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Abstract. In this paper we introduce a new approach to the
Dirichlet problem for the total variation flow in a bounded do-
main and analyze the associated inhomogeneous problem. We
prove global existence and uniqueness for source data belonging
to L1

loc(0,+∞;L2(Ω)) and L2–initial data. We compare solutions
corresponding to different data as well as study the long–term be-
haviour of the solutions. We also show explicit examples of radial
solutions.

1. Introduction

Let Ω be a bounded open subset in RN with a Lipschitz–continuous
boundary ∂Ω. Our aim is to study the following Dirichlet problem:

(1)


u′ − div

( Du

|Du|

)
= f(x, t) , in Ω× (0,+∞) ;

u = 0 , on ∂Ω× (0,+∞) ;

u(x, 0) = u0(x) , in Ω ;

where data satisfy f ∈ L1
loc(0,+∞;L2(Ω)) and u0 ∈ L2(Ω). (Here and

in what follows L1
loc(0,+∞;X) means L1(0, T ;X) for all T > 0, where

X denotes a space of functions depending on the spatial variable x.) We
will prove that there exists a unique solution u ∈ L1

loc(0,+∞;BV (Ω))∩
C([0,+∞);L2(Ω)) and will compare solutions corresponding to differ-
ent data. The main results of this paper are collected in Corollaries
5.3–5.5. Moreover, we will show the long–term behaviour of a solution
depending on the source datum f and some explicit simple solutions
will be given.

The homogeneous case of this problem (that is, when f ≡ 0) was
first analyzed in [2] (see also [5]). Among the motivations to study
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this problem lies a variational approach for filling in regions of missing
data in digital images (see [8]). It is introduced, in [2], a suitable
concept of solution to this kind of problems, defining the expression
Du
|Du| and the boundary condition in a weak sense through a bounded

vector field whose distributional divergence is regular enough. The
solution is obtained by means of nonlinear semigroup methods: first
an accretive operator is defined which leads to a mild solution of the
evolution problem (via Crandall–Liggett’s Theorem) and then this mild
solution is characterized by means of a variational formulation.

The methods used in that pioneer paper were applied in a series
of articles [3, 9, 6, 4] dealing with linear growth functionals. (Their
results, and some other related, can be found in the book [5].) Nev-
ertheless, these papers always analyze the homogeneous equation. To
our knowledge, the only paper that handles the inhomogeneous case
is [21]. Although there is some overlap with the results in Section 3
below, this overlap is not very much because the purpose of [21] is to
study stability of p–Laplace evolution equations as p goes to 1. The
techniques employed in [21] also rely on the theory of nonlinear semi-
groups. We point out that data in [21] belong to L2

loc(0,+∞;L2(Ω)),
so that our data are slightly more general and thus we highlight the
Lebesgue space that is truly relevant in this context (see Corollary 5.3,
Corollary 5.5 and Theorem 6.1 below).

Of course, we may apply nonlinear semigroup methods to obtain a
mild solution of the inhomogeneous equation, but the second part of
the procedure (the characterization of the mild solution) would remain
to be seen. Instead of the semigroup approach, we obtain our existence
and uniqueness results in a straightforward way. Thus, this paper not
only deals with the non–homogeneous problem, but it also provides a
new approach to the homogeneous one.

Two important tools used in our approach are a suitable Gronwall’s
inequality and Proposition 2.10 (see also Remark 3.2). Gronwall’s
lemma leads to a priori estimates involving the L1

loc(0,+∞;L2(Ω))–
norm which, as was already mentioned, we believe is the appropriate
one to study the inhomogeneous problem in a variational setting. On
the other hand, the expression (6) appearing in Proposition 2.10 allows
us to compare different solutions and so provides a new procedure for
uniqueness (without using the method of doubling variables). More-
over, both tools will be essential to prove Corollary 5.5 and to study
the long–term behaviour of the solution, extending the results obtained
for the homogeneous case in [3]. It should also be remarked that, in
dealing with the time derivative in the approximating problems, it is
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necessary to apply the regularization with respect to time introduced
in [14].

This paper is organized as follows. Section 2 is on Preliminaries.
In Section 3 we introduce our concept of solution, which is slightly
different of that given in [2]. Section 4 is devoted to prove existence
for our problem with data in L2

loc(0,+∞;L2(Ω)), while in Section 5 we
deal with existence and uniqueness when data in L1

loc(0,+∞;L2(Ω))
are taken. In Section 5 we also compare solutions corresponding to
different data. Section 6 is concerned with large term behaviour of the
solutions. In the last Section we show some explicit solutions.

2. Notation and Preliminaries

Throughout this paper let Ω represent a bounded open set in RN ,
N ≥ 1. We assume that Ω has a Lipschitz–continuous boundary and
denote by ν(x) the outer unit normal vector at x ∈ ∂Ω, which exists
HN−1–a.e.; here and in what follows HN−1 stands for the (N − 1)–
dimensional Hausdorff measure. For q ∈ [1,∞], the symbol Lq(Ω)
denote the usual Lebesgue space and we will denote by W 1,q

0 (Ω) the
usual Sobolev space of measurable functions having weak derivative in
Lq(Ω) and zero trace on ∂Ω, see for instance [11]. Moreover, we will
denote by q′ Hölder’s conjugate exponent of q > 1, i.e., 1

q
+ 1

q′
= 1.

Finally, if 1 ≤ q < N , we will denote by q∗ = Nq/(N − q) its Sobolev
conjugate exponent.

Throughout this paper, u′ denotes the derivative with respect to t,
while div stands for the divergence with respect to x; the gradient with
respect to x will be denoted by ∇ for functions in a Sobolev space and
by D when BV –functions are considered.

The class of functions u ∈ L1(Ω) whose partial derivatives in the
sense of distributions are measures with finite total variation in Ω is
denoted by BV (Ω) and is called the space of functions of bounded
variation in Ω. The space BV (Ω) is endowed with the norm

∥u∥BV (Ω) =

∫
Ω

|Du|+
∫
Ω

|u| dx

where |Du| is the total variation of the vector–valued measure Du.
With this norm, BV (Ω) is a Banach space, which happens to be the
dual of a Banach space denoted by Γ(Ω) (we refer to [1] where a char-
acterization of the space Γ(Ω) can be found). An equivalent norm is
given by

u 7→
∫
Ω

|Du|+
∫
∂Ω

|u| dHN−1 .
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It defines a functional in BV (Ω) that is lower semi–continuous with
respect to the L1(Ω)–convergence. Another functional we will use,
that is lower semi–continuous in L1(Ω), is given by

u 7→
∫
Ω

φ|Du| ,

where φ ∈ C∞
0 (Ω) satisfies φ ≥ 0. More information on functions of

bounded variation can be found in [1] or [12].
If T > 0, we write QT = Ω × (0, T ). For r, q ∈ [1,+∞], the spaces

Lr(0, T ;Lq(Ω)), Lr(0, T ;W 1,q
0 (Ω)) and Lr(0, T ;BV (Ω)) have obvious

meanings. For the sake of brevity, if X is a Banach space of func-
tions depending on the spatial variable x, we shall write u(x, t) ∈
Lr

loc(0,∞;X) instead of “u(x, t) ∈ Lr(0, τ ;X) for every τ > 0”. In
this framework, fixed t > 0, we often write “u(t) ∈ X” to mean that
the function x 7→ u(x, t) belongs to X.

We will need some concepts and results form [7] (see also [5, Ap-
pendix C]) to make sense of the dot product of a bounded vector field
(whose divergence satisfies certain conditions) and the gradient of a
BV –function, and so we may apply a Green’s formula. This theory is
studied in [10] as well, although from a different point of view. These
tools were extended in [2] to treat evolution equations of the kind stud-
ied in the present paper. Nevertheless, our approach is slightly differ-
ent, since our aim is to prove Proposition 2.10 below.

Given z ∈ L∞(Ω;RN), we denote by div z the divergence of z in the
sense of distributions, i.e.

⟨div z, φ⟩ = −
∫
Ω

z · ∇φdx

for all φ ∈ C∞
0 (Ω). Assume also that div z ∈ L2(Ω). Then, following

[7], we may define a weak trace on ∂Ω of the normal component of z,
that will be represented by [z, ν]. It holds that [z, ν] ∈ L∞(∂Ω) and
∥[z, ν]∥∞ ≤ ∥z∥∞. Moreover, we may characterize this function by the
following property: for each w ∈ W 1,1(Ω) ∩ L2(Ω)

(2)

∫
∂Ω

w[z, ν] dHN−1 =

∫
Ω

w div z dx+

∫
Ω

z · ∇w dx

holds true. On the other hand, given v ∈ BV (Ω) ∩ L2(Ω) and z ∈
L∞(Ω;RN) such that div z ∈ L2(Ω), we define the distribution

(z, Dv) : C∞
0 (Ω) → R

by

⟨(z, Dv), φ⟩ = −
∫
Ω

v z · ∇φdx−
∫
Ω

v φ div z dx ,
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for all φ ∈ C∞
0 (Ω). Observe that, under our hypotheses, every term of

(2) has sense. In [7] the following result is proved.

Proposition 2.1. Let z ∈ L∞(Ω;RN) satisfy div z ∈ L2(Ω).
The distribution (z, Dv) is actually a Radon measure with finite total

variation.
The measures (z, Dv) and its total variation |(z, Dv)| are absolutely

continuous with respect to |Dv| and∣∣∣∣∫
B

(z, Dv)

∣∣∣∣ ≤ ∫
B

|(z, Dv)| ≤ ∥z∥L∞(U)

∫
B

|Dv|

holds for every Borel set B and every open set U such that B ⊂ U ⊂ Ω.
Furthermore, the following generalized Green’s formula holds:

(3)

∫
Ω

v div (z) dx+

∫
Ω

(z, Dv) =

∫
∂Ω

[z, ν]v dHN−1 ,

where [z, ν] denotes the weak trace on ∂Ω of the normal component of
z.

Given a Banach space X, we will write by X∗ its dual space. Thus,
BV (Ω)∗ stands for the dual space of BV (Ω) and BV (Ω) = Γ(Ω)∗.

