

ViSta

Developing Statistical Objects

Forrest W. Young

October, 1996
Research Memorandum Number 96-1

CHAPEL HILL, N.C.
U.S.A. 27599-3270

THE L.L. THURSTONE

PSYCHOMETRIC LABORATORY

UNIVERSITY OF NORTH CAROLINA

.

ViSta

Developing Statistical Objects

Forrest W. Young

The L.L. Thurstone
Psychometric Laboratory
Universi ty of North Carol ina
Chapel H i l l NC 27599-3270

ViSta: Developing Statistical Objects
Copyright © 1996 by Forrest W. Young.
All rights reserved.

The correct reference for this document is:
Young, F.W. (1996) ViSta: Developing Statistical Objects. Research Memorandum
96-1. L.L.Thursone Psychometric Laboratory, University of North Carolina.
Chapel Hill, NC.

ViSta is available free of charge from:
www: http://forrest.psych.unc.edu/research/vista.html
ftp: ftp.psych.unc.edu/pub/forrest/vista

For more information contact the author at:

UNC Psychometrics
CB 3270 Davie Hall
Chapel Hill NC 27599-3270

Phone: 919-962-5038
e-mail: forrest@unc.edu
www: http://forrest.psych.unc.edu/

For ViSta version ß4.25 (October, 1996)
Printed October 28, 1996

ViSta: Developing
Statistical Objects

This monograph is designed to guide those who are programming new data or model
objects (statistical objects) for ViSta, the Visual Statistics system (Young, 1996).

The monograph overviews the inheritance structure of ViSta’s data and model object sys-
tems; discusses ViSta's global variables; presents details on the methods, functions and
messages that can be used with statistical objects; reviews the steps taken during the con-
struction of an instance of a model object; and presents a detailed example of how one of
ViSta’s model objects was developed.

This monograph assumes you are familiar with Lisp-Stat (Tierney, 1990).

2

3

ViSta: The Visual Statistics System

1 ViSta’s Statistical Object System

ViSta’s statistical object system is based on Lisp-Stat’s object-oriented program-
ming system. The statistical object system consists of prototype objects which have
methods (pieces of LispStat object-oriented code) and information designed with
statistical data analysis in mind. The prototype objects permit the instantiation of
the statistical objects which are represented on the WorkMap by icons. The objects
use the methods to send and receive messages that access and manipulate the infor-
mation. We discuss the statistical object system in this chapter.

ViSta’s prototype statistical objects fall into two major categories: prototype data
objects and prototype model objects. There are three different kinds of data proto-
types, each specialized for one kind of data — multivariate, matrix and table data.
There are several kinds of model prototypes, each specialized to one way of model-
ing data. Examples include the analysis of variance prototype, the two regression
prototypes, the univariate analysis prototype, etc.

The statistical prototypes are related to each other hierarchically to take advantage
of the Lisp-Stat object system’s inheritance feature. The hierarchical structure is
shown in Figure 1. Note that the model prototypes inherit from mv-model-object-
proto, an abstract model prototype which contains methods and information com-
mon to all model prototypes. It in turn inherits from mv-data-object-proto, which
contains methods and information used by all statistical objects.

mv-data-object-proto

tab-data-object-proto diss-data-object-proto

mv-model-object-proto

mmr-model-object-proto

pca-model-object-proto

corresp-proto

anova-model-object-proto

morals-model-object-proto

univar-model-object-proto

Figure 1: Statistical Object Prototype Hierarchy

4 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

2 Global Variables

ViSta defines a number of global variables — variables whose values are always
available for use. We present them in this section

One of the statistical objects is always the “current object”. The current object is
indicated in the workmap by the high-lighted icon. It is also always pointed to by
the global variable

current-object

, to which messages can be sent. The
current object can be changed by clicking on a new icon on the workmap, by choos-
ing a new object from the data or model menus, or by using the

setcd

 or

setcm

functions described in sections 3.2 and 4.1. The global variables

*current-
data*

 and

current-model

 are also discussed in those sections.

There are several global variables that point to special directories in your com-
puter’s file system. These are

startup-dir

, which points to the directory
containing the LispStat load module;

vista-dir-name

 whose value is the
directory containing the basic vista code and sub-directories. The variables

data-dir-name

,

help-dir-name

,

guide-dir-name

, and

example-dir-name

specify ViSta’s data, help, guidance and example direc-
tories.

