (4.40) satisfying,

θm−1 < λm
1
p < σm, m ≥ 2. (4.42)
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Figure 4. A draft of the graph of the function − v̇
v

versus |b|
1
p−1 /t.

On the other hand, by employing the approach in [46] it can be shown that λ
1
p
m is

the unique root of (4.40) in the intervals referred to in (4.41) and (4.42). Anyway,
some computations lead to the following result.

Lemma 11. Let t > 0 be a solution to (4.40). Then,

d

dt

(
t
v̇

v

)
=
|b|

1
p−1

(p− 1)t

[
sign b(N − p)− (p− 1)|b|

1
p−1 − tp

|b|

]
. (4.43)

It follows from (4.43) that,
d

dt

(
t
v̇

v

)
< 0,

at every solution t to (4.40) when b < 0, while this also holds for all roots such that
t ≥ t0,

t0 =
(
N − p− (p− 1)b

1
p−1

) 1
p

b
1
p ,

when b > 0. In either case, this ensures us the uniqueness of the roots λm
1
p in

the intervals considered in (4.42), and the uniqueness of the corresponding ones in
(4.41) for large m.

We are now in position to present a unified statement on the three standard
eigenvalue problems in the ball.

Theorem 12. Let v be the solution to problem (4.37). If b > 0, radial Neumann,
Robin and Dirichlet problems in the ball B exhibit a family of eigenvalues,

λNm < λm < λDm, λm →∞.
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On the contrary, if b < 0, then there exists a family λm, m ≥ 2, of positive eigen-
values satisfying,

λDm−1 < λm < λNm , λm →∞.

In all of these cases, corresponding normalized eigenfunctions have the form,

um(r) = v(λ
1
p r), λ ∈ {λNm , λm, λDm}.

Every eigenfunction um vanishes exactly m− 1 times in 0 < r < 1 at values,

rk =
θk

λ
1
p

, 1 ≤ k ≤ m− 1.

Moreover, in the Neumann and Robin cases,

signum(1) = (−1)m−1.

The study of the limit behavior of the radial eigenvalues λm,p and associated
eigenfunctions um as p → 1 require the knowledge of the corresponding behavior
for the solution v to (4.37). This is a most delicate issue that involves the response
of both the Dirichlet and Neumann eigenvalues as p→ 1. Next statement extracts
some of the features of [41, Th. 19, Cor. 21] which are relevant to the forthcoming
arguments. Notice that subindex ‘p’ means ‘dependence on p’.

Lemma 13. Let vp(t) be the solution to (4.37) whose zeros are,

0 < θ1,p < θ2,p < · · · .

Then, there exist sequences,

0 < θ̄1,p < θ̄2,p < · · · , & α0 < α1 < · · · ,

such that,

lim
p→1

λm,p
D = lim

p→1
θm,p = θ̄m,

v̄ = lim
p→1

vp =

∞∑
k=1

αk−1χ(θ̄k−1,θ̄k) in L1(0, a) for all a > 0, (4.44)

where (−1)kαk > 0. Moreover, the following recursive relations are satisfied for all
m ∈ N,

i)

θ̄Nm − θ̄Nm−1

θ̄N−1
m + θ̄N−1

m−1

= N, with θ0 = 0. (4.45)

ii)

|αm+1| =
θ̄m+1 − (N − 1)

θ̄m+1 + (N − 1)
|αm|, where α0 = 1.

iii) Finally,

lim
m→∞

αm = 0, and lim
m→∞

(θ̄m − θ̄m−1) = 2. (4.46)

Next result determines the limit values of the radial Neumann eigenvalues as
p→ 1.
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Figure 5. Plots of vp and |v̇p|p−2v̇p corresponding to N = 3 and
p = 1.01.

Theorem 14. Let vp be the solution to (4.37) while

0 = σ1,p < σ2,p < · · · ,

designates the family of zeros of v̇p. Then, limits

lim
p→1

λm,p
N = lim

p→1
σm,p = σ̄m,

exist for all m ∈ N. In addition,

i) σ̄Nm+1 = 2θ̄Nm − σ̄Nm, for each m ≥ 2.

ii) σ̄Nm = θ̄Nm−1 +Nθ̄N−1
m−1 = θ̄Nm −Nθ̄N−1

m for m ≥ 2.

iii) Relation θ̄m−1 < σ̄m < θ̄m holds for every m ≥ 2. Moreover,

θ̄m − σ̄m ≥ 1 for all m ∈ N and lim
m→∞

(θ̄m − σ̄m) = 1.

Proof. The mere existence of the limits limp→1 λ
N
m,p of the Neumann eigenvalues

in a general domain Ω is shown by the same argument of [41, Th. 2] (see Remark
3 there). Unfortunately this direct approach does not work for the Robin problem
(1.1). Moreover, such existence assertion is valid when restricting classes Am,p to
the radial case and thus the limits σ̄m := limp→1 σm,p exist for all m.

We next use the relation,∫ σm,p

σm−1,p

sN−1|vp|p−2vp ds = 0,

which is a consequence of our equation. Observe that, as proven in [41, Prop. 16],

|vp|p−2vp ⇀ β, weakly in Lq(0, a) for all q ≥ 1, (4.47)
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in every interval (0, a). Here function β ∈ L∞(0,+∞) satisfies

β = (−1)k−1 = signαk−1 in (θ̄k−1, θ̄k),

for each k. Thus we deduce,

− signαm−1

∫ θ̄m−1

σ̄m−1

sN−1 ds = signαm

∫ σ̄m

θ̄m−1

sN−1 ds,

which is the relation i).

The equality in ii) is shown in the course of the proof of Theorem 15.

Now, from (4.45) one obtains the inequalities θ̄m−1 < σ̄m < θ̄m and

θ̄m − σ̄m =
Nθ̄N−1

m

σ̄N−1
m + θ̄mσ̄

N−2
m + · · ·+ θ̄N−1

m

≥ 1. (4.48)

Since it is also clear that,

lim
m→∞

σ̄m
θ̄m

= 1,

the equality in (4.48) implies that θ̄m − σ̄m → 1 as m→∞. �

We are already in position to determine the limit value of the radial Robin
eigenvalues as p → 1. Notice that we focus our analysis on positive eigenvalues.
The study of the negative eigenvalues when b < 0 is delayed to Section 4.1.

Theorem 15. Let λm,p be the sequence of radial Robin eigenvalues in the unit ball
B. Then,

a) For b > 0 (respectively, b < 0) limit λ̄m = limp→1 λm,p exists for all m ∈ N
(m ≥ 2).

b) λ̄m = θ̄m for all m if b ≥ 1 while λ̄m = θ̄m−1 if b ≤ −1 and m ≥ 2.

c) For 0 < b < 1 the first limit eigenvalue is just,

λ̄1 = bN.

d) For m ≥ 2, t = λ̄m is the unique root to the equation,

1

tN−1

[
1

N
(tN − θ̄Nm−1)− θ̄N−1

m−1

]
= b, (4.49)

either in the interval σ̄m < t < θ̄m if b > 0, or in the interval θ̄m−1 < t < σ̄m if
b < 0.

e) For |b| < 1,

lim
m→∞

λ̄m − σ̄m = b.