When div z ∈ BV (Ω)∗, we define the distribution

(z, Dv) : C∞
0 (Ω) → R

by

(4) ⟨(z, Dv), φ⟩ = −
∫
Ω

v z · ∇φdx− ⟨div z, v φ⟩BV (Ω)∗,BV (Ω) ,

for all φ ∈ C∞
0 (Ω). Since v ∈ BV (Ω) ⊂ L1(Ω), φ ∈ C∞

0 (Ω), z ∈
L∞(Ω;RN) and div z ∈ BV (Ω)∗, it follows that all terms of (4) are
well–defined. Moreover, we may also define [z, ν] ∈ L∞(∂Ω) satisfying
(2) for all w ∈ W 1,1(Ω) (see [2] and [5]). In general, we do not know that
a result similar to Proposition 2.1 holds. However, in [17, Theorems 5.1
and 5.2] it is proved that this type of results holds when div z belongs
to the predual Γ(Ω) of BV (Ω).

If ξ ∈ BV (Ω)∗ +L2(Ω), then we may consider ξ ∈ W 1,1
0 (Ω)∗ +L2(Ω)

and so there exist z ∈ L∞(Ω;RN) and f ∈ L2(Ω) satisfying

⟨ξ, w⟩ =
∫
Ω

z · ∇w +

∫
Ω

fw

for all w ∈ W 1,1
0 (Ω) ∩ L2(Ω). In this sense, we may write

ξ = div z+ f in D′(Ω) .

Obviously this decomposition need not be unique. Given a specific
decomposition ξ = div z + f , it is straightforward that one can define
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the weak trace [z, ν] ∈ L∞(∂Ω) and ∥[z, ν]∥∞ ≤ ∥z∥∞ holds true.
Nevertheless, we cannot prove that this vector field z appearing in the
decomposition satisfies that the distribution given by (4) is a Radon
measure. So, the following definition is necessary.

Definition 2.2. We say that

ξ = div z+ f

is a regular decomposition of ξ ∈ BV (Ω)∗ + L2(Ω) if

(1) ξ = div z+ f in D′(Ω);
(2) (z, Dv) is a Radon measure for all v ∈ BV (Ω) ∩ L2(Ω);

(3) ⟨ξ, v⟩ +
∫
Ω

(z, Dv) =

∫
∂Ω

v[z, ν]dHN−1 +

∫
Ω

fv dx, for all v ∈

BV (Ω) ∩ L2(Ω).

Remark 2.3. If ξ ∈ L2(Ω), then every decomposition ξ = div z + f ,
with z ∈ L∞(Ω;RN) and f ∈ L2(Ω), is regular owing to Proposition
2.1.

Lemma 2.4. Assume that (zα)α∈I is a net satisfying

(1) zα ⇀ z *–weakly in L∞(Ω;RN);
(2) div zα ⇀ div z *–weakly in BV (Ω)∗ + L2(Ω);
(3) (zα, Dv) is a Radon measure for all v ∈ BV (Ω) ∩ L2(Ω);
(4) for each α ∈ I a Green’s formula holds

⟨div zα, v⟩BV (Ω)∗,BV (Ω) +

∫
Ω

(zα, Dv) =

∫
∂Ω

v[zα, ν]dHN−1 ,

for all v ∈ BV (Ω) ∩ L2(Ω).
Then for all v ∈ BV (Ω) ∩ L2(Ω) we obtain

(1) (z, Dv) is a Radon measure;
(2) (zα, Dv)⇀ (z, Dv) *–weakly as measures;
(3) [zα, ν]⇀ [z, ν] *–weakly in L∞(∂Ω);
(4) it yields

⟨div z, v⟩BV (Ω)∗,BV (Ω) +

∫
Ω

(z, Dv) =

∫
∂Ω

v[z, ν]dHN−1 .

Proof: (1) and (2).
Fix φ ∈ C∞

0 (Ω) and v ∈ BV (Ω) ∩ L2(Ω). We have

⟨(zα, Dv), φ⟩ = −⟨div zα, vφ⟩ −
∫
Ω

vzα.∇φdx.
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Taking the limit in α, the net converges to

−⟨div z, vφ⟩BV (Ω)∗,BV (Ω) −
∫
Ω

vz.∇φ = ⟨(z, Dv), φ⟩

wherewith (2) holds once we see that (z, Dv) is a measure. Moreover,
it follows from

|⟨(zα, Dv), φ⟩| ≤ ||φ||∞||zα||∞
∫
Ω

|Dv| ≤ C||φ||∞
∫
Ω

|Dv|

that |⟨(z, Dv), φ⟩| ≤ C||φ||∞
∫
Ω

|Dv| and so (1) holds.

(3) For all w ∈ W 1,1(Ω) ∩ L2(Ω), it yields

⟨div zα, w⟩BV (Ω)∗,BV (Ω) +

∫
Ω

zα · ∇w dx =

∫
∂Ω

w[zα, ν]dHN−1.

Then

lim
α

∫
∂Ω

w[zα, ν]dHN−1 = lim
α
⟨div zα, w⟩BV (Ω)∗,BV (Ω) +

∫
Ω

zα · ∇w dx

= ⟨div z, w⟩BV (Ω)∗,BV (Ω) +

∫
Ω

z · ∇w dx =

∫
∂Ω

w[z,ν]dHN−1 .

(4) Set v ∈ BV (Ω) ∩ L2(Ω). It follows that

⟨div z, v⟩BV (Ω)∗,BV (Ω) +

∫
Ω

(z, Dv)

= lim
α
⟨div zα, v⟩BV (Ω)∗,BV (Ω) +

∫
Ω

(zα, Dv)

= lim
α

∫
∂Ω

v[zα, ν]dHN−1 =

∫
∂Ω

v[z, ν]dHN−1 .

Proposition 2.5. Every ξ ∈ BV (Ω)∗ + L2(Ω) has a regular decompo-
sition.

Proof: By the Goldstine Theorem, the closed unit ball of the predual
Γ(Ω) is dense in the closed unit ball of the space BV (Ω)∗ with respect
to the topology σ(BV (Ω)∗, BV (Ω)). Thus we can write

ξ = lim
α

div zα + f
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with div zα ∈ Γ(Ω); moreover, the net (div zα)α∈I is bounded in Γ(Ω).
This condition of being bounded implies that (div zα)α is bounded in
W−1,∞(Ω) and (zα)α is bounded in L∞(Ω;RN). Then

div zα + f ⇀ ξ *–weakly in BV (Ω)∗

zα ⇀ z *–weakly in L∞(Ω) .

Given φ ∈ W 1,1
0 (Ω) ∩ L2(Ω), it yields

⟨ξ, φ⟩ = lim
α

∫
Ω

zα · ∇φdx+
∫
Ω

fφ dx =

∫
Ω

z · ∇φdx+
∫
Ω

fφ dx

and so

ξ = div z+ f en D′(Ω).

Applying [17, Theorem 5.1], each (zα, Dv) is a Radon measure satis-
fying a Green’s formula. Then, by Lemma 2.4, the decomposition is
regular.

To reach Proposition 2.10, we still have to define some concepts intro-
duced in [2]. We denote by L1

w(0, T ;BV (Ω)) the space of all measurable
maps

v : [0, T ] → BV (Ω)

(that is, t ∈ [0, T ] → ⟨ϕ, v(t)⟩BV (Ω)∗,BV (Ω) is measurable for all ϕ ∈
BV (Ω)∗) such that

∫ T

0
∥v(t)∥BV (Ω) dt <∞.

Definition 2.6. Let Ψ ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω)).
We say that Ψ admits a weak derivative in L1

w(0, T ;BV (Ω))∩L∞(QT )

if there exists Θ ∈ L1
w(0, T ;BV (Ω))∩L∞(QT ) such that Ψ(t) =

∫ t

0
Θ(s)ds,

where the integral is taken as a Pettis integral.

Definition 2.7. Let u ∈ C([0, T ];L2(Ω)) ∩ L1(0, T ;BV (Ω)). We will
say that ξ ∈ L1(0, T ;BV (Ω))∗+L1(0, T ;L2(Ω)) satisfying ξ = div z+f
in D′(QT ) is the time derivative of u if

(1)

∫ T

0

⟨ξ(t),Ψ(t)⟩dt = −
∫ T

0

∫
Ω

u(s, x)Θ(s, x)dxds, for every func-

tion

Ψ ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω))

which admits a weak derivative Θ ∈ L1
w(0, T ;BV (Ω))∩L∞(0, T ;L2(Ω))

and having compact support in time;
(2) For almost all t ∈ (0, T ), ξ(t) = div z(t) + f(t) is a regular

decomposition.
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Remark 2.8. We explicitly remark that the dual L1(0, T ;BV (Ω))∗

can be identify with L∞
w∗(0, T ;BV (Ω)∗), the space of all ξ : [0, T ] →

BV (Ω)∗ which are *-weakly measurable (that is, the function t 7→
⟨ξ(t), v⟩ is measurable for every v ∈ BV (Ω)) and satisfy ∥ξ(t)∥BV (Ω)∗ ∈
L∞(0, T ) (see [19]). The duality is given by

⟨ξ, v⟩ =
∫ T

0

⟨ξ(t), v(t)⟩BV (Ω)∗,BV (Ω) dt ,

for all ξ ∈ L∞
w∗(0, T ;BV (Ω)∗) and all v ∈ L1(0, T ;BV (Ω)). Conse-

quently the first term of the formula 1. in the above definition makes
sense.

Proposition 2.9. Let ξ ∈ L1(0, T ;BV (Ω))∗ + L1(0, T ;L2(Ω)) be such
that ξ = div z + f is the time derivative of u ∈ C([0, T ];L2(Ω)) ∩
L1(0, T ;BV (Ω)). Then the real function t 7→

∫
Ω
u(t)2 dx is absolutely

continuous in (0, T ) and

(5)
1

2

(∫
Ω

u(t)2dx
)′

=

= −
∫
Ω

(z(t), Du(t)) +

∫
∂Ω

u(t)[z(t), ν] dHN−1 +

∫
Ω

f(t)u(t) dx .

Proof: Consider η ∈ C∞
0 (0, T ) and let τ be small enough to perform

the following manipulations:

−
∫ T

0

∫
Ω

η(t− τ)− η(t)

−τ
u(t)2

2
dx dt

=

∫ T

0

∫
Ω

u(t)2η(t− τ)

2τ
dx dt−

∫ T

0

∫
Ω

u(t)2η(t)

2τ
dx dt

=

∫ T

0

∫
Ω

u(t+ τ)2η(t)

2τ
dx dt−

∫ T

0

∫
Ω

u(t)2η(t)

2τ
dx dt

=
1

2

∫ T

0

∫
Ω

u(t+ τ)2 − u(t)2

τ
η(t) dx dt

=
1

2

∫ T

0

∫
Ω

(u(t+ τ)− u(t))(u(t+ τ) + u(t))

τ
η(t) dx dt
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Thus,

−
∫ T

0

∫
Ω

η(t− τ)− η(t)

−τ
u(t)2

2
dx dt

=
1

2

[ ∫ T

0

∫
Ω

(u(t+ τ)− u(t))

τ
u(t+ τ)η(t) dx dt

+

∫ T

0

∫
Ω

(u(t+ τ)− u(t))

τ
u(t)η(t) dx dt

]
=

1

2
(I1 + I2).