In addition, there are global variables whose values point to various windows and
menus. These include

workmap

,

guidemap

,

expertmap

,

*obs-
window*

 (also referred to by

mat-window

),

var-window

,

*edit-
menu*

,

file-menu

,

command-menu

,

data-menu

,

*trans-
menu*

,

analyze-menu

 and

model-menu

. In addition,

vista

 points
to the vista system object, and

copyright

 points to the copyright message
window. Many of these are nil until used.

3 Data Objects

Data objects are used to define data used by ViSta. In this section we discuss the

data

 function for defining data objects, and the keywords which can be used with
the function. We then discuss data object types, the concept of the current data
object, and the messages which can be sent to an existing data object. Note that the

(load-data)

 function may be used to load data into ViSta from a ViSta datafile,
the

(open-data)

 function loads data into ViSta from a ViSta datafile and then
displays it as a datasheet, and the

(import-data)

 function imports data con-
tained in a text file. Each of these functions takes an optional string argument to
specify the name of the file containing the data. Thus, it is possible to load data
from the data directory, by using the global variable

data-dir-name

, with
the statement

(load-data (strcat *data-dir-name* "cars.lsp"))
These menu items are all discussed in Chapter 3.

Data Objects 5

ViSta: The Visual Statistics System

3.1 The Data Function

The several ways of creating data that we
discussed in section 3.3 of Chapter 3 of
Young (1996) all create data by using the

data

 function. This is an object-constructor
function which creates an instance of a data
object. It can create any of the three types of
data objects – multivariate, matrix or table
data objects. The specifics of the

data

 func-
tion for each type of data object are
explained in the each of the next three sub-
sections.

3.1.1 Multivariate Data

An example of the

data

 function being
used to create an instance of a multivariate
data object is shown in Figure 2. The

data

function has one initial required argument
and two required keyword arguments. The
initial required argument is a string that is
used to name the data. In the Figure, this is
“

HealthClub

”. Any characters may be used in this string, including spaces. In
addition to the name, you must also use the

:variables

and

 :data

key-
words, following each with a list of elements. The

:variables

keyword speci-
fies the names of the variables and (indirectly) the number of variables. It is
followed by a list of character strings which are the variable names. The

 :data

keyword

specifies the list of data values. If

n

 is the number of variables, the first

n

elements of the list are the values for the first observation (row) of the data, the next

n

elements are the values for the second observation, etc. The total number of ele-
ments of the data list must be an exact integer multiple of the number of variables.

There are several optional keywords which may be used with the

data

 function,
one of which, the

:title

 keyword, is shown in the example. This keyword is fol-
lowed by a character string to specify the data-object’s title, which is used in vari-
ous windows. When not specified, the data title is

Untitled Data Object

.
The

 :types

keyword, which is followed by a list of character strings, one for
each variable, specifies the type of each variable. The type may be “

category

”,
“

ordinal

”, or “

numeric

”.

If this keyword is not used, all variables are
assumed to be numeric. Finally, the

:labels keyword, which is followed by a
list of character strings, specifies the label for each observation (row of the data). If
not used, the observation labels are Obs0, Obs1, etc.

Figure 2: Data function for
multivariate data

6 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

3.1.2 Matrix Data

An example of a data
function for creating an
instance of a matrix
data object is shown in
Figure 3. A matrix data
object is a data object
whose data consist of
one or more matrices of
data. ViSta matrices are
not as general as those in
Lispstat: They must be
square, and the row and
columns must refer to
the same set of things,
which are named by the
:variables key-
word.

Matrix data objects are defined in exactly the same way as multivariate data objects,
except that the :matrices keyword must be used. This keyword, which is fol-
lowed by a list of character strings, specifies that the data are matrix data, and spec-
ifies the names (and, indirectly, the number) of the matrices. The :matrices
keyword is required for matrix data, and must not be used for other types of data.
The :shapes keyword, which is followed by a list of character strings, one for
each matrix, specifies the shape of each matrix. The shapes may be “symmet-
ric”, or “asymmetric”. If shapes are not specified, then all matrices are
assumed to be symmetric. In the example shown in Figure 3, both the :shapes
and the :types keywords are not needed, because they both specify characteris-
tics of the data which are assumed by default. If the data consists of several matri-
ces, then the :data list consists of all the values for the first matrix, followed by
all the values for the second matrix, etc.