Proof. We begin by recalling some convergence features included in [41, Prop. 16].
Namely,

wp := |v̇p|p−2v̇p ⇀ w weakly in Lq(0, a) for all 1 ≤ q <∞, (4.50)

and each a > 0. Moreover, since |vp| ≤ 1, it follows from the differential equation
in (4.37) the equicontinuity of the family {tN−1wp(t)} on every interval [c, a] with
0 < c < a. Combined with [41, Lem.15] it implies that {wp} is equicontinuous on
[0, a] for all a > 0. The uniqueness of the limit w in (4.50) ([41, Th.19]) then yields
that such a convergence is uniform in every interval 0 ≤ t ≤ a.
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It is further shown ([41, Prop. 16]) that w ∈W 1,∞(0,+∞) solves the equation,

ẇ +
N − 1

t
w = −β, (4.51)

where β ∈ L∞(0,+∞) is the function in (4.47).

On the other hand, it turns out in the course of the proof of [41, Th.19] that
|w| < 1 in every interval (θ̄m−1, θ̄m) while w(θ̄m) = (−1)m. Two consequences can
be drawn from this fact. The first one is that the limit,

vp → αm−1, (4.52)

holds in the topology of C1(θ̄m−1, θ̄m), so that the convergence in (4.44) is consid-
erably up–graded. The second one is the explicit expression for w,

w(t) =
(−1)m−1

tN−1

(
θ̄N−1
m−1 −

1

N
(tN − θ̄Nm−1)

)
, θ̄m−1 ≤ t ≤ θ̄m,

which is deduced from (4.51) by integration. At this point one observes that wp
vanishes at t = σm,p. Therefore σ̄m = limp→1 σm,p coincides with the unique zero
of w in θ̄m−1 < t < θ̄m. This proves ii) in Theorem 14.

We next observe that (4.52) entails that |vp|p−2vp → signαm−1 = (−1)m−1 in

the topology of C(θ̄m−1, θ̄m). That is why, roots t = λm,p
1
p to (4.39), that is,

−tp−1 |v̇p|p−2v̇p
|v|p−2vp

= b,

accumulate as p→ 1 to the possible roots of the limit equation,

− w(t)

(−1)m−1
= b, (4.53)

in the interval θ̄m−1 ≤ t ≤ θ̄m.

Now one observes that the function,

g(t) = − w(t)

(−1)m−1
=

1

tN−1

[
1

N
(tN − θ̄Nm−1)− θ̄N−1

m−1

]
,

is increasing in θ̄m−1 ≤ t ≤ θ̄m, satisfies g(θ̄m) = −g(θ̄m−1) = 1 while vanishes at
t = σ̄m.

When |b| < 1, there just exists a solution t to (4.49) either in the interval
σ̄m < t < θ̄m if 0 < b < 1 or in θ̄m−1 < t < σ̄m if −1 < b < 0.

For the special case m = 1 and b > 0, we have β(t) = 1 on (0, θ̄1) and w(0) = 0.
By integrating (4.51) we deduce

tN−1w(t) = −
∫ t

0

τN−1dτ = − t
N

N
,

and hence equation (4.53) reduces to,

t

N
= b.

This shows c), d) and the existence of the limits in a) when |b| < 1.

On the other hand, as |b| ≥ 1, λm,p can not accumulate to a value belonging
to the interval (θ̄m−1, θ̄m) since |g(t)| < 1 there. Thus, either λ̄m = θ̄m if b ≥ 1
or either λ̄m = θ̄m−1 provided b ≤ −1. This completes the proofs of b) and the
existence of the limits in a).
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As for assertion e) first notice that (4.49) admits the alternative expression,

1

NtN−1

[
tN − σ̄Nm

]
= b.

Hence,

(t− σ̄m)
tN−1 + σ̄mt

N−2 + · · ·+ σ̄N−1
m

NtN−1
= b.

For 0 < b < 1 one has σ̄m < t < θ̄m and so:

1 <
t

σ̄m
<
θ̄m
σ̄m

=
θ̄m−1

σ̄m

θ̄m
θ̄m−1

→ 1,

as m → ∞. In fact, observe that second limit in (4.46) implies that
θ̄m
θ̄m−1

→ 1 as

m→∞. An identical reasoning applies to the case −1 < b < 0.

This ends the proof. �

Remark 6. Existence of the limits in a) when b > 0 is independently assured by
Theorem 20. To apply properly this result, classes Am,p and Am,1 in Section 6
might be subject to radial symmetry. It should be also checked, as in [41, Th.
12], that Ljusternik–Schnirelmann eigenvalues coincide with the radial ones. In the
same vein, first assertion in b) is a consequence of Corollary 23. Accordingly, an
alternative proof of these facts has been given in the course of the previous proof.

Next result summarizes the asymptotic behavior as p→ 1 of the eigenfunctions
to Neumann, Robin and Dirichlet problems.

Theorem 16. Let,

um,p(r) = v(λ
1
p r), λ ∈ {λm,pN , λm,p, λm,pD},

be the eigenfunction to either of the three boundary value problems, normalized
under the condition um(0) = 1, where m ∈ N if b > 0, m ≥ 2 as b < 0.

Then,

ūm = lim
p→1

um,p =

m∑
k=1

αk−1χ(ρk−1,ρk),

where the convergence is in C1 ((0, 1) \ {ρ1, . . . , ρm−1}) and the limit values ρk are
given in each case by,

ρk ∈
{
θ̄k
σ̄m

,
θ̄k
λ̄m

,
θ̄k
θ̄m

}
, 1 ≤ k ≤ m.

4.1. Negative eigenvalues for b < 0. We are next discussing the possible exis-
tence of negative eigenvalues to (4.36) when b < 0. A number λ < 0 is an eigenvalue

provided that its normalized eigenfunction u(r) = v(t), t = |λ|
1
p r, u(0) = 1, solves,(|v̇|p−2v̇)̇ +

N − 1

t
|v̇|p−2v̇ − |v|p−2v = 0, t > 0,

v(0) = 1, v̇(0) = 0.
(4.54)

This problem exhibits a unique maximal solution v(t) defined for 0 ≤ t < ω ≤ ∞
which is a sort of modified Bessel function (see Figure 6). From the equation one
gets that v(t) is increasing while the energy inequality,

(p− 1)|v̇|p − |v|p < −1, (4.55)
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Figure 6. Modified Bessel function v(t), p = 1.01, N = 3. In red
v = 1.

holds true for all t. In fact, the group 1
p′ |v̇|

p− 1
p |v|

p decreases in 0 ≤ t < ω. Hence,

1 < v(t) < coshp t, 0 ≤ t < ω.

This entails that v is indeed a global solution, i. e. ω =∞.

As b < 0, equation for the eigenvalues becomes,

tp−1 |v̇|p−2v̇

|v|p−2v
= |b|, t > 0. (4.56)

The relevant features on these eigenvalues are next stated.

Theorem 17. Suppose b < 0. Then problem (4.36) admits a unique negative
eigenvalue λ1,p. Moreover,

i) λ1,p is a principal eigenvalue with associated eigenfunction,

u1,p(r) = vp(|λ1,p|
1
p r),

where vp(t) stands for the solution to (4.54).

ii) The limit behavior of the eigenvalue is,

lim
p→1

λ1,p =

{
bN if −1 < b < 0,

−∞ as b < −1.
(4.57)

iii) If −1 < b < 0 the limit profile of the eigenfunction is,

lim
p→1

u1,p = 1, in C1[0, 1],

while,

lim
p→1
|u′1,p(r)|p−2u′1,p(r) = |b|r, in C[0, 1).
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iv) limp→1 u1,p =∞ uniformly on compacts of (0, 1] as b < −1.