To compute I2 we define

Ψτ (t) =
1

τ

∫ t

t−τ

η(s)u(s)ds.

Then, since ξ is the time derivative of u, we have∫ T

0

⟨Ψτ (t), ξ(t)⟩ dt = −
∫ T

0

∫
Ω

η(t)u(t)− η(t− τ)u(t− τ)

τ
u(t) dx dt

= −
∫ T

0

∫
Ω

η(t)u(t)2

τ
dx dt+

∫ T

0

∫
Ω

u(t+ τ)

τ
η(t) dx dt

= I2 ,

so that

I2 =

∫ T

0

⟨Ψτ (t), ξ(t)⟩ dt

= −
∫ T

0

∫
Ω

(z(t), DΨτ (t)) dt

+

∫ T

0

∫
∂Ω

Ψτ (t)[z(t), ν]dHN−1 dt

+

∫ T

0

∫
Ω

fΨτ (t) dx dt

= −
∫ T

0

∫
Ω

(1
τ

∫ t

t−τ

η(s)(z(t), Du(s))ds
)
dt

+

∫ T

0

∫
∂Ω

(1
τ

∫ t

t−τ

η(s)u(s) ds
)
[z(t), ν] dHN−1 dt

+

∫ T

0

∫
Ω

f
(1
τ

∫ t

t−τ

η(s)u(s)ds
)
dx dt.
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Observe that

lim
τ→0

I2 = −
∫ T

0

∫
Ω

η(t)(z(t), Du(t)) dt

+

∫ T

0

∫
Ω

η(t)u(t)[z(t), ν] dHN−1 dt+

∫ T

0

∫
Ω

fηu dx dt.

On the other hand, to compute I1, we define

χτ (t) =
1

τ

∫ t

t−τ

η(s)u(s+ τ)ds.

Hence,∫ T

0

⟨χτ (t), ξ(t)⟩ dt = −
∫ T

0

∫
Ω

η(t)u(t+ τ)− η(t− τ)u(t)

τ
u(t) dx dt

= −
∫ T

0

∫
Ω

η(t)u(t+ τ)u(t)

τ
dx dt+

∫ T

0

∫
Ω

η(t− τ)u(t)2

τ
dx dt

= −
∫ T

0

∫
Ω

η(t)u(t+ τ)u(t)

τ
dx dt+

∫ T

0

∫
Ω

η(t)u(t+ τ)2

τ
dx dt

=

∫ T

0

∫
Ω

u(t+ τ)− u(t)

τ
u(t+ τ)η(t) dx dt

= I1.

Arguing as in the case of I2, it yields

lim
τ→0

I1 = lim
τ→0

I2.

Therefore, it follows from

−
∫ T

0

∫
Ω

η(t− τ)− η(t)

−τ
u(t)2

2
dx dt =

1

2
(I1 + I2)

that

−
∫ T

0

∫
Ω

η′(t)
u(t)2

2
dx dt =

= −
∫ T

0

∫
Ω

η(t)(z(t), Du(t)) dt+

∫ T

0

∫
∂Ω

η(t)u(t)[z(t), ν] dHN−1 dt

+

∫ T

0

∫
Ω

f(t)η(t)u(t) dx dt.

One concludes that(∫
Ω

u(t)2

2
dx

)′

=

∫
Ω

(z(t), Du(t))+

∫
∂Ω

u(t)[z(t), ν] dHN−1+

∫
Ω

f(t)u(t) dx



12 S. SEGURA DE LEÓN AND C. M. WEBLER

and, since the right hand side belongs to L1(0, T ), the function t →∫
Ω

u(t)2

2
dx is absolutely continuous.

Proposition 2.10. Consider u, v ∈ C([0, T ];L2(Ω))∩L1(0, T ;BV (Ω))
with time derivatives ξ, ξ, respectively. So

ξ, ξ ∈ L1(0, T ;BV (Ω))∗ + L1(0, T ;L2(Ω))

and we have the decompositions

ξ = div z+ f and ξ = div z+ f

where z, z ∈ L∞(Ω;RN) and f, f ∈ L1(0, T ;L2(Ω)).
Then, for almost all t ∈ [0, T ], it holds

(6)

(∫
Ω

u(t)v(t) dx

)′

= −
∫
Ω

(z(t), Dv(t))−
∫
Ω

(z(t), Du(t))

+

∫
∂Ω

u(t)[z(t), ν] dHN−1 +

∫
∂Ω

v(t)[z(t), ν] dHN−1

+

∫
Ω

f(t)v(t) dx+

∫
Ω

f(t)u(t) dx

Proof: Obviously u + v has as time derivative ξ + ξ. Furthermore,
each of the functions u, v and u + v satisfies the respective equation
(5), wherewith we deduce, for almost all t ∈ (0, T ),

(∫
Ω

u(t)v(t) dx

)′

=

=

(∫
Ω

(u(t) + v(t))2

2
dx

)′

−
(∫

Ω

u(t)2

2
dx

)′

−
(∫

Ω

v(t)2

2
dx

)′

= −
∫
Ω

(z+z, D(u+v))+

∫
∂Ω

(u+v)[z+z, ν] dHN−1+

∫
Ω

(f+f)(u+v) dx

+

∫
Ω

(z, Du)−
∫
∂Ω

u[z, ν] dHN−1 −
∫
Ω

fu dx

+

∫
Ω

(z, Dv)−
∫
∂Ω

v[z, ν] dHN−1 −
∫
Ω

fv dx
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and simplifying it yields(∫
Ω

u(t)v(t) dx

)′

=

= −
∫
Ω

(z, Dv)−
∫
Ω

(z, Du) +

∫
∂Ω

u[z, ν] dHN−1 +

∫
∂Ω

v[z, ν] dHN−1

+

∫
Ω

fv dx+

∫
Ω

fu dx .

Remark 2.11. Since the right hand side of (6) belongs to L1(0, T ),
the function given by

t 7→
∫
Ω

u(t)v(t) dx

is absolutely continuous in (0, T ).

3. Definition of solution to problem (1)

We are now ready to introduce the concept of solution to problem
(1). For each T > 0, we will consider the following parabolic problem

(7)


u′ − div

( Du

|Du|

)
= f(x, t) , in Ω× (0, T ) ;

u = 0 , on ∂Ω× (0, T ) ;

u(x, 0) = u0(x) , in Ω ;

Definition 3.1. Let f ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2(Ω).
We say that a function u ∈ L1(0, T ;BV (Ω)) ∩ C([0, T ];L2(Ω)) is a

solution to (7) if there exist z ∈ L∞(QT ) and u
′ ∈ L1(0, T ;BV (Ω))∗ +

L1(0, T ;L2(Ω)) such that for almost all t ∈ [0, T ] it holds

(8) u′(t) = div z(t) + f(t) is a regular decomposition

(9) (z(t), Du(t)) = |Du(t)| as measures

and

(10) [z(t), ν] ∈ sign (−u(t)) HN−1–a.e. on ∂Ω .

Moreover, u′ is the time derivative of u.
Given f ∈ L1

loc(0,+∞;L2(Ω)) and u0 ∈ L2(Ω), we say that a func-
tion u ∈ L1

loc(0,+∞;BV (Ω)) ∩ C([0,+∞);L2(Ω)) is a solution to (1)
if it is a solution to (7) for every T > 0.
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Remark 3.2. Proposition 2.10 implies that if u is a solution to (7) in
the sense of Definition 3.1, then it satisfies the following property: for
almost all t ∈ (0, T )(∫

Ω

u(t)v(t) dx

)′

= −
∫
Ω

(z(t), Dv(t))−
∫
Ω

(z(t), Du(t))

+

∫
∂Ω

u(t)[z(t), ν] dHN−1 +

∫
∂Ω

v(t)[z(t), ν] dHN−1

+

∫
Ω

f(t)v(t) dx+

∫
Ω

f(t)u(t) dx

holds, whenever v has v′ ∈ L1(0, T ;BV (Ω))∗ + L1(0, T ;L2(Ω)) as time
derivative and decomposition

v′ = div z+ f.

In particular, taking u = v and applying (9) and (10) it follows that
(11)(∫

Ω

u(t)2 dx

)′

= −2

∫
Ω

|Du(t)| − 2

∫
∂Ω

|u(t)| dHN−1 +2

∫
Ω

f(t)u(t) dx

for almost all t ∈ (0, T ).

Remark 3.3. When the distributional derivative satisfies u′(t) ∈ L2(Ω)
for almost all t ∈ [0, T ], the decomposition is always regular (see Re-
mark 2.3). Moreover, if u′ ∈ L2(QT ), then u

′ is the time derivative of
u since, given a function Ψ ∈ L1(0, T ;BV (Ω))∩L∞(0, T ;L2(Ω)) which
admits weak derivative Θ ∈ L1

w(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω)) and
has compact support in time, it holds (for h > 0)∫ T

0

⟨u′(t),Ψ(t)⟩ dt =
∫ T

0

∫
Ω

u′(x, t)Ψ(x, t) dx dt

= lim
h→0+

∫ T

0

∫
Ω

u(x, t+ h)− u(x, t)

h
Ψ(x, t) dx dt

= − lim
h→0+

∫ T

0

∫
Ω

u(x, t)
Ψ(x, t)−Ψ(x, t− h)

h
dx dt

= − lim
h→0+

∫ T

0

∫
Ω

u(x, t)
(1
h

∫ t

t−h

Θ(x, τ) dτ
)
dx dt

= −
∫ T

0

∫
Ω

u(x, t)Θ(x, t) dx dt .

An analogous argument works for h < 0 and thus u′ is the time deriv-
ative of u in the sense of Definition 2.7.
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Observe that it is enough that u′ ∈ L2(Ω × suppΨ); that is, it is
sufficient to assume u′ ∈ L2(δ, T − δ;L2(Ω)) for all δ > 0.

4. Data in L2(Ω× (0, T ))

Assume in this Section that f ∈ L2(Ω× (0, T )) and u0 ∈ L2(Ω).