3.1.3 Table Data
Instances of table data objects are defined in the same way as previous data objects
except that only one variable can be specified by the :variables keyword (i.e.,
the data must be univariate), the :data keyword must be followed by a list of lists
(rather than a list of values), and the :classes and :ways keywords must be
used.

Figure 3: Data function to define matrix data.

Data Objects 7

ViSta: The Visual Statistics System

An example is shown
in Figure 4. The
:ways keyword is
followed by a list of
character strings that
are used to name the
ways of the data. In the
example the ways are
“Lab” and “Sam-
ple”. The arguments
of the :classes
keyword specify the
names and the number of levels of each way of the table. For one-way data the
:classes keyword is followed by a list of character strings. For multi-way data it
is followed by a list of lists of character strings. The number of lists must corre-
spond to the number of ways. In the two-way example shown in Figure 4, the
:classes keyword is followed by a list of two lists. Since the first list has six ele-
ments and the second list has two, these data form a 6x2 table. Finally, the :data
keyword must be followed by a list of lists of values. Each sub-list is a cell of the
design. The list of lists allows varying numbers of data-elements per cell. In the
example, there are 4 elements in each list. Thus, these data are balanced (same
number of observations in each cell) 6x2 two-way data that are replicated 4 times.

A second example appears in Figure 5. In this example the :classes list has only
one list of four classes, hence the data are one way, and the way has four levels.
Note that the :ways keyword specifies one way. The data consist of four sub-lists
of different lengths. Since each sublist specifies all of the multiple observations for
each cell of the table, these data are unbalanced.

Figure 4: Data function to define two-way table data.

Figure 5: Data function for
one-way unbalanced table data

8 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

3.2 Current Data and Data Object Names

One of the data objects is always the “current” data. The current data is indicated in
the data menu by the checked menu item. It is also be indicated in the workmap as
the high-lighted data icon, if one is high-lighted. The current data’s object identifi-
cation can always be found in the global variable *current-data*, to which
messages can always be sent. The current data can be changed by clicking on a new
data icon, or by choosing a new item of the data menu.

The data function defines a variable whose name is the name of the data object,
and whose value is the object’s identification information. Using this name, the cur-
rent data can be changed from the keyboard by using the setcd (set current data)
function. For example, if there is a data object named cars, you make it the cur-
rent data with (setcd cars).

3.3 Data Object Messages and Functions

Messages can be sent to data objects. The messages can be sent to *current-
data* or to the name of a specific data object. For example, the message (send
current-data :data) returns the list of data values for the current data. If
there is a data object named cars, you could type (send cars :data) to see
a listing of its data values, whether or not it is the current data.

Slot Information Messages: There is a group of messages1 which can be used to
obtain information about the data object. For example (send cars :title)
causes the data-object to tell you its title. In addition to the :title message, mes-
sages in this group are :nobs, which returns the number of observations in the
data object; :nvar, which returns the number of variables in the object; :vari-
ables, which returns the names of the variables; :labels, which returns the
labels of the observations; :types, which returns the type of each variable;
:data, which returns the data as a list; :data-matrix, which returns the data
as a matrix; and :name which returns the name of the data object. The messages
:obs-states and :var-states return the state of each observation or vari-
able in the observation window (the states can be normal, selected or invisible). For
matrix data, the message :matrices can be used to obtain the names of the
matrices, and you can use the messages :nmat, :mat-states and :shapes
(to see whether the matrices are symmetric or asymmetric). For table data, you can
use the messages :nways, :nclasses, :ncells, :cellfreqs, :classes,
:source-names, :level-names; and :indicator-matrices.

1. These messages are slot-accessor messages, and therefore can also be used to change the
information in data object slots. This should not be done since ViSta will not work correctly
if the information is changed.