Proof. It is known that problem (1.1) possesses a unique principal eigenvalue λ1,p in
a general smooth domain Ω, that is, an eigenvalue with an associated eigenfunction
which does not change its sign. See [30, Sect.5] whose analysis can be extended
to the case b < 0. Such an eigenvalue is simple so it must be radial in the case
Ω = B. Taking into account that eigenfunctions to (4.36) associated to eigenvalues
λn,p, n ≥ 2, change their sign, then the principal eigenvalue must be necessarily
negative. This is coherent with the positivity of the solution v = vp(t) to (4.54).
Furthermore, as a consequence of these facts equation (4.56) actually exhibits a
unique positive solution t = tb for every b > 0 so that the first eigenvalue is,

λ1,p = −tpb .
Thus i) is proven.

We next observe from the differential equation that v = vp(t) satisfies,

|v̇(t)|p−2v̇(t) =

∫ t

0

(s
t

)N−1

|v(s)|p−2v(s) ds <
t

N
|v(t)|p−2v(t),

for all t > 0, and so,

v̇

v
<

(
t

N

) 1
p−1

, t > 0.

We get by integration,

v(t) < exp

(
N

p′

(
t

N

)p′)
.

In particular,

vp → 1, and |v̇p|p−2v̇p →
t

N
, (4.58)

uniformly on compacta of [0, N) as p→ 1. From the latter we also get,

v̇p → 0, p→ 1, (4.59)

uniformly on compacta of [0, N).

In addition, the inequality vp(t) > 1 in t > 0 leads to

|v̇p(t)|p−2v̇p(t) =

∫ t

0

(s
t

)N−1

|v(s)|p−2v(s) ds >
t

N
, t > 0.

Thus,

vp(t) > 1 +
N

p′

(
t

N

)p′
, t > 0,

which implies that,
vp →∞, p→ 1, (4.60)

holds uniformly on compacta of (N,∞).

Let us discuss now the response of the root tb (which depends on p) as p → 1.
We first use the inequality (4.55) to obtain,

1 <

(
1− p− 1

tpb
|b|p

′
)
vp(tb)

p,

and the positiveness of vp(tb) yields,

(p− 1)|b|p
′
< tpb .
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This is enough to conclude that,

tb →∞, as p→ 1,

when b < −1 and hence the second option in (4.57) is proved.

We now assume −1 < b < 0. As shown in (4.58),

tp−1

(
v̇

v

)p−1

→ t

N
,

uniformly on compacta of [0, N) as p → 1. This implies that equation (4.56)
becomes

t

N
= |b|,

when p → 1. Therefore, provided that |b| < 1 equation (4.56) admits at least a
root t ∈ [0, N) close to N |b| as p→ 1. By uniqueness this root must be necessarily
tb and the first option of (4.57) is shown.

Assertions iii) and iv) on the eigenfunctions are now a consequence of the con-
vergence features in (4.58), (4.59) and (4.60). �

Remark 7. The fact that limp→1 λ1,p = bN for the ball B as |b| < 1 has been
independently shown in [18].

5. An eigenvalue problem for the limit eigen pairs

We are next going to analyze the behavior of a family of eigen pairs (λn,pm , un,pm)
where n is fixed, pm → 1 while λm := λn,pm accumulates to a limit value λ̄. We
will also write um = un,pm to brief.

Existence of such families and corresponding limits λ̄ is ensured by Lemma 6. A
complete analysis of the whole limit of λn,p as p→ 1 is delayed to Section 6. Please
note that possible omitted details in the forthcoming reasonings can be checked at
[41].

By normalizing eigenfunctions as ‖um‖pm = 1 and observing that,∫
Ω

|∇um|pm +

∫
∂Ω

b|um|pm = λm, (5.61)

one gets ‖∇um‖pm = O(1) which in turn implies –by means of (2.5)– that ‖um‖pm,∂Ω =
O(1). Therefore ∫

Ω

|∇um|pm +

∫
∂Ω

|um|pm = O(1),

so Young’s inequality gives the existence of a positive constant M such that

‖um‖BV (Ω) ≤M.

We find out u ∈ BV (Ω) and a subsequence (not relabeled) such that um → u in
L1(Ω), so by Lemma 5, ∫

Ω

|u| = lim
m→∞

∫
Ω

|um|pm = 1.

At a second step it is remarked that |um|pm−2um ⇀ γ ∈ L∞(Ω) weakly in Lq(Ω),
for every q ≥ 1, (this might involve an additional subsequence extraction) where
‖γ‖∞ ≤ 1 and,

γ ∈ sign (u). (5.62)
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A third step allows us concluding the existence of a field

z ∈ L∞(Ω,RN ), ‖z‖∞ ≤ 1,

such that |∇um|pm−2∇um ⇀ z weakly in every Lq(Ω,RN ) for all q ≥ 1.

Some information on the boundary behavior of um is now required. Set vm =
|um|pm−2um. Then vm ∈ Lp

′
m(∂Ω) while,

‖vm‖q,∂Ω ≤ HN−1(∂Ω)
1
q−

1
p′m ‖vm‖p′m,∂Ω = HN−1(∂Ω)

1
q−

1
p′m ‖um‖pm−1

pm,∂Ω,

where q has been chosen so that q < p′m = pm
pm−1 . By a new extraction of a

subsequence one concludes that vm is bounded in every Lq(∂Ω):

‖vm‖q,∂Ω ≤ HN−1(∂Ω)
1
q−

1
p′mKpm−1,

for some K > 0. A diagonal procedure leads to a new extraction of a subsequence
and the existence of γ1 ∈ Lq(∂Ω) such that vm ⇀ γ1 weakly in Lq(∂Ω) for all q ≥ 1.
Moreover,

‖γ1‖q,∂Ω ≤ HN−1(∂Ω)
1
q .

holds for all q ≥ 1. Hence, γ1 ∈ L∞(∂Ω) with ‖γ1‖∞ ≤ 1. However, notice that
the lack of a better knowledge of the pointwise convergence of um on ∂Ω doesn’t
permit us getting a better connection between u and γ1 as in (5.62).