Theorem 4.1. For each f ∈ L2(Ω × (0, T )) and each u0 ∈ L2(Ω)
there exists a solution to (7) that satisfies u′(t) ∈ L2(Ω) for almost all
t ∈ [0, T ] and

(12) max
t∈[0,T ]

∥u(t)∥L2(Ω) ≤ ∥u0∥L2(Ω) +

∫ T

0

∥f(t)∥L2(Ω) dt .

Proof: Consider the following approximating problems

(13)


u′p −∆pup = f(x, t) , in Ω× (0, T ) ;

up = 0 , on ∂Ω× (0, T ) ;

up(x, 0) = u0(x) in Ω ;

where 1 < p < 2.
It is well-known that there exists a solution up ∈ Lp(0, T ;W 1,p

0 (Ω))∩
C([0, T ];L2(Ω)) to this problem (If p ≥ 2, the classical reference is
[16], but in our case, it is a bit trickier: it can be applied the Galerkin
approximation appearing in [15].) Hence, it holds

(14)

∫
Ω

up(t)φ(t) dx−
∫
Ω

u0φ(0) dx−
∫ t

0

∫
Ω

upφ
′ dx dτ

+

∫ t

0

∫
Ω

|∇up|p−2∇up · ∇φdx dτ =

∫ t

0

∫
Ω

fφ dx dτ ,

for all 0 < t < T and all φ ∈ C1([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)).

Moreover, up can be used as test function. In doing so, applying also
Hölder’s inequality, we obtain

(15)

1

2

∫
Ω

u2p(x, t) dx−
1

2

∫
Ω

u20(x) dx+

∫ t

0

∫
Ω

|∇up|p dx dτ =

∫ t

0

∫
Ω

f up dx dτ

≤
∫ t

0

(∫
Ω

f 2(x, τ) dx
)1/2(∫

Ω

u2p(x, τ) dx
)1/2

dτ .

We proceed to divide the proof into several stages.

Step 1: A priori estimates
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Denoting ζ(t) =
( ∫

Ω
u2p(x, t) dx

)1/2

and dropping a nonnegative

term, (15) becomes

ζ(t)2 ≤ ζ(0)2 + 2

∫ t

0

(∫
Ω

f 2(x, τ) dx
)1/2

ζ(τ) dτ .

Applying a nonlinear version of Gronwall’s Lemma (due to [18], see
also [22, Theorem 1.2]), we deduce that

ζ(t) ≤ ζ(0) +

∫ t

0

(∫
Ω

f 2(x, τ) dx
)1/2

dτ .

Hence, the right hand side of (15) is bounded and it yields

1

2

∫
Ω

u2p(x, t) dx+

∫ t

0

∫
Ω

|∇up|p dx dτ ≤ C

where the constant C only depends on ∥u0∥L2(Ω) and on ∥f∥L1(0,T ;L2(Ω)).
Taking the supreme among every 0 < t < T , we conclude that

(16) sup
t∈[0,T ]

∫
Ω

u2p(x, t) dx+

∫
QT

|∇up|p dx dt ≤ C .

Thus, (up)p is bounded in L∞(0, T ;L2(Ω)) ∩ L1(0, T ;W 1,1
0 (Ω)). Since

u′p = ∆pup + f , we have that (u′p)p is bounded in

Lp′(0, T ;W−1,p′(Ω)) + L1(0, T ;L2(Ω)) ⊂ L1(0, T ;W−1,1(Ω)) ,

Corollary 4 in [20] now implies that up is compact in L1(QT ). There-
fore, there exists u ∈ L1(QT ) and a subsequence (still denoted by up)
satisfying

up → u strongly in L1(QT ) ;(17)

up(x, t) → u(x, t) a.e. in QT .(18)

We deduce that

(19) up(t) → u(t) in L1(Ω) for almost all t ∈ (0, T ) .

Step 2: u ∈ L1(0, T ;BV (Ω))
By Young’s inequality∫

QT

|∇up(t)| dx dt ≤
1

p′
T |Ω|+ 1

p

∫
QT

|∇up(t)|p dx dt ≤ C ,

where C only depends on the parameters of our problem. Fatou’s
Lemma implies

(20)

∫ T

0

lim inf
p→1

∫
Ω

|∇up(t)| dx dt ≤ C .
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Recalling (19), for almost all t ∈ (0, T ), it yields u(t) ∈ BV (Ω) and∫
Ω

|Du(t)| dx ≤ lim inf
p→1

∫
Ω

|∇up(t)| dx .

From here and (20) one concludes that u ∈ L1(0, T ;BV (Ω)) and∫ T

0

∫
Ω

|Du(t)| dx dt ≤
∫ T

0

lim inf
p→1

∫
Ω

|∇up| dx dt .

Step 3: Existence of the vector field
By (16) we know that∫

QT

|∇up|p dx dt ≤ C ,

and so, for all 1 < s < p′, it holds

(21)

∫
QT

|∇up|s(p−1) dx dt ≤
(∫

QT

|∇up|p dx dt
) s(p−1)

p |QT |1−
s(p−1)

p

≤ C
s(p−1)

p |QT |1−
s(p−1)

p .

Then, up to subsequences, we have that (|∇up|p−2∇up)p weakly con-
verges to zs in Ls(Ω;RN) for all 1 ≤ s < +∞. Using a diagonal
argument, we deduce that there exists a vector field z ∈ Ls(QT ;RN),
where 1 ≤ s <∞, such that
(22)

|∇up|p−2∇up ⇀ z weakly in each Ls(QT ;RN) , 1 ≤ s < +∞ .

By letting p→ 1 in (21) we obtain∫
QT

|z|s dx dt ≤ |QT | ;

that is, ∥z∥s ≤ |QT |1/s for all 1 ≤ s < ∞. If now we let s → ∞, then
z ∈ L∞(QT ;RN) and ∥z∥∞ ≤ 1.

We next check the equation satisfied by z. We take φ ∈ C∞
0 (QT ) as

test function in (14) obtaining

−
∫
QT

upφ
′ dx dt+

∫
QT

|∇up|p−2∇up · ∇φdx dt =
∫
QT

fφ dx dt .

As p goes to 1, it leads to

−
∫
QT

uφ′ dx dt+

∫
QT

z · ∇φdx dt =
∫
QT

fφ dx dt ,

wherewith it satisfies

(23) u′ − div z = f(x, t) , in D′(QT ) .
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Step 4: u′(t) ∈ L2(Ω) a.e.
For almost all t > 0, we know that up(t) ∈ W 1,p

0 (Ω) and u(t) ∈
BV (Ω). We fix one of these time values and denote it by δ > 0. We
are applying the regularization with respect to time introduced in [14]
for each fix p > 1. For every ν > 0, we consider the solution to problem{

1
ν
u′ν + uν = up ;

uν(δ) = up(δ) .

Then u′ν , uν ∈ Lp(0, T ;W 1,p
0 (Ω)) and uν → up strongly in L

p(0, T ;W 1,p
0 (Ω))

as ν → ∞. Taking u′ν as test we obtain
(24)∫ t

δ

∫
Ω

u′pu
′
ν dx dτ +

∫ t

δ

∫
Ω

|∇up|p−2∇up · ∇u′ν dx dτ =

∫ t

δ

∫
Ω

fu′ν dx dτ

Our aim is to use∫ t

δ

∫
Ω

(u′ν)
2 dx dτ ≤

∫ t

δ

∫
Ω

u′pu
′
ν dx dτ ,

and this claim follows from∫ t

δ

∫
Ω

u′ν [u
′
p − u′ν ] dx dτ = ν

∫ t

δ

∫
Ω

(up − uν)(up − uν)
′ dx dτ

=
ν

2

∫ t

δ

∫
Ω

(
(up − uν)

2
)′
dx dτ

=
ν

2

∫
Ω

(up(t)− up(δ))
2 dx dτ ≥ 0.

Thus, it follows from (24) that∫ t

δ

∫
Ω

(u′ν)
2 dx dτ +

∫ t

δ

∫
Ω

|∇up|p−2∇up · ∇u′ν dx dτ

≤ 1

2

∫ t

δ

∫
Ω

f 2 dx dτ +
1

2

∫ t

δ

∫
Ω

(u′ν)
2 dx dτ ,

and so

1

2

∫ t

δ

∫
Ω

(u′ν)
2 dx dτ +

∫ t

δ

∫
Ω

|∇up|p−2∇up · ∇u′ν dx dτ

≤ 1

2

∫ t

δ

∫
Ω

f 2 dx dτ .
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On the other hand, we also have

0 ≤ ν

∫ t

δ

∫
Ω

(|∇up|p−2∇up − |∇uν |p−2 · ∇uν) · ∇(up − uν) dx dτ

=

∫ t

δ

∫
Ω

(|∇up|p−2∇up − |∇uν |p−2∇uν) · ∇u′ν dx dτ ;

so that∫ t

δ

∫
Ω

|∇uν |p−2∇uν · ∇u′ν dx dτ ≤
∫ t

δ

∫
Ω

|∇up|p−2∇up · ∇u′ν dx dτ .

Hence,

1

2

∫ t

δ

∫
Ω

(u′ν)
2 dx dτ +

∫ t

δ

∫
Ω

|∇uν |p−2∇uν · ∇(uν)
′ dx dτ

≤ 1

2

∫ t

δ

∫
Ω

f 2 dx dτ .

Having in mind∫ t

δ

∫
Ω

|∇uν |p−2∇uν · ∇(uν)
′ dx dτ =

1

p

∫ t

δ

(∫
Ω

|∇uν(t)|p
)′
dx dτ

=
1

p

∫
Ω

|∇uν(t)|p dx−
1

p

∫
Ω

|∇uν(δ)|p dx ,

we deduce

(25)
1

2

∫ t

δ

∫
Ω

(u′ν)
2 dx dτ ≤ 1

2

∫ t

δ

∫
Ω

f 2 dx dτ +
1

p

∫
Ω

|∇up(δ)|p dx = C

where C does not depends on ν. Then u′ν is bounded in L2(δ, T ;L2(Ω))
and (uν(t))

′ ⇀ ξ weakly in L2(δ, T ;L2(Ω)); it is easy to see that
uν → up strongly in Lp(0, T ;W 1,p

0 (Ω)) implies ξ = u′p in the sense
of distributions.

Taking ν → ∞ in (25), it yields

1

2

∫ T

δ

∫
Ω

(u′p)
2 dx dt ≤ 1

2

∫ t

δ

∫
Ω

f 2 dx dτ +
1

p

∫
Ω

|∇up(δ)|p dx ,

wherewith (u′p)p is bounded in L2(δ, T ;L2(Ω)) and

u′p ⇀ u′ .