Data Objects 9

ViSta: The Visual Statistics System

Data Menu Item Messages and Functions: There is another group of messages
which perform the same actions as those performed by items of the data menu. The
name of each message corresponds to the name of a menu item. For example, the
data menu’s Save Data menu item corresponds to (send *current-data*
:save-data). The messages include :save-data, which saves data into a
ViSta datafile specified in a dialog-box; and :create-data, which creates a new
data object from the active portion of the current data. These two messages can be
followed by a string argument to name the file or data object. If the string is not
specified, a dialog box is presented. The message :browse-data shows the
datasheet; :edit-data shows the datasheet and enables editing of the data;
:report-data creates a report (listing) of the data; :list-variables
shows a window with a list of the variables in the current data (you can also use
:list-vars or :list-var); and :list-observations (or :list-
obs) shows a window with a list of the observations in the current data. For matrix
data you may use :list-matrices (or :list-mats or :list-mat) to
show a window with a list of the matrices in the data. For table data you may use
:list-cells.

Each message in the previous paragraph also has a short form, called a generic
function. For example, (save-data) is short for (send *current-data*
:save-data). The long-form message can be used to send messages to a spe-
cifically named data object that is not the current data. The short-form generic func-
tion always sends the message to the current data.

There are four menu items which have a short-form that effects the *current-
data*, but do not have a long-form message that can be sent to data objects that
are not current. These are (visualize-data), which visualizes the active data,
(merge-variables), which merges variables using the active data in the cur-
rent data and the active data in the previously current data; (merge-observa-
tions), which merges observations using the active data in the current data and
the previously current data, and (merge-matrices), which merges matrices
using the active data in the current and previously current data (both have to be
matrix data). The merge functions take an optional argument which is a character
string that is used to name the new data object. If no character string is present, a
dialog box is presented to obtain the name.

You can also use the :summarize-data message or the (summarize-data)
function to see a summary report (listing of summary statistics) of the data. The
message and function each have five keyword arguments, each of which must be
followed with t or nil (the default). The arguments are :moments, :quar-
tiles, :ranges, :correlations, :covariances, and :dialog. The
last argument determines if a dialog box is presented to obtain the desired types of
statistics. The others determine which statistics are reported if no dialog is shown.

10 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Active Data Messages: There are numerous messages which deal with the “active”
data: i.e., the subset of the current data which is specified by selections in the win-
dows which list observations, variables and matrices. The active data consists of the
subset of data elements whose variable (or matrix) names and observation labels
which appear in the "Vars" (or “Mats”) and “Obs” windows, or, if any names or
labels are selected in a window, those which are selected as well as visible. The
concept of active data does not apply to table data, which may not be subsetted.

The messages :select-variables, and :select-observations, and
the short-form functions (select-variables) and (select-observa-
tions) can be used to select the variables or observations which are to be active.
Similarly, with matrix data you may select matrices with the message :select-
matrices or the function (select-matrices). Each message or function
must be followed by a list of strings specifying the names of the variables or matri-
ces or the labels of the observations that are to be activated. For example, you can
select all of the variables with

(select-variables (send *current-data* :variables)).

There are several messages that provide information about the selected subset of
data. Many of these messages take an argument that is a list of symbols (not strings)
that specifies the variable “type”. The type symbols are labels, category,
ordinal, numeric or all (in upper, lower or mixed-case). The messages using
these symbols return information about the data elements whose active variables
have types which match the specified types. For example, you could type

(send cars :active-data ‘(ordinal category))
to see a list of the data elements whose variables are active and are either ordinal or
categorical. The messages that use type-symbols are :active-data (to get a
list of the active portion of the data), :active-data-matrix (to get a matrix
of the active portion of the data), :active-nvar (to find out how many active
variables there are), :active-variables (to obtain a list of the names of the
active variables), and :active-types (to obtain a list of the types of the active
variables). In addition, the messages :active-matrices, :active-
shapes, and :active-nmat take an argument that is a list of the shape symbols
all, symmetric, and asymmetric. Finally, there are two active data messages
:active-labels and :active-nobs do not have an argument. These mes-
sages can be used to get a list of the labels of the active observations, or the number
of active observations. Note that there are no short-form functions for any of the
active data messages mentioned in this paragraph.

Miscellaneous Messages: The message :variable reports values of the variable
whose name is the argument of the message. The messages :means, :stan-
dard-deviations, :variances, :skewnesses, :kurtoses,
:minimums, :medians, :maximums, :ranges:, :mid-ranges,
:interquartile-ranges, and covariance-matrix report simple statis-
tics of the active data. There is no short-form function for these messages.