By gathering all the previous results together we can conclude now from the
weak equation of eigen pairs (λm, um) that,∫

Ω

z∇v +

∫
∂Ω

bγ1v = λ̄

∫
Ω

γv, v ∈ C1(Ω). (5.63)

As a first consequence,

− div z = λ̄γ, in D′(Ω). (5.64)

Since div z ∈ L∞(Ω), Anzellotti’s theory in [6] applies (see Section 2), so that,∫
Ω

z∇v + v div z =

∫
∂Ω

[z, ν]v, v ∈ C1(Ω), (5.65)

holds true. Therefore, ∫
∂Ω

[z, ν]v = −
∫
∂Ω

bγ1v,

for all v ∈ C1(Ω) and consequently,

[z, ν] + bγ1 = 0 HN−1 a. e. in L∞(∂Ω). (5.66)

The following step of this analysis consists in proving the identity,

|Du| = (z,Du), (5.67)

where the pairing in the right hand side is understood in the sense of [6]. The
approach to achieve (5.67) is well–known. It goes back to [5] (see further referring
in [41]) and is next described. By testing with ϕum, ϕ ∈ C1

0 (Ω)+, in the weak
equation for the eigenfunctions to (1.1), λ = λm, we observe that,∫

Ω

ϕ|∇um|pm = λm

∫
Ω

|um|pmϕ−
∫

Ω

um|∇um|pm−2∇um∇ϕ.
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By taking limits,

lim
m→∞

∫
Ω

ϕ|∇um|pm = λ̄

∫
Ω

|u|ϕ−
∫

Ω

uz∇ϕ

= −
∫

Ω

uϕdiv z −
∫

Ω

uz∇ϕ = 〈(z,Du), ϕ〉, (5.68)

where (z,Du) is understood in distributional sense according to [6]. Limit in the
left hand side can be estimated from below due to the lower semicontinuity of the
functional u→

∫
Ω
ϕ|Du| in BV (Ω), thus leading to the estimate:∫

Ω

ϕ|Du| ≤ 〈(Du, z), ϕ〉, ϕ ∈ C1
0 (Ω)+.

Equality (5.67) is a consequence from this estimate and the complementary one,

〈(z,Du), ϕ〉 ≤ ‖z‖∞
∫

Ω

ϕ|Du|,

which is valid since (z,Du) ≤ ‖z‖∞|Du| as measures.

We are going to analyze now the boundary condition (5.66) in a deeper way.
While the volumetric term γ is connected to u through the explicit relation (5.62),
the corresponding linking between u and the surface coefficient γ1 still remains
undetermined in the expression (5.66).

Three cases will be considered in turn. In what follows, inequalities between
functions in the boundary will be understood in the HN−1 sense.

a) 0 < b(x) ≤ 1 on ∂Ω. Due to the fact that um → u in L1(Ω) together with [37,
Prop. 1.2] it holds that,∫

Ω

|Du|+
∫
∂Ω

b|u| ≤ lim
m→∞

{∫
Ω

|Dum|+
∫
∂Ω

b|um|
}
.

On the other hand,∫
Ω

|Dum|+
∫
∂Ω

b|um|

≤ 1

p′m

{∫
∂Ω

b + |Ω|
}

+
1

pm

{∫
Ω

|Dum|pm +

∫
∂Ω

b|um|pm
}
,

hence, ∫
Ω

|Du|+
∫
∂Ω

b|u| ≤ λ̄
∫

Ω

|u|.

In addition (5.64), (2.6) and (5.66) imply,∫
Ω

(z,Dv) +

∫
∂Ω

bγ1v = λ̄

∫
Ω

γv,

for all v ∈ BV (Ω). Thus∫
Ω

|Du|+
∫
∂Ω

b|u| ≤
∫

Ω

|Du|+
∫
∂Ω

bγ1u

and so ∫
∂Ω

b(|u| − γ1u) ≤ 0.

Therefore,
|u| = γ1u on ∂Ω. (5.69)
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In other words γ1 ∈ sign (u) on ∂Ω.

b) b ≥ 1 on ∂Ω. Again [37, Prop. 1.2] implies that,∫
Ω

|Du|+
∫
∂Ω

|u|

≤ lim
m→∞

{∫
Ω

|Dum|+
∫
∂Ω

|um|
}
≤ lim
m→∞

{∫
Ω

|Dum|+
∫
∂Ω

b|um|
}
.

Accordingly we conclude,∫
Ω

|Du|+
∫
∂Ω

|u| ≤
∫

Ω

|Du| −
∫
∂Ω

[z, ν]u .

Thus,

|u| = −[z, ν]u on ∂Ω. (5.70)

c) b ≥ 1 in Γ while 0 < b < 1 in Γ1 where Γ, Γ1 are disjoint open sets of ∂Ω such
that ∂Ω = Γ ∪ Γ1. By the same reasons as before,∫

Ω

|Du|+
∫
∂Ω

min{b, 1}|u|

≤ lim
m→∞

{∫
Ω

|Dum|+
∫
∂Ω

min{b, 1}|um|
}

≤ lim
m→∞

{∫
Ω

|Dum|+
∫
∂Ω

b|um|
}
≤
∫

Ω

|Du| −
∫
∂Ω

[z, ν]u .

Thus,

|u| = γ1u, on Γ1, and |u| = −[z, ν]u on Γ. (5.71)

These three options for the boundary conditions for u can be then presented in
an unified way as,

− [z, ν] ∈

{
b sign (u), on Γ1,

sign (u), on Γ,
(5.72)

where it is understood that a) correspond to Γ1 = ∂Ω, b) to Γ = ∂Ω and c) to the
intermediate case stated above.

Remark 8. The fact that the limit eigenpairs (λ̄, u) satisfy the Robin condition
(5.66) – (5.69) in ∂Ω relies upon the property that the functional,

u→
∫

Ω

|Du|+
∫
∂Ω

b|u|, u ∈ BV (Ω),

is lower semicontinuous with respect to L1(Ω) only when |b| ≤ 1 ([37]). Moreover,
in the threesold value b = 1, this functional defines the Dirichlet problem for the 1–
Laplacian ([5]). In this case, (5.70) is regarded as the Dirichlet boundary condition
and, as shown in b), it is satisfied by the limit eigenpairs when b ≥ 1 in ∂Ω,
regardless its size. These features somehow explain why the regimes 0 ≤ b ≤ 1
and b ≥ 1 affect the boundary conditions in the forthcoming limit problem. On
the other hand, the above discussion agrees with the conclusions of our previous
Theorems 8 and 15, also with the general scenario considered in Corollary 23 below.
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The contents of the present section can be summarized in the next statement.
For simplicity we are assuming that b > 0 on ∂Ω (see Remark 9 below) while, as in
c), there exist disjoint open sets Γ,Γ1 ⊂ ∂Ω, Γ ∪ Γ1 = ∂Ω such that,

0 < b < 1, on Γ1, and b ≥ 1 on Γ, (5.73)

and all inequalities are understood in the HN−1- sense. In addition, extreme pos-
sibilities Γ = ∅ or Γ1 = ∅ are also considered.

Theorem 18. Fix n ∈ N and let {λn,pm} be a sequence of eigenvalues to (1.1)
satisfying λ̄ = limm→∞ λn,pm where pm → 1. Let um = un,pm ∈ W 1,pm(Ω) be a
corresponding family of eigenfunctions normalized as,∫

Ω

|um|pm = 1.

Then, there exist u ∈ BV (Ω), z ∈ L∞(Ω,RN ), γ ∈ L∞(Ω) and γ1 ∈ L∞(∂Ω) such
that, up to subsequences,

i) |um|pm−2um ⇀ γ weakly in Lq(Ω) while |um|pm−2um ⇀ γ1 weakly in Lq(∂Ω), in
both cases for all q ≥ 1. Moreover,

‖γ‖∞ ≤ 1, ‖γ1‖∞,∂Ω ≤ 1.

ii) |∇um|pm−2∇um ⇀ z weakly in Lq(Ω,RN ) for all q ≥ 1 where,

‖z‖∞ ≤ 1.

iii) − div z = λ̄γ in D′(Ω).

iv) |Du| = (z,Du) as measures, where |Du| stands for the total variation of Du.

v) |u| = γu a. e. in Ω.

vi) |u| = γ1u HN−1- a. e. on Γ1 and

− [z, ν] = bγ1 HN−1-a. e. on Γ1. (5.74)

vii) −[z, ν]u = |u| HN−1-a. e. on Γ, or in an alternative expression,

− [z, ν] ∈ sign (u) HN−1-a. e. on Γ. (5.75)

Next definition is based upon the assertions of the previous theorem. Introduces
the problem satisfied by the ‘limit’ eigenfunctions to (1.1) as p→ 1.