Since this argument holds for almost all δ > 0, we conclude that u′ ∈
L2(δ, T ;L2(Ω)) for all δ > 0, thus we have check that u′(t) ∈ L2(Ω) for
almost all t ∈ [0, T ].

Step 5: u ∈ C([0, T ];L2(Ω))
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Since u′ ∈ L2(δ, T ;L2(Ω)) for all δ > 0, by [20, Corollary 4], it
follows that up → u in C([δ, T ];L2(Ω)) for all δ > 0. As a consequence,
u ∈ C((0, T ];L2(Ω)) and u(t) is well–defined for all t > 0. Moreover,
up(t) → u(t) in L2(Ω) for all t > 0. Let us see that u is continuous at
0 as well.

On the one hand, for each 0 < t < T it follows from (15) and (16)
that

1

2

∫
Ω

u2p(t) dx−
1

2

∫
Ω

u20 dx ≤ C

∫ t

0

(∫
Ω

f 2(x, t) dx
)1/2

dτ.

Let p go to 1 to get

1

2

∫
Ω

u2(t) dx− 1

2

∫
Ω

u20 dx ≤ C

∫ t

0

(∫
Ω

f 2(x, t) dx
)1/2

dτ.

Since the function given by t 7→
( ∫

Ω
f 2(x, t) dx

)1/2

belongs to L1(0, T ),

we deduce that

0 = lim
t→0

∫ t

0

(∫
Ω

f 2(x, t) dx
)1/2

dτ.

Hence,

lim sup
t→0

∫
Ω

u2(t) dx ≤
∫
Ω

u20 dx .

On the other hand, consider φ ∈ C∞
0 (Ω) and let 0 < t < T . Then

(14) implies∫
Ω

u(t)φdx−
∫
Ω

u0φdx−
∫ t

0

∫
Ω

uφ′ dx dτ +

∫ t

0

∫
Ω

z · ∇φdx dτ

=

∫ t

0

∫
Ω

fφ dx dτ

Arguing as above, it yields

lim
t→0

∫
Ω

u(t)φdx =

∫
Ω

u0φdx .

for all φ ∈ C∞
0 (Ω). By density it may be extended to all φ ∈ L2(Ω),

wherewith u(t)⇀ u0 weakly in L2(Ω). As a consequence,∫
Ω

u20 dx ≤ lim inf
t→0

∫
Ω

u2(t) dx

and then
∫
Ω
u20 dx = limt→0

∫
Ω
u2(t) dx.

Since ∥u(t)∥2 → ∥u0∥2 and u(t) ⇀ u0 weakly in L2(Ω), Riesz–
Radon’s Theorem implies u(t) → u0 strongly in L2(Ω). We get u ∈
C([0, T ];L2(Ω)).
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Step 6: Equation u′(t) + div z(t) = f(t) in D′(Ω) holds for
almost all t

Consider two functions ϕ ∈ C∞
0 (Ω) and ψ ∈ C∞

0 (0, T ). Multiplying
(23) by ϕ(x)ψ(t) and applying Green’s formula, it follows that∫ T

0

∫
Ω

u′(x, t)ϕ(x)ψ(t) dx dt+

∫ T

0

∫
Ω

ψ(t)z(x, t) · ∇ϕ(x) dx dt

=

∫ T

0

∫
Ω

f(x, t)ϕ(x)ψ(t) dx dt .

We already know that there exists δ > 0 such that supp ψ ⊂ (δ, T )
and u′ ∈ L2(δ, T ;L2(Ω)), so that, for almost all t ∈ (0, T ), it holds∫

Ω

u′(x, t)ϕ(x) dx+

∫
Ω

z(x, t) · ∇ϕ(x) dx =

∫
Ω

f(x, t)ϕ(x) dx .

We conclude that u′ is the time derivative of u (see Remark 3.3).

Step 7: For almost all t > 0, we have (z(t), Du(t)) = |Du(t)| as
measures

Consider φ(x, t) = ϕ(x)ψ(t), with ϕ ∈ C∞
0 (Ω), ψ ∈ C∞

0 (0, T ) and
ϕ, ψ ≥ 0. Denoting, as usual, the truncation at level ±k by Tk(s) =
max{−k,min{k, s}}, we take Tk(up)φ as test function in (14):

(26)

∫
QT

Tk(up)u
′
pϕψ dx dt+

∫
QT

|∇Tk(up)|pϕψ dx dt

+

∫
QT

ψTk(up)|∇up|p−2∇up · ∇ϕ dx dt

=

∫
QT

fTk(up)ϕψ dx dt .

We want to let p → 1+. The right hand side offers no difficulty; we
are analyzing the left one. By the lower semi–continuity of the total
variation and Young’s inequality, we obtain∫

QT

ϕψ|DTk(u)| dt ≤ lim inf
p→1

∫
QT

ϕψ|∇Tk(up)| dx dt

≤ lim inf
p→1

(
1

p

∫
QT

ϕψ|∇Tk(up)|p dx dt+
p− 1

p

∫
QT

ϕψ dx dt

)
= lim inf

p→1

1

p

∫
QT

ϕψ|∇Tk(up)|p dx dt .

On the other hand, choose δ > 0 such that sop ψ ⊂ (δ, T ). Since
u′p ⇀ u′ weakly in L2(δ, T ;L2(Ω)) and Tk(up) → Tk(u) strongly in



22 S. SEGURA DE LEÓN AND C. M. WEBLER

L2(δ, T ;L2(Ω)), it yields

lim
p→1

∫ T

δ

∫
Ω

Tk(up)u
′
pϕψ dx dt =

∫ T

δ

∫
Ω

Tk(u)u
′ϕψ dx dt.

Finally, it follows from |∇up|p−2∇up ⇀ z weakly and Tk(up) → Tk(u)
strongly in every Ls(QT ;RN), where 1 ≤ s <∞, that

lim
p→1

∫
QT

ψTk(up)|∇up|p−2∇up · ∇ϕ dx dt =
∫
QT

ψTk(u)z · ∇ϕ dx dt .

Therefore, (26) becomes∫
QT

Tk(u)u
′ϕψ dx dt+

∫
QT

ϕψ|DTk(u)| dt+
∫
QT

ψTk(u)z · ∇ϕ dx dt

≤
∫
QT

fTk(u)ϕψ dx dt.

Now we may tend k → ∞ and obtain∫
QT

uu′ϕψ dx dt+

∫
QT

ϕψ|Du| dt+
∫
QT

ψuz·∇ϕ dx dt ≤
∫
QT

fuϕψ dx dt

=

∫
QT

uu′ϕψ dx dt−
∫
QT

(div z)uϕψ dx dt .

Simplifying it yields∫
QT

ϕψ|Du| dt+
∫
QT

ψuz · ∇ϕ dx dt ≤ −
∫
QT

(div z)uϕψ dx dt ,

and consequently∫ T

0

∫
Ω

ϕψ|Du| dt ≤
∫ T

0

∫
Ω

ϕψ(z, Du) dt

for all ϕ ∈ C∞
0 (Ω) and all ψ ∈ C∞

0 (0, T ), with ϕ, ψ ≥ 0. Thus, for
almost all t ∈ (0, T ), it holds∫

Ω

ϕ|Du(t)| ≤
∫
Ω

ϕ(z, Du(t)).

Then |Du(t)| ≤ (z(t), Du(t)) as measures and, since ||z||∞ ≤ 1, we
deduce (9).

Step 8: For almost all t > 0 it holds [z(t), ν] ∈ sign (−u(t)),
HN−1–a.e. on ∂Ω
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Fix δ > 0. Our starting point is derived from (13) by taking up as
test function:∫ T

δ

∫
Ω

upu
′
p dx dt+

∫ T

δ

∫
Ω

|∇up|p dx dt =
∫ T

δ

∫
Ω

fup dx dt .

It follows from Young’s inequality that

(27)

∫ T

δ

∫
Ω

|∇up| dx dt ≤
1

p

∫ T

δ

∫
Ω

|∇up|p dx dt+
p− 1

p
|Ω|T

=
1

p

(∫ T

δ

∫
Ω

fup dx dt−
∫ T

δ

∫
Ω

u′pup dx dt

)
+
p− 1

p
|Ω|T .

Letting p→ 1, we deduce

(28)

∫ T

δ

∫
Ω

|Du|+
∫ T

δ

∫
∂Ω

|u| dHN−1 dt

≤ lim inf
p→1

[
1

p

(∫ T

δ

∫
Ω

fup dx dt−
∫ T

δ

∫
Ω

u′pup dx dt

)
+
p− 1

p
|Ω|T

]
=

∫ T

δ

∫
Ω

fu dx dt−
∫ T

δ

∫
Ω

u′u dx dt = −
∫ T

δ

∫
Ω

udiv z dx dt .

Applying Green’s formula, we get∫ T

δ

∫
Ω

|Du| dt+
∫ T

δ

∫
∂Ω

|u| dHN−1 dt

≤
∫ T

δ

∫
Ω

(z, Du) dt−
∫ T

δ

∫
∂Ω

u[z, ν] dHN−1 dt

and this implies∫ T

δ

∫
∂Ω

|u| dHN−1 dt+

∫ T

δ

∫
∂Ω

u[z, ν] dHN−1 dt ≤ 0

owing to |Du| = (z, Du). On account of ||[z, ν]||∞ ≤ ||z||∞ ≤ 1, it
follows that, for almost all t ∈ (δ, T ), [z(t), ν]u(t) + |u(t)| = 0, HN−1–
a.e. on ∂Ω. In the end, since δ > 0 is arbitrary, we deduce (10).

Step 9: u′ is the time derivative of u
It is enough to have in mind that u ∈ L2(δ, T ;L2(Ω)) for all δ > 0

and Remark 3.3. We conclude that u is a solution to (7) in the sense
of Definition 3.1.

We will next deduce that the solution we have found satisfies a com-
parison principle.
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Proposition 4.2. Let u0, v0 ∈ L2(Ω) and f, g ∈ L2(0, T ;L2(Ω)), and
denote by u (respectively, v) a solution to (7) with data u0 and f (re-
spectively, v0 and g).

If f ≤ g and u0 ≤ v0, then u(t) ≤ v(t) for all t > 0.

Proof: We represent by z1 the vector field associated to solution u
and by z2 the corresponding to solution v.