Model Objects 11

ViSta: The Visual Statistics System

4 Model Objects

Model objects are used to define models in ViSta. There are several functions for
constructing instances of model objects, one function for each of the model object
prototypes given in Figure 1. As shown in the figure, each prototype inherits meth-
ods and information from mv-model-object-proto, the general model object
prototype that contains methods and information useful to all model objects. This
prototype in turn inherits all of the methods and information in the mv-data-
object-proto that were discussed in the previous section. Thus, the messages
discussed in section 3 can be sent to model objects as well as to data objects.

4.1 Current Model and Model Object Names

One of the models is always the “current” model. The model’s object identification
is in the global variable *current-model*, to which messages can always be
sent. The current model is indicated in the model menu by the checked menu item,
and is shown in the workmap when a model icon is the high-lighted icon. The cur-
rent model can be changed by clicking on a new model icon or choosing a new
menu item in the model menu. Every model has a name which appears below the
model’s icon and in the model menu. The name can be used in the setcm function
to change the current model from the keyboard. If there is a model named pca-
cars, you can type (setcm pca-cars) to change the current model to pca-
cars. You can also get information about a model by sending messages to any
model. For example, you could type (send pca-cars :title).

4.2 ViSta Model Object Messages and Methods

As noted above, all model objects have many methods inherited from mv-data-
object-proto and from mv-model-object-proto. However, some
methods that are needed by all model objects are not inherited from the ancestor
objects. These must be uniquely defined for each individual model object so that
their actions are appropriate to the particular model. These methods are called ViSta
model object methods. These methods are:

1. :options — shows a dialog box to obtain values for the options of the analy-
sis method. It places options values in slots that are unique to the model object.

2. :analysis — performs the analysis. It reads the information in the options
slots and places results in analysis slots that are unique to the model object.

3. :save-model-template — used by the Save Model menu item.

4. :create-data — used by the Create Data menu item.

5. :report-model — used by the Report Model menu item.

6. :visualize-model — used by the Visualize Model menu item.

12 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

If you are planning on writing your own ViSta model object, you will have to write
these methods yourself, as well as some additional methods and functions. We
show an example of how this is done in section 5.

4.3 Steps Taken During Object Construction

When the user requests a data analysis (by using the Analysis menu, a toolbar but-
ton, a script, or by typing in the listener) ViSta takes a series of actions. These
actions begin with the invocation of the model’s constructor function.

The model’s constructor function first checks on the validity of its argument values.
If they are valid it then issues the :new message to the prototype model object.
This message must be followed by the following set of arguments: The first several
arguments are the parameters specific to the particular model (such as covari-
ances for the principal components model). Then, there must be five arguments:
1) an integer which specifies the number of the model’s method-button; 2) the
object identification information for the data object being analyzed; 3) the model’s
title; 4) the model’s name; and 5) a logical value indicating whether a dialog box is
to be presented to obtain parameter values.

The constructor function’s :new message invokes the prototype’s :isnew
method. The first few arguments of this method correspond to the arguments that
were used in the constructor function’s :new message which are unique to the
model. Then (&rest args can be used for the last several arguments. This
method creates a new model instance. Then, the values of the arguments that are
unique to the model must be saved in the instance’s slots. The method must then
apply call-next-method to args. This calls mv-model-object-
proto’s :isnew method with the arguments that it needs. Then mv-model-
object-proto’s :isnew method takes the following actions:

1. The mv-data-object-proto’s :isnew method is called via call-
next-method with arguments that are the model’s data, variable list, title,
observation labels, variable types and object name.

2. The model’s analysis icon is added to the workmap when the :copy-tool-
icon message is sent to the *toolbox*.

3. The mv-data-object-proto’s dialog slot is set to t or nil, depending
on the value of dialog that was used in the constructor function. This deter-
mines whether a dialog box will be presented.

4. The model’s :options method is used. If dialog is nil, it does nothing. If
it is true, the :options method shows the dialog to get values for the
options, which may or may not be different than those gotten from the construc-
tor function. The :options method then puts these values, whatever they are,
in the model object’s slots, ignoring the values that are already there. The
:options method returns nil when it is not used right, or when it is can-

An Example: The Principal Components Model Object 13

ViSta: The Visual Statistics System

celed, so that the analysis will be halted. Otherwise, the value returned by the
:options method is ignored.