Definition 19. Assume that b > 0 on ∂Ω and fulfills (5.73). A couple (λ̄, u) ∈
R×BV (Ω) is said to be a weak eigen pair to problem

− div

(
Du

|Du|

)
= λ

u

|u|
x ∈ Ω,

u = 0, on Γ,

Du

|Du|
ν + b

u

|u|
= 0, on Γ1,

(5.76)

if there are a field z and coefficients γ, γ1 as in the statement of Theorem 18 so that
properties i) to vii) are satisfied. Boundary conditions are understood according to
(5.75) and (5.74) and one refers to (5.76) as the Robin eigenvalue problem for −∆1

if Γ = ∅, while (5.76) is the Dirichlet eigenvalue problem when Γ1 = ∅.
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Remark 9. A further interesting case arises when b ≥ 0 satisfies,

b = 0 on Γ0, and 0 < b ≤ 1, on Γ1, (5.77)

where, as in c), Γ0,Γ1 ⊂ ∂Ω are disjoint open sets, ∂Ω = Γ0 ∪ Γ1. Under these
conditions, our previous analysis permits us concluding that a limit eigenpair (λ̄, u)
solves the problem, 

−div

(
Du

|Du|

)
= λ

u

|u|
x ∈ Ω,

Du

|Du|
ν = 0, on Γ0,

Du

|Du|
ν + b

u

|u|
= 0, on Γ1.

(5.78)

In this case all properties of Theorem 18 remain true but replacing (5.75) with the
restriction [z, ν] = 0 on Γ0. The latter is regarded as a Neumann condition for the
1–Laplacian operator.

6. Existence of the limits as p→ 1

In this section a finer description of the behavior of the eigenvalues λn,p as
p → 1+ is pursued. In particular, we focuss the interest in the own existence of
limp→1 λn,p.

Consider the classes,

An,p = {A ⊂W 1.p(Ω) : A ∈ Kp(Ω) : A ⊂Mp, γ(A) ≥ n},

where p > 1, Kp(Ω) designates the family of compact symmetric sets in the space
W 1,p(Ω) and Mp = {u ∈W 1,p(Ω) :

∫
Ω
|u|p = 1}. We are also dealing with the

extra family,

An,1 = {A ⊂ BV (Ω) : A ∈ K1(Ω), A ⊂M, γ(A) ≥ n},

whereM = {u ∈ BV (Ω) :
∫

Ω
|u| = 1} andK1(Ω) is the corresponding class of closed

and bounded symmetric sets in BV (Ω) which are compact, in this case with respect
to the L1 topology (please, notice this slight change). We introduce in addition the
functionals,

Jp(u) =

∫
Ω

|∇u|p +

∫
∂Ω

b|u|p, J(u) =

∫
Ω

|Du|+
∫
∂Ω

b|u|.

According to (2.13), the variational expression for λn,p can be reformulated as:

λn,p = inf
A∈An,p

sup
u∈A

Jp(u).

Our goal here is relating these eigenvalues with the ‘characteristic numbers’,

λ̄n = inf
A∈An,1

sup
u∈A

J(u). (6.79)

In fact the main result can be stated as follows.

Theorem 20. Assume that b ≥ 0 and let λm,p be the m–th eigenvalue to the Robin
problem (1.1). Then,

lim
p→1

λm,p = λ̄m, for every m.
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Let us explain why the values λ̄n are connected to the limits of λn,p as p→ 1 and
what the rôle of the weight b is in the forthcoming computations. To this purpose
define,

D(u) =

∫
Ω

|Du|+
∫
∂Ω

|u|, u ∈ BV (Ω). (6.80)

This is not only the functional J computed at b = 1 but also the total variation of
u ∈ BV (Ω) when extended as zero outside Ω. The following result was formerly
sketched at the end of the proof of [11, Th. 3.3] and shown with more detail in [38]
(see a further proof in [34]). It not only provides the existence of the limit of the
Dirichlet eigenvalues λDn,p as p→ 1+, but also its precise value. However, it should
be remarked that the mere existence of the limits may be obtained in a more direct
way ([41]).

Proposition 21. Let λDn,p be the family of variational eigenvalues to the Dirichlet
problem (1.2). Then:

lim
p→1

λDn,p =: λ̄Dn = inf
A∈An,1

sup
u∈A
D(u).

In other words, asymptotic values λ̄Dn of the Dirichlet eigenvalues correspond to
λ̄n when b = 1. This somehow indicates that the λ̄n’s are natural candidates for
the limits of the Robin eigenvalues as p→ 1.

Proof of Theorem 20. It is a consequence of Theorems 22 and 25 below. �

The first ingredient in the proof of Theorem 20 is the following result.

Theorem 22. The lower estimate,

lim
p→1

λn,p ≥ λ̄n, (6.81)

holds true for every n ∈ N.

It is implicit in Theorem 22 that the asymptotic values λ̄n of the Robin problem
‘can’t see’ weight b ∈ L∞(∂Ω) when b(x) ≥ 1 on ∂Ω (see Remark 8). This is the
assertion we are next stating.

Corollary 23. Assume b ≥ 1. Then following limits exist and satisfy the stated
equalities:

λ̄n = lim
p→1

λn,p = λ̄Dn , n ∈ N. (6.82)

Proof. Since b ≥ 1 implies that λ̄Dn ≤ λ̄n then it is clear that,

lim
p→1

λn,p ≥ λ̄n ≥ λ̄Dn .

On the other hand, from (2.15) we have λn,p ≤ λDn,p for all n ∈ N. Thus,

lim
p→1

λn,p ≤ lim
p→1

λDn,p = λ̄Dn .

�

Remark 10. It is well–known that the eigenvalues of −∆ in a smooth bounded
domain Ω under the Robin condition ∂u

∂ν + βu = 0, converge to the Dirichlet eigen-
values as β →∞ ([10]). Our previous result is somehow reminiscent of this fact if

one thinks of b
1
p−1 as β and observes that b

1
p−1 → ∞ as p → 1 when b > 1 (see

Sections 3 and 4).
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Proof of Theorem 22. We are following the ideas in [11] and [34]. As a first step a
subsequence pm → 1 is chosen so as,

lim
m→∞

λn,pm = lim
p→1

λn,p. (6.83)

Denote λm = λn,pm to brief. After a refining process it can be assumed that

1 < pm < N ′ =
N

N − 1
, m ∈ N,

and

sup
Am

Jpm < λpm +
1

m
, m ∈ N,

for a certain Am such that Am ∈ Kpm(Ω), Am ⊂ Mpm and γ(Am) ≥ n. We now

observe that due to the continuous embedding W 1,pm(Ω) ⊂ Lpm∗(Ω), pm
∗ = Npm

N−pm ,

one finds:

γW
1,pm,(Ω)(Am) = γL

q(Ω)(Am), 1 ≤ q ≤ N ′,
where ‘super index’ space refers to the topology with respect to which the genus γ
is computed. In fact, that Am is compact in W 1,p(Ω) entails that Am is isomorphic
to itself when endowed with the Lq(Ω) topology.