We know that equation (8), both for u and for v, holds for almost
all t > 0. Choose one of these t, multiply both equations (8) by (u(t)−
v(t))+ and subtract them to get

(29)∫
Ω

(u(t)− v(t))+(u(t)− v(t))′ dx+

∫
Ω

(
z1(t)− z2(t), D(u(t)− v(t))+

)
=

∫
∂Ω

(u(t)− v(t))+[z1(t)− z2(t), ν] dHN−1

+

∫
Ω

(f(t)− g(t))(u(t)− v(t))+ dx .

Observe first that all terms, except the first one on the left hand side,
define real functions belonging to L1(0, T ), so do the remaining term.

We are analyzing the sign of the terms in (29). Using (9) to both
solutions, it yields

(
z1(t)−z2(t), D(u(t)−v(t))

)
≥ 0 as measure. Then

the Radon–Nikodým derivative of this measure with respect |D(u(t)−
v(t))|, say θ, is a nonnegative function. So, applying [7, Proposition
2.8], we deduce that(
z1(t)−z2(t), D(u(t)−v(t))+

)
= θ|D(u(t)−v(t))+| ≥ 0 , as measure.

Hence,
∫
Ω

(
z1(t)− z2(t), D(u(t)− v(t))+

)
≥ 0.

It follows from (10) that
∫
∂Ω
(u(t)−v(t))+[z1(t)−z2(t), ν] dHN−1 ≤ 0.

Finally, our hypotheses imply
∫
Ω
(f(t) − g(t))(u(t) − v(t))+ dx ≤ 0.

Therefore, equation (29) becomes(∫
Ω

[(u(t)− v(t))+]2 dx
)′

≤ 0 , for almost all t > 0 .

On the other hand, we already have seen that the left hand term
defines an integrable function, so that t 7→

∫
Ω
[(u(t)− v(t))+]2 dx is an

absolutely continuous function. Therefore, we obtain∫
Ω

[(u(t)− v(t))+]2 dx ≤
∫
Ω

[(u0 − v0)
+]2 dx = 0 , for all t > 0 ,

from where the result follows.
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5. Data in L1(0, T ;L2(Ω))

In this Section we will prove the main existence and uniqueness re-
sults for problem (1).

Theorem 5.1. For each f ∈ L1(0, T ;L2(Ω)) and each u0 ∈ L2(Ω)
there exists a solution to (7) according to Definition 3.1. Moreover, it
satisfies

(30) max
t∈[0,T ]

∥u(t)∥L2(Ω) ≤ ∥u0∥L2(Ω) +

∫ T

0

∥f(t)∥L2(Ω) dt .

Proof: Consider a sequence (fn) ⊂ L2(0, T ;L2(Ω)) satisfying

fn → f strongly in L1(0, T ;L2(Ω)).

By Theorem 4.1, for each n there exists un solution to problem
u′n − div

( Dun
|Dun|

)
= fn(x, t) , in Ω× (0, T ) ;

un = 0 , on ∂Ω× (0, T ) ;

un(x, 0) = u0(x) in Ω .

Thereupon for each n we have associated vector fields zn and, for almost
all t > 0, it holds

(31) u′n(t)− div zn(t) = fn(t) en D′(Ω).

Proceeding as in Theorem 4.1, we split the proof in several steps.

Step 1: A priori estimates
Taking un as test function, for almost all t ∈ (0, T ) we get

1

2

(∫
Ω

u2n(t) dx

)′

+

∫
∂Ω

|un(t)| dHN−1+

∫
Ω

|Dun(t)| =
∫
Ω

fn(t)un(t) dx

≤
(∫

Ω

|fn(t)|2 dx
) 1

2
(∫

Ω

|un(t)|2 dx
) 1

2

Writing ζn(t) =
(∫

Ω
|un(t)|2 dx

) 1
2 we obtain

ζn(t)
2 ≤ ζ(0)2 + 2

∫ t

0

(∫
Ω

|fn(x, τ)|2dx
) 1

2

ζn(τ)dτ.

From Gronwall’s Lemma (see [22, Theorem 1.2]) we deduce that(∫
Ω

|un(t)|2 dx
) 1

2

≤
(∫

Ω

|u0|2 dx
) 1

2

+

∫ T

0

(∫
Ω

|fn(x, τ)|2dx
) 1

2

dτ ≤ C ,

the boundedness due to the strong convergence of fn → f in L1(0, T ;L2(Ω)).
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So we deduce

max
t∈[0,T ]

∫
Ω

u2n(t) dx+2

∫ T

0

∫
∂Ω

|un(t)| dHN−1 dt+2

∫ T

0

∫
Ω

|Dun(t)| dt ≤ C.

Hence, the sequence (un)n is bounded in L∞(0, T ;L2(Ω))∩L1(0, T ;BV (Ω))
and (u′n)n is bounded in the space L∞(0, T ;W−1,∞(Ω))+L1(0, T ;L2(Ω)) ⊂
L1(0, T ;W−1,2(Ω)). By [20, Corollary 4], there exists a subsequence
such that un converges in L1(QT ); that is, there exists u ∈ L1(QT )
such that

un → u in L1(QT )

un(x, t) → u(x, t) a.e. in QT .

Arguing as in Theorem 4.1, we deduce that u ∈ L1(0, T ;BV (Ω)) and∫ T

0

∫
Ω

|Du(t)| dt ≤
∫ T

0

lim inf
n→∞

∫
Ω

|Dun(t)| dt .

Step 2: Existence of the vector field
It follows from ||zn(t)||∞ ≤ 1 for all n ∈ N and almost all t ∈ [0, T ],

that there exists z ∈ L∞(Ω;RN) such that

zn ⇀
∗ z weakly in L∞(QT ,RN) .

If φ ∈ C∞
0 (QT ), then

−
∫ T

0

∫
Ω

unφ
′ dx dt+

∫ T

0

∫
Ω

zn.∇φdx dt =
∫ T

0

∫
Ω

fnφdx dt .

Tending n to ∞ we get

−
∫ T

0

∫
Ω

uφ′ dx dt+

∫ T

0

∫
Ω

z.∇φdx dt =
∫ T

0

∫
Ω

fφ dx dt

and so

u′ − div z = f in D′(QT ).

Step 3: u ∈ C([0, T ];L2(Ω))
We next check that un → u in C([0, T ];L2(Ω)) and to this end, it is

enough to see that (un)
∞
n=1 is a Cauchy sequence.
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Taking un(t)− um(t) in (31) for n and for m lead to∫
Ω

u′n(t)(un(t)− um(t)) dx+

∫
Ω

(zn(t), D(un(t)− um(t)))

−
∫
∂Ω

(un(t)− um(t))[zn(t), ν] dHN−1

=

∫
Ω

fn(t)(un(t)− um(t)) dx

and∫
Ω

u′m(t)(un(t)− um(t)) dx+

∫
Ω

(zm(t), D(un(t)− um(t)))

−
∫
∂Ω

(un(t)− um(t))[zm(t), ν] dHN−1

=

∫
Ω

fm(t)(un(t)− um(t)) dx .

Subtracting both expressions yields

1

2

(∫
Ω

(un(t)− um(t))
2 dx

)′

+

∫
Ω

((zn(t)− zm(t)), D(un(t)− um(t))

−
∫
∂Ω

(un(t)− um(t))[zn(t)− zm(t), ν] dHN−1

=

∫
Ω

(fn(t)− fm(t))(un(t)− um(t)) dx .

Dropping two nonnegative terms and integrating with respect to t, we
obtain

1

2

∫
Ω

(un(t)− um(t))
2 dx ≤

∫
QT

|fn(t)− fm(t)||un(t)− um(t)| dx dt .

Now the right hand side tends to 0 since fn → f in L1(0, T ;L2(Ω))
and un is bounded in L∞(0, T ;L2(Ω)). We conclude that (un)

∞
n=1 is

a Cauchy sequence in L∞(0, T ;L2(Ω)) and so u ∈ C([0, T ];L2(Ω)).
Therefore, the function u(t) is well–defined for all t > 0.

Step 4: The equation holds in the sense of distributions
For every w ∈ BV (Ω) ∩ L2(Ω), Green’s formula implies∫
Ω

u
′

n(t)w dx =

∫
Ω

div zn(t)w dx+

∫
Ω

fn(t)w dx

= −
∫
Ω

(zn(t), Dw) +

∫
∂Ω

[zn(t), ν]w dHN−1 +

∫
Ω

fn(t)w dx dt .
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Thus,∣∣∣∣∫
Ω

(u
′

n(t)− fn(t))w dx

∣∣∣∣ ≤ ∫
Ω

|Dw|+
∫
∂Ω

|w| dHN−1 ≤ ∥w∥BV (Ω) .

Then (u
′
n − fn)n∈N is bounded in (L1(0, T ;BV (Ω))∗. As a conse-

quence, there exist ξ ∈ (L1(0, T ;BV (Ω))∗ +L1(0, T ;L2(Ω)) and a sub-
net (u

′
α)α∈I of the sequence (u

′
n)n∈N such that (u

′
α − fα)α∈I converges

to ξ − f in the weak–∗ topology, being I a directed set.
Given η ∈ D(QT ), since η ∈ L1(0, T ;BV (Ω)) ∩ L∞(0, T ;L2(Ω)), it

follows that

⟨ξ, η⟩ = lim
α∈I

⟨u′

α, η⟩

= lim
α∈I

∫ T

0

⟨u′

α(t), η(t)⟩dt

= lim
α∈I

∫ T

0

∫
Ω

u
′

α(t)η(t)dx dt

= lim
α∈I

∫ T

0

∫
Ω

div (zα(t))η(t)dx dt+ lim
α

∫ T

0

∫
Ω

fα(t)η(t)dx dt

= − lim
α∈I

∫ T

0

∫
Ω

zα(t).∇η(t)dx dt+ lim
α

∫ T

0

∫
Ω

fα(t)η(t)dx dt

= −
∫ T

0

∫
Ω

z(t).∇η(t)dx dt+
∫ T

0

∫
Ω

f(t)η(t)dx dt

= ⟨div (z) + f, η⟩

Hence,

ξ = div (z) + f en D′(QT ).

On the other hand, if we take η(t, x) = ϕ(t)ψ(x), with ϕ ∈ C∞
0 (0, T )

and ψ ∈ C∞
0 (Ω), the same computations used in the proof of Theorem

4.1 can be performed and so

ξ(t) = div (z(t)) + f(t) en D′(Ω) a.e. t ∈ (0, T ).