5. Now mv-model-object-proto determines whether to proceed with the
analysis. It proceeds when the :options method returned a non-nil value.

6. The mv-data-object-proto’s :data-object method saves the object
identification information about the data that are being analyzed in a slot that
exists in mv-model-object-proto.

7. The :analysis method is invoked by mv-model-object-proto. The
:analysis method uses whatever is in the model object’s slots to carry out
the analysis. Note that the :analysis method doesn’t directly use the dialog
results, rather, it uses information that has been put into slots by the dialog.
More generally, none of the ViSta system methods use the results of any other
method directly. All communication between methods is done via slots.

8. The mv-data-object-proto’s :new-object method updates the sys-
tem to recognize the new model object. It adds a model icon to the workmap
and a menu item to the model menu. The *current-model* and *cur-
rent-object* global variables are updated to point to the new model. The
variable and observation windows are cleared. A variable is created with the
name of the new model and value of the model’s object identification.

5 An Example:
The Principal Components Model Object

In this section we show the steps that were taken to write ViSta’s Principal Compo-
nents model object prototype. This example can be followed by the developer who
wishes to develop a new model object, as the steps are the same for all objects. The
code shown here is from the PCAMOB.LSP file. Note that the steps given here
appear in the order that they were written, not in the order that they are used by the
system.

Step 1: Define the model prototype: The first step in defining a new model object
is to define the model’s prototype object. The defproto statement for the Princi-
pal Components model object is:

(defproto pca-model-object-proto
'(scores coefs eigenvalues svd corr)

 () mv-model-object-proto)

The slots scores, coefs, eigenvalues, svd, and corr hold information
specific to this model. The prototype inherits from mv-model-object-proto.

14 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Step 2: Define slot-accessor methods. There must be a slot accessor method for
each slot specified in the defproto function. These methods are:

(defmeth pca-model-object-proto :scores
(&optional (values nil set))

 (if set (setf (slot-value 'scores) values))
 (slot-value 'scores))

(defmeth pca-model-object-proto :coefs
(&optional (values nil set))

 (if set (setf (slot-value 'coefs) values))
 (slot-value 'coefs))

(defmeth pca-model-object-proto :eigenvalues
(&optional (values nil set))

 (if set (setf (slot-value 'eigenvalues) values))
 (slot-value 'eigenvalues))

(defmeth pca-model-object-proto :svd
(&optional (structure nil set))

 (if set (setf (slot-value 'svd) structure))
 (slot-value 'svd))
(defmeth pca-model-object-proto :corr

(&optional (val nil set))
 (if set (setf (slot-value 'corr) val))
 (slot-value 'corr))

The :scores and :coefs slots will contain matrices of the principal component
scores and coefficients, and the :eigenvalues slot will contain a vector of
eigenvalues. The :svd slot will contain the structure resulting from the sv-
decomp function (which is redundant with the information in the first three slots,
but which facilitates retrieving the information). The corr slot will contain t or
nil to indicate whether correlations or covariances are to be computed from the
multivariate data.

Step 3: Define ViSta system methods. As indicated in section 4.2, each model pro-
totype must have certain methods for ViSta to work properly. These methods must
be named options and analysis (which are used by the isnew method of
mv-model-object-proto), and save-model-template, create-
data, report-model and visualize-model (all used by the menu sys-
tem). We discuss these methods here, and indicate how similar methods would be
defined for other model objects.

An Example: The Principal Components Model Object 15

ViSta: The Visual Statistics System

Options: The options method for the principal components prototype is given
below.