To complete the ‘approaching’ to the definition of λ̄n we introduce next the

projection P : L1(Ω) \ {0} → L1(Ω), Pu =
u

‖u‖1
onto the unit L1–sphere. Basic

genus properties allow us asserting that ([44]),

γL
1(Ω)(Bm) ≥ γL

1(Ω)(Am) ≥ n, Bm := P(Am).

Of course, Bm ∈ K1(Ω) for all m ∈ N. Thus {Bm} ⊂ An,1 and we have the
estimate,

λ̄n = inf
A∈An,1

sup
A
J ≤ lim

m→∞
sup
Bm

J. (6.84)

By writing v ∈ Bm as v =
u

‖u‖1
with u ∈ Am we find,

J(v) ≤ 1

‖u‖1

{
1

pm′

(
|Ω|+

∫
∂Ω

b

)
+

1

pm
Jpm(u)

}
,

and hence,

J(v) ≤ 1

‖u‖1

{
1

pm′

(
|Ω|+

∫
∂Ω

b

)
+

1

pm

(
λm +

1

m

)}
. (6.85)

So, in order to measure how large supBm J is, an estimate of ‖u‖−1
1 on Am is

required. Thus we start with u ∈ Am and observe that,

‖u‖pm ≤ ‖u‖
θm
1 ‖u‖

(1−θm)
N ′ , θm =

1
pm
− 1

N ′

1− 1
N ′

.

By taking into account that Am ⊂Mpm and so ‖u‖pm = 1 we get,

‖u‖−1
1 ≤ ‖u‖

1−θm
θm

N ′ .

Now observe that,

‖u‖N ′ ≤ |Ω|
1
N′−

1
pm∗ ‖u‖pm∗ .
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In addition,

‖u‖pm∗ ≤ Cpm
(∫

Ω

|∇u|pm +

∫
Ω

|u|pm
)
≤ Cpm

(
λm +

1

m
+ 1

)
.

On the other hand, constant Cpm = O(1) as m→∞ (see [9]) therefore,

‖u‖N ′ ≤M,

for a certain positive constant M . Coming back to the estimate of ‖u‖−1
1 we

conclude,

‖u‖−1
1 ≤M

1−θm
θm , u ∈ Am. (6.86)

Finally by gathering together estimates (6.84), (6.85) y (6.86) we obtain,

λ̄n ≤ lim
m→∞

M
1−θm
θm

(
λm +

1

m
+ o(1)

)
= lim
p→1

λn,p,

as desired. �

As a byproduct of the above proof, the same statement as Theorem 22 holds
true when p = 1 is replaced with p > 1.

Theorem 24. Suppose p ≥ 1. Then,

lim
q→p+

λn,q ≥ λn,p.

We are now addressing the complementary estimate to (6.81).

Theorem 25. The upper estimate,

lim
p→1

λn,p ≤ λ̄n, (6.87)

also holds for every n ∈ N.

Proof. The approach in [11] and [34] is also followed. For the readers benefit we
are describing computations in detail.

By picking δ > 0 some compact A ∈ An,1 exists such that,

sup
A
J ≤ λ̄n + δ,

while a sequence 1 < pm < N ′, pm → 1, can be found satisfying,

lim
p→1

λn,p = lim
m→∞

λn,pm := lim
m→∞

λm.

The strategy of the proof consists in obtaining a family of compact sets Bm ∈ An,pm
such that

lim
m→∞

sup
Bm

Jpm ,

can be properly estimated in terms of supA J . Since the construction is slightly
involved we are going to proceed step by step.

First step. Consider k > 0 as a parameter which is going to be suitably defined
near the end of the process. Now take 1 < q < N ′ so close to 1 as to achieve the
uniform estimate:

‖u‖r ≤
(

1 +
δ

k

)
‖u‖s for all 1 ≤ r < s ≤ q, (6.88)

and every u ∈ Lq(Ω). From now on, pm is assumed to satisfy 1 < pm < q.
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At this early stage we observe that A ⊂ BV (Ω) is relative compact in Lq(Ω) and
compact in L1(Ω) (check the definition of An,1 at the beginning of the section).
Thus, A is also compact in Lq(Ω) and satisfies,

γL
q(Ω)(A) = γL

1(Ω)(A).

To conclude this preliminary part of the proof we select l functions, ui ∈ A ⊂ BV (Ω)
so that,

A ⊂
{
∪li=1BLq

(
ui,

δ

k

)}
,

BLq standing for the open ball in Lq.

Second step. Functions ui are approximated by a sequence ui,m ∈ C1(Ω) in the
strict topology of BV (Ω). By Lemma 3 it can be assumed that relations,∫

Ω

|Dui| = lim
m→∞

∫
Ω

|∇ui,m|pm ,
∫
∂Ω

b|ui| = lim
m→∞

∫
∂Ω

b|ui|pm ,

1 ≤ i ≤ l, are satisfied. This implies that,

J(ui) = lim
m→∞

Jpm(ui,m), ui = Lq- lim
m→∞

ui,m. (6.89)

Third step. We are introducing the family Bm according to the following instruc-
tions. A compact convex set Cm ⊂ C1(Ω) ⊂W 1,pm(Ω) is defined as,

Cm = co {±ui,m : i = 1, . . . , l},
‘co’ standing for convex hull. Notice that Cm is compact since it is the convex
envelope of a finite set. Let πm : Lpm(Ω) → Lpm(Ω) be the projection onto Cm, i.
e., for u ∈ Lpm , πm(u) ∈ Cm is uniquely defined through the relation,

‖u− πm(u)‖pm ≤ ‖u− v‖pm , for all v ∈ Cm.

Set in addition Pm : Lpm(Ω) \ {0} → Lpm(Ω) the projection Pmu =
u

‖u‖pm
onto

the unit sphere in Lpm . Estimate (6.92) below show that 0 /∈ πm(A). Therefore,
family:

Bm = Pm(πm(A)), m ∈ N,
is properly defined. In addition, the set Bm ⊂ C1(Ω) is not only compact in Lpm(Ω)
(1 < pm < q) but also in W 1,pm(Ω) due to the finite dimensional character of Cm.
By the standard genus properties,

γW
1,pm

(Bm) = γL
pm

(Bm) ≥ γL
pm

(πm(A)) ≥ γL
q

(A) = γL
1

(A) ≥ n.