Step 5: ξ is the time derivative of u in the sense of Definition
2.7

Let Ψ ∈ L1(0, T ;BV (Ω))∩L∞(0, T ;L2(Ω)) admit a weak derivative
Θ ∈ L1

w(0, T ;BV (Ω)) ∩ L∞(QT ), i.e.,

Ψ(t) =

∫ t

0

Θ(s)ds

the integral being taken as a Pettis integral.
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We begin with the identify∫ T

0

⟨ξ(t),Ψ(t)⟩ dt = lim
α∈I

∫ T

0

⟨u′

α(t),Ψ(t)⟩dt ,

which holds because (u′α − fα)α∈I converges to ξ − f in the weak-*
topology and fα → f in L1(0, T ;L2(Ω)).

Now,∫ T

0

⟨u′

α(t),Ψ(t)⟩dt = lim
h

∫ T

0

∫
Ω

Ψ(t)
uα(t+ h)− uα(t)

h
dx dt

= lim
h

∫ T

0

∫
Ω

Ψ(t− h)−Ψ(t)

h
uα(t) dx dt

= − lim
h

∫ T

0

∫
Ω

(1
h

∫ t

t−h

Θ(s) ds
)
uα(t) dx dt

= −
∫ T

0

∫
Ω

Θ(t, x)uα(t, x) dx dt

Taking the limit in α in the above expression, it yields∫ t

0

⟨ξ(t),Ψ(t)⟩ dt = −
∫ T

0

∫
Ω

Θ(t, x)u(t, x) dx dt.

Having in mind ξ(t) = div (z(t)) + f(t) in D′(Ω) for almost all t ∈
[0, T ] and since the hypotheses of Lemma 2.4 holds for (zα(t))α∈I , we
deduce that ξ(t) = div z(t) + f(t) is a regular decomposition. Thus ξ
is the time derivative of u in the sense of Definition 2.7.

Proposition 5.2. Given f ∈ L1(0, T ;L2(Ω)) and u0 ∈ L2(Ω) there
exists at most a solution to (7) in the sense of Definition 3.1.

Proof: Assume that u1 are u2 are solutions to problem (7) in the
sense of definition 3.1, where u′1 = div z1+f and u′2 = div z2+f . Then
(u1 − u2)

′ = div (z1 − z2). Applying (6) to each of these solutions it
holds, for almost all t ∈ (0, T ),(∫

Ω

u1(t)(u1(t)− u2(t)) dx

)′

=

= −
∫
Ω

(z1(t), D(u1(t)− u2(t)))−
∫
Ω

(z1(t)− z2(t), Du1(t))

+

∫
∂Ω

u1(t)[z1(t)− z2(t), ν] dHN−1 +

∫
∂Ω

(u1(t)− u2(t))[z1(t), ν] dHN−1

+

∫
Ω

f(t)(u1(t)− u2(t)) dx.
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and(∫
Ω

u2(t)(u1(t)− u2(t)) dx

)′

=

= −
∫
Ω

(z2(t), D(u1(t)− u2(t)))−
∫
Ω

(z1(t)− z2(t), Du2(t))

+

∫
∂Ω

u2(t)[z1(t)− z2(t), ν] dHN−1 +

∫
∂Ω

(u1(t)− u2(t))[z2(t), ν] dHN−1

+

∫
Ω

f(t)(u1(t)− u2(t)) dx .

Subtracting both expression, we obtain(∫
Ω

(u1(t)− u2(t))
2 dx

)′

= 0 .

Therefore,∫
Ω

(u1(t)− u2(t))
2 dx =

∫
Ω

(u0 − u0)
2 dx = 0, ∀t ∈ [0, T ] .

and so u1(t) = u2(t) for all t ∈ [0, T ].

As a consequence of Theorem 5.1 and Proposition 5.2, taking into
account inequality (30), we obtain the existence of a unique global
solution to (1) in the sense of Definition 3.1. Details on regularity are
supplied in the next section.

Corollary 5.3. Given f ∈ L1
loc(0,+∞;L2(Ω)) and u0 ∈ L2(Ω) there

exists a unique u ∈ L1
loc(0,+∞;BV (Ω)) ∩ C([0,+∞);L2(Ω)) which is

global solution to (1) in the sense of Definition 3.1. Moreover, this
solution satisfies

(32) max
t∈[0,T ]

∥u(t)∥L2(Ω) ≤ ∥u0∥L2(Ω) +

∫ T

0

∥f(t)∥L2(Ω) dt .

for all T > 0.

We conclude this section by relating solutions corresponding to dif-
ferent data.

Corollary 5.4. Let u0, v0 ∈ L2(Ω) and f, g ∈ L1
loc(0,+∞;L2(Ω)), and

denote by u (respectively, v) a solution to (7) with data u0 and f (re-
spectively, v0 and g).

If f ≤ g and u0 ≤ v0, then u(t) ≤ v(t) for all t > 0.

Proof: It is enough to have in mind the uniqueness of solutions and
apply Proposition 4.2 to the approximate solutions in Theorem 5.1 to
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obtain that the solutions we found in this result satisfy the required
inequality for all t > 0.

As a consequence of Corollary 5.4, we obtain that nonnegative data
imply nonnegative solutions.

Corollary 5.5. Let u0, v0 ∈ L2(Ω) and f, g ∈ L1
loc(0,+∞;L2(Ω)), and

denote by u (respectively, v) a solution to (7) with data u0 and f (re-
spectively, v0 and g).

Then, for all t > 0,

(33) ∥u(t)− v(t)∥L2(Ω) ≤ ∥u0 − v0∥L2(Ω) +

∫ t

0

∥f(τ)− g(τ)∥L2(Ω) dτ .

Proof: Fix t > 0. Arguing as in Proposition 5.2 and applying (6) to
each of solutions u and v we deduce that the map t 7→

∫
Ω
(u(t)−v(t))2 dx

is absolutely continuous and it holds, for almost all τ ∈ (0, t),(∫
Ω

(u(τ)− v(τ))2 dx

)′

≤ 2

∫
Ω

(f(τ)− g(τ)) (u(τ)− v(τ)) dx .

So, using Hölder’s inequality and integrating in (0, t), we get

∥u(t)− v(t)∥2L2(Ω)

≤ ∥u0 − v0∥2L2(Ω) + 2

∫ t

0

∥f(τ)− g(τ)∥L2(Ω)∥u(τ)− v(τ)∥L2(Ω) dτ .

Therefore, Gronwall’s inequality [22, Theorem 1.2] gives us estimate
(33).

6. Long–term behaviour

In this Section, we will study the long–term behaviour of the solu-
tions to (1). We recall that in the homogeneous case, it has been shown
in [13] that the solutions stabilize as t→ +∞ by converging to 0. This
result was improved in [3] by showing that there is a finite extinction
time. We turn to study what happens in the inhomogeneous case.

Theorem 6.1. (1) If f ∈ L1(0,+∞;L2(Ω)), then the global solu-
tion to problem (1) satisfies u ∈ C([0,+∞[;L2(Ω))∩L1(0,+∞;BV (Ω)).
Moreover, there exists a sequence tn → +∞ and there exists
v ∈ L2(Ω) such that u(tn)⇀ v weakly in L2(Ω).

(2) If f ∈ L∞(0,+∞;L2(Ω)), then it holds u ∈ W 1,∞(0,+∞;L2(Ω))∩
L∞(0,+∞;BV (Ω)). Furthermore, there exists a sequence tn →
+∞ and there exists v ∈ BV (Ω) such that u(tn) ⇀ v *–weakly
in BV (Ω).



32 S. SEGURA DE LEÓN AND C. M. WEBLER

Proof: (1) By (32) we have that, for all t ≥ 0, the global solution
satisfies

1

2

∫
Ω

u(t)2dx+

∫ t

0

∫
∂Ω

|u(τ)| dHN−1 dτ +

∫ t

0

∫
Ω

|Du(τ)| dτ

≤ 1

2

∫
Ω

u20dx+
(∫

Ω

u20dx
)1/2

∫ t

0

(∫
Ω

f(x, τ) dx
)1/2

dτ

+

∫ t

0

(∫
Ω

f(x, τ) dx
)1/2

[ ∫ τ

0

(∫
Ω

f(x, σ) dx
)1/2

dσ

]
dτ .

Thus, if f ∈ L1(0,+∞;L2(Ω)), then

1

2

∫
Ω

u(t)2dx+

∫ t

0

∫
∂Ω

|u(τ)| dHN−1 dτ +

∫ t

0

∫
Ω

|Du(τ)| dτ

≤ 1

2
∥u0∥2L2(Ω) + ∥u0∥L2(Ω)∥f∥L1(0,+∞;L2(Ω)) + ∥f∥2L1(0,+∞;L2(Ω)) ,

for all t ≥ 0. It follows that u ∈ L∞(0,+∞;L2(Ω))∩L1(0,+∞;BV (Ω))
and, as a consequence of the boundedness of

∫
Ω
u(t)2dx, there exists

v ∈ L2(Ω) such that, up to subsequences, u(t)⇀ v weakly in L2(Ω).
(2) It is a consequence of the following estimate that holds for almost

all t > 0:

1

2

(∫
Ω

u(t)2 dx

)′

+

∫
∂Ω

|u(t)| dHN−1 +

∫
Ω

|Du(t)| ≤
∫
Ω

|f(t)u(t)| dx

≤ 1

2

∫
Ω

f(t)2dx+
1

2

∫
Ω

u(t)2dx ≤ C .

The norm of the datum f in L1
loc(0,+∞;L2(Ω)) is not the only rel-

evant norm for the problem (7). Indeed, as in the associated elliptic
problem, the dual norm plays an important role as well.

Theorem 6.2. Assume that f ∈ L1
loc(0,+∞;L2(Ω))∩L∞(0,+∞;W−1,∞(Ω)).

(1) If ∥f∥L∞(0,+∞;W−1,∞(Ω)) ≤ 1, then the norm ∥u(t)∥L2(Ω) defines a
nonincreasing function. Moreover, there exist a sequence tn →
+∞ and v ∈ L2(Ω) such that u(tn)⇀ v weakly in L2(Ω).

(2) If ∥f∥L∞(0,+∞;W−1,∞(Ω)) < 1, then u(t)⇀ 0 *–weakly in BV (Ω)
and weakly in L2(Ω).