(defmeth pca-model-object-proto :options ()
 (when (send self :dialog)
 (let ((result nil)
 (dialog-value (choose-item-dialog
 "Analysis Options:"
 '("Analyze Covariances"
 "Analyze Correlations") :initial 1)))
 (when dialog-value
 (when (= 1 dialog-value) (setf result t))
 (send self :corr result))
 dialog-value)))

This method first checks the value of the dialog slot to see if a dialog is to be pre-
sented. This action should always be taken first since when a script file job is in
progress, or when a model is being loaded, the dialog should not be presented. The
model’s constructor function should set the value of dialog to nil by default, as it
does in this example. When appropriate, the dialog is then presented to see if the
analysis is to be performed on correlations or covariances. The dialog sets the value
of the corr slot for later use by the :analysis method. Note that the results of
the dialog are communicated to the analysis method through the slot. This should
always be this way for all model prototypes. Then, the value that is returned by
choose-item-dialog (which is nil when the dialog is canceled) is used as
the value returned by :options, so that the analysis can be canceled when the
dialog has been canceled. The :options method should always return nil in
this situation for all models. Indeed, it should return nil whenever the options dia-
log is not properly used. For an example of a more complex dialog, look at the code
for the multivariate multiple regression options dialog.

16 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Analysis: The analysis method for the principal components proto is:

(defmeth pca-model-object-proto :analysis ()
 (let* ((left-alpha 1)
 (data (send self :data-matrix))
 (nobs (select (array-dimensions data) 0))
 (prepped-data
 (if (send self :corr)
 (/ (normalize (center data) 1)
 (sqrt (1- nobs)))
 (/ (center data) (sqrt (1- nobs)))))
 (svd (sv-decomp2 prepped-data))
 (svd (if (< (sum (col (select svd 2) 0)) 0)
 (list
 (* -1 (select svd 0))
 (select svd 1)
 (* -1 (select svd 2))
 (select svd 3))
 svd))
 (scores (matmult
 (select svd 0)
 (diagonal (^ (select svd 1) left-alpha))))
 (eigenvalues (^ (select svd 1) 2))
 (coefs (matmult
 (select svd 2)
 (diagonal (^ (select svd 1)(1- left-alpha)))))
)
 (send self :svd svd)
 (send self :coefs coefs)
 (send self :scores scores)
 (send self :eigenvalues eigenvalues)
 t))

The details of this method are not important for this example, other than to note that
all of the analysis results (i.e., svd, coefs, scores and eigenvalues) are
computed inside a let* statement (so that they are only locally defined) and then
saved for later use by placing them in appropriate slots. The method communicates
its results indirectly through slots, not directly by returning them. The method
returns t.

Save-Model-Template: Every model object needs to have a method named
save-model-template, a method which is used by the model menu’s save-
model method. The method contains a template of the code that creates the model
object. The method must always have as an argument the object identification
information for the data object used by the model, since the data must be saved
along with the model. The mv-model-object-proto’s :save-model
method takes information placed into the template (as explained below) and places
it in a file. When the file is loaded back into ViSta by (load-model), a principal
components analysis is performed on the data that were also saved in the file.

An Example: The Principal Components Model Object 17

ViSta: The Visual Statistics System

For principal components, the method is:

(defmeth pca-model-object-proto :save-model-template
 (data-object)
 `(principal-components
 :title ,(send self :title)
 :name ,(send self :name)
 :dialog nil
 :covariances ,(not (send self :corr))
 :data (data ,(send data-object :name)
 :title ,(send data-object :title)
 :variables ',(send self :variables)
 :types ',(send self :types)
 :labels ',(send self :labels)
 :data ',(send self :data))))

Note the unusual backquote syntax (which is explained briefly by Tierney on pp. 98
and 120, as well as on page 197 in the discussion of saving objects). To be clear,
the character in front of `(principal-components is a backquote. This
character in front of a list causes all elements of the list to be quoted, except those
preceded by commas, which are treated in the normal fashion. Note that the data
for the principal components function come from the model object via the various
(send self functions. However, the data’s name and title must come from the
original data object that was analyzed.

The mv-model-object-proto’s :save-model method places the prin-
cipal-components function, with the functions following commas being
replaced with their results, in a file. When the file is loaded back into ViSta by
(load-model), a principal components analysis is performed on the data that
were also saved in the file.

Create-Data: For principal components, just as for any other model object, the
method which creates output data objects must work in such a way that it can be
used by the menus, can be typed at the keyboard, or can be contained in a script file.
The method is shown below.