Fourth step. Since,
lim
m→∞

λm ≤ lim
m→∞

sup
Bm

Jpm ,

and for u ∈ Bm it holds,

Jpm(u) =
1

‖v‖pmpm
Jpm(v) ≤ 1

‖v‖pmpm
max
1≤i≤l

Jpm(ui,m), (6.90)

where u =
v

‖v‖pm
and v ∈ πm(A), we require a lower estimate of ‖v‖pmpm in πm(A)

to measure the size of supBm Jpm . To this purpose we start with the conditions
(valid for large m),

‖ui,m‖1 > 1− δ

k
, ‖ui,m‖pm > 1− 2δ

k
, ‖ui − ui,m‖q <

δ

k
, (6.91)
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where uniform inequalities (6.88) have been employed to deduce the second esti-
mate. On the other hand, every v ∈ πm(A) has the form v = πm(a) where a ∈ A
with ‖a− ui‖q < δ

k for some i. Accordingly,

‖v‖pm > ‖ui,m‖pm − ‖πm(a)− a‖pm − ‖a− ui‖pm − ‖ui − ui,m‖pm ,

where ui,m satisfies (6.91). Second term is estimated as,

‖πm(a)− a‖pm ≤ ‖ui,m − a‖pm ≤ ‖ui,m − ui‖pm + ‖ui − a‖pm ≤
2δ

k

(
1 +

δ

k

)
.

The remaining terms are handled by means of (6.91) and (6.88) thus leading to,

‖v‖pm ≥
k − 10δ

k
> 0, v ∈ πm(A), (6.92)

provided that k > 0 is chosen suitably large. Now, relation (6.90) implies,

lim
m→∞

sup
Bm

Jpm ≤
k

k − 10δ
max
1≤i≤l

J(ui) ≤
k

k − 10δ
sup
A
J ≤ λ̄n + o(1),

as δ → 0+. This finishes the proof. �

The asymptotic estimate in Theorem 25 can be also proved when q → p+ with
p > 1:

lim
q→p+

λn,q ≤ λn,p.

In combination with Theorem 24 we can state the following.

Theorem 26. The sequence of higher eigenvalues λn,p to the Robin problem are
right continuous when regarded as a function of p ∈ [1,∞).

As a special case of Theorem 20 we single out the first eigenvalue (see [18] for
a further account when b > −1 is constant). Dependence of λ̄1 on b is stressed for
technical pursues.

Corollary 27. Assume that b ≥ 0, b 6= 0 while λ1,p(b) designates the principal
eigenvalue to (1.1). Then,

λ̄1(b) = lim
p→1

λ1,p(b) = inf
u∈BV (Ω)

∫
Ω
|Du|+

∫
∂Ω
b|u|∫

Ω
|u|

, (6.93)

where it can be set b = 1 if b ≥ 1. Moreover, λ̄1(b) > 0.

Proof. The variational expression follows from (6.79) when n = 1.

As for the positivity, it is clear when b ≥ 1 since in this case λ̄1(b) = λ̄D1 > 0.
Otherwise, the set Γ1 = {b ≤ 1} must have HN−1(Γ1) > 0. Define b1 = bχΓ1 6= 0.
We claim that λ̄ = λ̄1(b1) > 0. In fact, its corresponding associated eigenfunction
u satisfies, according to Section 5, the equality,∫

Ω

|Du|+
∫
∂Ω

b1γ1u = λ̄

∫
Ω

|u| = λ̄.

If it were λ̄ = 0, then u would be a positive constant and
∫
∂Ω
b1 = 0 which is

impossible. Thus,

λ̄1(b) ≥ λ̄1(b1) > 0,

and we are done. �
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Remark 11. It can be shown that function b(x) in (6.93) may be replaced with
min{1, b(x)}. Details are omitted for brevity and will be given in a future work.

Remark 12. From Theorem 15 the explicit value for λ̄1(B(0, R)) in the ball B(0, R)
is,

λ̄1(B(0, R)) = b
N

R
.

Assume that b− = min∂Ω b > 0 in ∂Ω. It is a consequence of the Faber–Krahn
inequality (see [18]) that,

λ̄1 ≥ b−
N

R#
,

where the value R# is chosen so that |Ω| = |B(0, R#)|.

7. Continuity of the eigenvalues with respect to p ∈ (1,∞)

For the sake of completeness we are finishing the analysis of the dependence of
λn,p with respect to p by showing its left continuity in every p > 1 (see Theorem

26). Indeed, the experience with the first Dirichlet eigenvalue λ1,p
D reveals that

this is the hardest part of the analysis ([33], [15]).

For technical reasons we begin with a direct proof of the continuity of λ1,p. It
can be obtained in the same spirit as in the Dirichlet case (see [17], [33]).

Theorem 28. The principal Robin eigenvalue λ1,p is continuous in p > 1.

Proof. On view of Theorem 26 only the left continuity must be shown. So, let
pn < p0 satisfy pn → p0 and choose u ∈ W 1,p0(Ω) a normalized eigenfunction to
λ1,p0 with ‖u‖p0 = 1. Then,

λ1,pn ≤
Jpn(u)∫
Ω
|u|pn

.

Since,

Jpn(u) ≤ p0 − pn
pn

{
|Ω|+

∫
∂Ω

b

}
+
p0

pn
Jp0(u) =:

p0 − pn
pn

A+
p0

pn
Jp0(u),

and limn→∞
∫

Ω
|u|pn =

∫
Ω
|u|p0 = 1, we find,

λ := lim
n→∞

λ1,pn ≤ lim
n→∞

λ1,pn ≤ λ1,p0 .

To estimate λ from below we fix δ > 0 so that (p0 − δ)∗ > p0 where (p0 − δ)∗
means the Sobolev conjugate, and select eigenfunctions un to λ1,pn with ‖un‖pn = 1,
Jpn(un) bounded and p0− δ < pn. In addition and up to a subsequence we assume
that λ = limn→∞ λ1,pn .

From,

Jp0−δ(un) ≤ pn − p0 + δ

pn
A+

p0 − δ
pn

Jpn(un), (7.94)

we conclude that un ⇀ u weakly in W 1,p0−δ(Ω) and strongly in Lp0(Ω) since
‖un‖1,p0−δ = O(1). Moreover, u can be chosen no depending on δ. By taking
limits we obtain,

Jp0−δ(u) ≤ δ

p0
A+

p0 − δ
p0

λ.
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This inequality together with [9, Prop. 9.3] and letting δ → 0 yields u ∈W 1,p0(Ω).
In addition, it also implies that,

Jp0(u) ≤ λ, &

∫
Ω

|u|p0 = 1.

Thus, λ ≥ λ1,p0 and the proof is complete. �

For the remain of this section we follow the approach in [11] which involves the
notion of Γ–convergence of functionals (the account in [7] on the subject is enough
for our aim). This is a suitable notion when studying the infimum of a ‘limit’ f of
functionals fn.

Definition 29. Let X be a metric space and f, fn : X → R̄ := [−∞,∞] a family
of functionals in X. It is said that fn Γ–converges to f , written f = Γ- limn→∞ fn,
if

f = Γ- lim
n→∞

fn = Γ- lim
n→∞

fn, (7.95)

where:

Γ- lim
n→∞

fn = inf { lim
n→∞

fn(xn)}, Γ- lim
n→∞

fn = inf { lim
n→∞

fn(xn)},

where the ‘inf ’ and ‘sup’ are extended to the class of all sequences xn → x. In that
case, Γ- limn→∞ fn is regarded as the common value in (7.95).

Remark 13.

a) Condition f(x) ≤ Γ- limn→∞ fn is equivalent to,

f(x) ≤ lim
n→∞

fn(xn), for all xn → x.

b) Inequality Γ- limn→∞ fn(x) ≤ f(x) is equivalent to,

There exists xn → x such that lim
n→∞

fn(xn) ≤ f(x).