Proof: (1) To begin, we note that, for almost all t > 0, f(t) ∈
L2(Ω) ∩W−1,∞(Ω)), so there exists w ∈ L∞(Ω × (0,+∞)) such that
f(t) = divw(t) a.e. Hence, for these t it holds ∥w(t)∥L∞(Ω) = ∥f∥W−1,∞(Ω) ≤
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1 and (w(t), Du(t)) is a Radon measure. From the equation we then
deduce

1

2

(∫
Ω

u(t)2 dx

)′

+

∫
∂Ω

|u(t)| dHN−1+

∫
Ω

|Du(t)| =
∫
Ω

u(t) divw(t) dx

=

∫
∂Ω

u(t)[w(t), ν] dHN−1 −
∫
Ω

(w(t), Du(t))

≤
∫
∂Ω

|u(t)| dHN−1 +

∫
Ω

|Du(t)| .

Therefore,

(∫
Ω
u(t)2 dx

)′

≤ 0 for almost all t > 0 and the norm

∥u(t)∥L2(Ω) is nonincreasing. As a consequence, ∥u(t)∥L2(Ω) ≤ ∥u0∥L2(Ω)

for all t > 0 and, up to subsequences, (u(t))t>0 weakly converges in
L2(Ω).

We point out that, since the norm is nonnegative and nonincreasing,
it follows that lim

t→+∞
∥u(t)∥′L2(Ω) = 0.

(2) Assume now that ∥f∥L∞(0,+∞;W−1,∞(Ω)) = 1 − ϵ, for some ϵ > 0.
Arguing as above, we obtain that

1

2

(∫
Ω

u(t)2 dx

)′

+ ϵ

∫
∂Ω

|u(t)| dHN−1 + ϵ

∫
Ω

|Du(t)| ≤ 0 ;

i.e., if we disregard a nonnegative term,

∥u(t)∥BV (Ω) ≤
1

2ϵ
∥u0∥2L2(Ω) .

It yields that there exists v ∈ BV (Ω) such that, up to subsequences,
u(t)⇀ v *–weakly in BV (Ω). On the other hand, it follows from∫

∂Ω

|u(t)| dHN−1 +

∫
Ω

|Du(t)| ≤ − 1

2ϵ

(
∥u(t)∥2L2(Ω)

)′ → 0 ,

and applying the lower semi–continuity, that∫
∂Ω

|v| dHN−1 +

∫
Ω

|Dv| = 0 .

Thus v ≡ 0.

In the case ∥f∥L∞(0,+∞;W−1,∞(Ω)) < 1, a further remark is in order. If
lim

t→+∞
∥u(t)∥L2(Ω) = 0, then by Riesz–Radon’s Theorem we obtain that

u(t) → 0 strongly in L2(Ω) as t→ +∞.
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7. Explicit solutions

In this Section we present examples of radial solutions to problem
(1) in a simple framework. Let Ω = BR(0) be the open ball centered
at 0 and having radius R. We choose data having the form f(x, t) =
g(t)χBr(0)(|x|) and u0(x) = α0χBr(0)(|x|), with 0 < r < R. We, conse-
quently, look for solutions u(x, t) = α(t)χBr(0)(|x|), with α(0) = α0. In
what follows we assume that α0 > 0 and g ∈ L1

loc(0,+∞) is nonneg-
ative. According to our results and taking into account |Du(x, t)| =
α(t)|DχBr(0)(|x|)|, we deduce that α ∈ L1

loc(0,+∞) ∩ C([0,+∞)) and
α2 is absolutely continuous on each bounded interval.

To search the solution, we apply the energy identity (11). Simplifying
it yields

1

2

(
α2(t)

)′|Br(0)| = −α(t)HN−1(∂Br(0)) + α(t)g(t)|Br(0)| , t > 0 .

We deduce that, for a given t > 0, either α(t) = 0 or α′(t) = −N
r
+g(t)

holds true.
We point out that the set {t > 0 : α(t) > 0} is open, by the

continuity of α; so that it is the union of at most countably many open
intervals, say I0

∪(∪
i Ii

)
, where I0 is of the form (0, T ). (Obviously,

it may occur that Ii = ∅ for all i as well as T = +∞.) Then it is
straightforward to get

(34) α′(t) =
(
− N

r
+ g(t)

)
χ{α(t)>0}(t)

and so function α is absolutely continuous on each bounded interval.
An important consequence of being α absolutely continuous is that
equality u′(x, t) = α′(t)χBr(0)(|x|) holds in the distributional sense and,
arguing as in Remark 3.3, we obtain that u′ is the time derivative of
u in the sense of Definition 2.7. Moreover, denoting by Ti the lower
extreme of interval Ii. it yields

α(t) =
(
α0−

N

r
t+

∫ t

0

g(τ) dτ
)
χI0(t)+

∑
i

(
−N
r
(t−Ti)+

∫ t

Ti

g(τ) dτ
)
χIi(t)

Therefore, the solution should be given by

(35) u(x, t) =
(
α0 −

N

r
t+

∫ t

0

g(τ) dτ
)
χI0(t)χBr(0)(|x|)

+
∑
i

(
− N

r
(t− Ti) +

∫ t

Ti

g(τ) dτ
)
χIi(t)χBr(0)(|x|) .
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To go forward, we will consider the precise representative of g: g(t)
satisfies

g(t) =

 lim
ρ→0+

1

2ρ

∫ t+ρ

t−ρ

g(τ) dτ , if t ∈ L ;

0 , if t /∈ L ;

where L denotes the set of Lebesgue points of g. Thus, g(t) is well-
defined for all t > 0. Similarly, we may consider the precise represen-
tative of α′.

If u is a solution, then there exists a radial vector field z satisfying

u′(t) = div z(t) + f(t)

in D′(Ω) for almost all t > 0. Thus, for almost all t > 0, the divergence
of z(t) is constant in Br(0) and vanishes in BR(0)\Br(0). A radial
vector field w such that

divw(x) =

{
−1 , if |x| < r ;

0 , if r < |x| < R ;

must be of the form w(x) = ρ(|x|)x, where ρ satisfies

|x|ρ′(|x|) +Nρ(|x|) =

{
−1 , if |x| < r ;

0 , if r < |x| < R .

Solving this ODE, we deduce that

w(x) =

{ − x
N
, if |x| < r ;

−rN x
N |x|N , if r < |x| < R .

It is straightforward that ∥w∥∞ ≤ r
N

and its distributional divergence
is really given by divw(x, t) = −χBr(0)(|x|). Therefore, we look for a
vector field satisfying

z(x, t) = β(t)w(x) ,

with |β(t)| ≤ N
r

for almost all t > 0. Let’s determine the precise
representative of β: It follows from

u′(t) = div z(t) + f(t) , in D′(Ω) ,

that

(36) α′(t) = −β(t) + g(t) .

Two cases must be considered. When α(t) > 0, we deduce from (34)
and (36) that β(t) = N

r
. On the other hand, if α(t) = α′(t) = 0 and
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t is a Lebesgue point of α′, then (36) implies g(t) = β(t) ≤ N
r
. The

conclusion is

(37) α′(t) =
(
− N

r
+ g(t)

)+

for almost all t > 0. It may happen that t is not a Lebesgue point of
α′, but still be an interesting case, namely: when t = Ti for certain i.
Then we have α′

+(Ti) > 0, α(Ti) = 0 and α(Ti + ρ) > 0 for ρ > 0 small
enough; so that

α(Ti + ρ) = −N
r
ρ+

∫ Ti+ρ

Ti

g(τ) dτ

for ρ > 0 small enough. Hence,

α′
+(Ti) = lim

ρ→0+

α(Ti + ρ)

ρ
= −N

r
+ g(Ti) ,

and consequently β(Ti) = −N
r
and g(Ti) >

N
r
. By the way, this is the

condition that must be satisfied by g(Ti) for the elevation of α.
In order to see that u, as defined in (35), is the actual solution to

our problem, we have considered the vector field defined by

z(x, t) =

{
N
r
w(x) , if α(t) > 0 ;

g(t)N
r
w(x) , if α(t) = 0 .

Since div z ∈ L∞(Ω× (0,+∞)), it follows from [7] that (z(t), Dv) is a
Radon measure for almost all t > 0 and all v ∈ BV (Ω). Furthermore,
a Green’s formula holds.

To see (8), we just have to verify that u′(t) = div z(t) + f(t) holds
in the sense of distributions for almost all t > 0. In fact, due to (37),
if α′(t) > 0, then α′(t) = −N

r
+ g(t) holds, and if α′(t) = 0, then

0 = −g(t) + g(t) is obviously satisfied.
To check (9), fix t > 0 such that α(t) > 0 and ϕ ∈ C∞

0 (Ω). Then∫
Ω

ϕ(z(t), Du(t)) = −
∫
Ω

uz · ∇ϕ−
∫
Ω

uϕ div z

=

∫
{|x|≤r}

α(t)
x

r
·∇ϕ+N

r

∫
{|x|≤r}

α(t)ϕ = α(t)

∫
{|x|=r}

ϕ =

∫
Ω

ϕ|Du(t)| .

On the other hand, when t > 0 satisfies α(t) = 0,

(z(t), Du(t)) = 0 = α(t)χBr(0)(|x|) = |Du(t)| .
In any case, it yields (z(t), Du(t)) = |Du(t)| as measures.

Since u(x) = 0 for |x| = R, condition (10) is straightforward. There-
fore, u is the solution to problem (1).
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Several concluding remarks are in order:

Remark 7.1. By Theorem 6.1, we obtain some consequences on summa-
bility:

(1) g ∈ L1(0,+∞) implies α ∈ L1(0,+∞).
(2) g ∈ L∞(0,+∞) implies α ∈ L∞(0,+∞) and Lipschitz–continuous.

Furthermore, the proof of Theorem 4.1 implies that if g ∈ L2
loc(0,+∞),

then α′ ∈ L2(δ, T ) for all 0 < δ < T <∞.

Remark 7.2. (1) In the homogenous problem, there exists a finite
extinction time (see [3]). It would seem that g > 0 prevents
extinction in finite time, but this fact is not always true. For
instance, if g ∈ L∞(0,+∞) and ∥g∥∞ < N

r
, then choosing T

satisfying α0 +
(
∥g∥∞ − N

r

)
T = 0 we obtain α(t) = 0 for all

t ≥ T .
(2) By Theorem 6.2, if f ∈ L∞(0,+∞;W−1,∞(Ω)) is such that

its norm satisfies ∥f∥L∞(0,+∞;W−1,∞(Ω)) ≤ 1, then function α is
nonincreasing, that is,

α′(t) = −N
r

+ g(t) ≤ 0 , t > 0 .

This implies ∥g∥∞ ≤ N
r
.
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