Thus, the Γ–convergence of fn to f can expressed in terms of a), b) ([7, Chap. 2]).

To put the continuity of λn,p in the framework of [11] we introduce the family
of functionals Fp : L1(Ω)→ [0,∞] defined as,

Fp(u) =

{
Jp(u)

1
p , u ∈W 1,p(Ω),

∞, otherwise.

It should be remarked that the analysis in [11] is specialized on the Dirichlet eigen-
value problem. However, results can be adapted with minor changes to the Robin
problem (1.1). In this layout, main hypotheses in [11] take the form of the properties
i) and ii) stated next.

Proposition 30. The following properties are satisfied.

i) For every compact interval I = [a, b] ⊂ (1,∞) there exist constants C1, C2 such
that,

C1‖u‖1,p ≤ Fp(u) ≤ C2‖u‖1,p, for all u ∈W 1,p(Ω), p ∈ I.

ii) For each p0 > 1, Fp0 = Γ- limp→p0 Fp.



ROBIN EIGENVALUES AS p→ 1 43

A slightly larger class than ADn,p for Dirichlet conditions is also introduced in

[11]. The adaptation to the Robin problem (1.1) is Ãn,p ⊃ An,p defined as:

Ãn,p = {A ⊂W 1,p(Ω) : A closed and bounded,

A = −A,A compact in Lp(Ω), γL
p(Ω)(A) ≥ n}.

A characteristic number associated to the class Ãn,p is defined as,

λ̃n,p = inf
A∈Ãn,p

sup
A
Jp ≤ inf

A∈An,p
sup
A
Jp = λn,p.

Main result [11, Th. 3.3], conveniently adapted to our framework, allows us con-
cluding that,

lim
p→p0

λ̃n,p = λ̃n,p0 . (7.96)

A further consequence of its proof is the following assertion (see [11, Cor. 3.6]):

λ̃n,p = λn,p, n ∈ N, p > 1. (7.97)

Therefore, both (7.96) and (7.97) lead to the the main statement of the present
section. It comprises the left continuity of λn,p on p as a special case.

Theorem 31. Eigenvalue λn,p is a continuous function of p for p > 1.

To complete our analysis it only remains to prove Proposition 30.

Proof of Proposition 30. To check the validity of i) observe that an estimate of the
form,

Jp(u) ≤ Cp2‖u‖
p
1,p, u ∈W 1,p(Ω),

holds true in the basis of b ∈ L∞(Ω) and Lemma 2. In fact, C2 can be chosen non
depending on p ∈ I. In addition, inequality,∫

Ω

|u|p ≤ 1

λ1,p
Jp(u),

together with the continuity of λ1,p (Theorem 28) permit us finding a constant C1,
non depending on p ∈ I, such that Cp1‖u‖

p
1,p ≤ Jp(u). Thus assertion i) is proved.

As for the Γ–convergence statement we are showing in turn properties a), b)
of Remark 13. Beginning with b), for any fixed u ∈ W 1,p0(Ω) and pn → p0 one
can use either Lemma 3-a) if pn → p0+, or either Lemma 4 when pn → p0−, to
conclude the existence of un ∈ W 1,pn(Ω) such that Jpn(un) → Jp0(u). Observe in
addition that

Γ- lim
n→∞

Fpn(un) ≤ Fp0(u0),

holds regardless the sequence un whenever u ∈ Lp0(Ω).

In order to proceed with a) assume un → u in Lp0(Ω). We only need to check,

Jp0(u) ≤ lim
n→∞

Jpn(un),

when the right hand side limit is finite. First consider the case pn → p0 with
pn > p0 to have,

Jp0(un) ≤ pn − p0

pn
A+

pn
p0
Jpn(un), A = |Ω|+

∫
∂Ω

b .



44 J.C. SABINA DE LIS, S. SEGURA DE LEÓN

Since Jp0(un) = O(1) and un → u in Lp0(Ω) then un ⇀ u weakly in W 1,p0(Ω).
Hence,

Jp0(u) ≤ lim
n→∞

Jp0(un) ≤ lim
n→∞

Jpn(un),

and we are donde.

Let us deal now with the case pn → p0− and as before assume the finiteness of
limn→∞ Jpn(un). As in the proof of Theorem 28 pick δ > 0 so small as p0 < (p0−δ)∗.
From Jpn(un) = O(1) we deduce that un ⇀ u weakly in W 1,p0−δ(Ω), strongly in
Lp0(Ω) where u can be chosen non depending on δ. From (7.94) we deduce again
that, ∫

Ω

|∇u|p0 +

∫
∂Ω

b|u|p0 ≤ δ

p0
A+

p0 − δ
p0

lim
n→∞

Jpn(un).

This entails u ∈ W 1,p0(Ω) together with
∫

Ω
|u|p0 = 1 (see Lemma 5). The desired

estimate follows from letting δ → 0+. �

Acknowledgements. The authors would like to thank the anonymous referee for
the interesting comments. This research has been partially supported by CIUCSD
(Generalitat Valenciana) under project AICO/2021/223 and by Grant PID2022-
136589NB-I00 founded by MCIN/AEI/10.13039/501100011033.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Disconti-

nuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University
Press, New York, 2000.

[2] A. Anane. Etude des valeurs propres et de la résonance pour l’opérateur p–Laplacien. Thése

de doctorat. Université Libre de Bruxelles, 1987.
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2004.

[6] G. Anzellotti. Pairings between measures and bounded functions and compensated compact-
ness. Ann. Mat. Pura Appl. (4), 135:293–318 (1984), 1983.

[7] A. Braides. Γ-convergence for beginners, volume 22 of Oxford Lecture Series in Mathematics
and its Applications. Oxford University Press, Oxford, 2002.

[8] B. Brandolini, F. Chiacchio, and C. Trombetti. Optimal lower bounds for eigenvalues of linear
and nonlinear Neumann problems. Proc. Roy. Soc. Edinburgh Sect. A, 145(1):31–45, 2015.

[9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universi-
text. Springer, New York, 2011.

[10] D. Bucur, P. Freitas, and J. Kennedy. The Robin problem. In Shape optimization and spectral
theory, pages 78–119. De Gruyter Open, Warsaw, 2017.

[11] T. Champion and L. De Pascale. Asymptotic behaviour of nonlinear eigenvalue problems
involving p-Laplacian-type operators. Proc. Roy. Soc. Edinburgh Sect. A, 137(6):1179–1195,
2007.

[12] K. C. Chang. The spectrum of the 1-Laplace operator. Commun. Contemp. Math., 11(5):865–

894, 2009.
[13] B. de la Calle Ysern, J. C. Sabina de Lis, and S. Segura de León. The convective eigenvalues

of the one-dimensional p-Laplacian as p→ 1. J. Math. Anal. Appl., 484(1):123738, 28, 2020.
[14] M. Degiovanni and M. Marzocchi. Limit of minimax values under Γ-convergence. Electron.

J. Differential Equations, pages No. 266, 19, 2014.



ROBIN EIGENVALUES AS p→ 1 45

[15] M. Degiovanni and M. Marzocchi. On the dependence on p of the variational eigenvalues of

the p-Laplace operator. Potential Anal., 43(4):593–609, 2015.
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