There are several things to point out about this method. First, note that the method
has optional key-word arguments which determine whether the dialog box is dis-
played, and which determine which output data objects will be created when the
dialog box is not displayed. These optional arguments permit the menu system to
generate:
(send *current-model* :create-data :dialog t).
This causes the dialog box to be shown. On the other hand, these arguments permit
a script to contain the statement:
(send *current-model* :create-data :scores t :coefs nil)
which creates one output data object of scores without the user having to intervene
by responding to a dialog box. For the system to work in these ways, any create-
data method for another model object must have a similar construction.

18 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Also, note the statement, near the beginning of the function:
(if (not (eq current-object self)) (setcm self)) .
This statement must be used at the beginning of the method to assure that the cur-
rent model is properly selected. Finally, (not (not desires)) causes the
method to return nil when the dialog is canceled, and t when it is not canceled.

(defmeth pca-model-object-proto :create-data
 (&key (dialog nil) (scores t) (coefs t) (input nil))
 (if (not (eq current-object self)) (setcm self))
 (let ((creator (send *desktop* :selected-icon))
 (desires (list (list
 (if scores 0)(if coefs 1)(if input 2)))))
 (if dialog
 (setf desires
 (choose-subset-dialog

 "Choose Desired Data Objects"
 '("Component Scores"
 "Component Coefficients"
 "Analyzed Input Data")
 :initial (select desires 0))))
 (when desires
 (when (member '0 (select desires 0))
 (send *current-model*

 :pca-scores-data-object creator))
 (when (member '1 (select desires 0))
 (send *current-model*

 :pca-coefs-data-object creator))
 (when (member '2 (select desires 0))
 (send *current-model*

 :create-input-data-object
 "PCA" creator)))
 (not (not desires))))

This method calls three other methods which actually create the data objects. One
of these (:create-input-data-object) is already defined by mv-model-
object-proto. It creates a copy of the input data, taking into consideration
which variables are selected and active. The other two methods are specific to the
principal components model. One of these is shown here (they are nearly identical):

(defmeth pca-model-object-proto)
 :pca-scores-data-object (creator)
 (data (strcat "Scores-" (send self :name))
 :created creator
 :title (strcat "PCA Scores for " (send self :title))
 :data (combine (send self :scores))
 :variables
 (mapcar #'(lambda (x) (format nil "PC~a" x))
 (iseq (min (send self :nvar) (send self :nobs))))
 :labels (send self :labels)
 :types (repeat "Numeric"
 (min (send self :nvar) (send self :nobs)))))

An Example: The Principal Components Model Object 19

ViSta: The Visual Statistics System

Note that the pca-scores-data-object method consists entirely of a data
function to create a new data object (this function was discussed earlier in this
chapter). The arguments of the function were described earlier in the chapter.
except for :creator. This argument specifies which workmap icon object repre-
sents the object which is creating the data object, so it’s argument must be the
object identification of the appropriate icon. This information is used to construct
the workmap.

Various functions are used to create the values for the arguments of the function.
The name is created by concatenating a meaningful prefix (in this case “Scores-”)
with the model object’s name. The title is created by concatenating a similar prefix
with the model object’s title. The data consist of a list of scores, the combine func-
tion being used to convert the scores matrix to a list. The variable names are a com-
bination of the string “PC” and a sequence number. The labels and types are self-
explanatory. If this method is copied for new model objects, then these new model
objects will produce data objects that conform with other ViSta data objects.

Visualize-Model: We do not present the visualize-model method here
because it is too long. The important aspect of it for those constructing the method
for other models is that it has no arguments, and is used by the menu-system and
from the keyboard by the statement

(send *current-model* :visualize-model).

Report-model: The report-model method for the principal components proto-
type is shown below. This function is used by the menu-system, as well as by the
user from either the keyboard or from script files, by the statement:

(send *current-model* :report-model).

The method uses three special functions which ensure that the report works cor-
rectly under the various operating systems, and that it’s appearance is consistent
between models. These functions are report-header, display-string,
and print-matrix-to-window. In constructing other reporting methods, you
should use these functions in place of standard printing functions since they write to
the Macintosh text window or to the MS-Windows or X-Windows listener in a con-
sistent fashion. The statement

(report-header (send self :title))
determines how and where the report should be printed, which varies from one
operating system to another. It displays the title and returns a value which identifies
the place that the information should be written (a text window or the listener). In
the example, the variable w gets this value. The display-string and print-
matrix-to-window functions are used to report the desired information in the
desired way. The display-string function takes a string as its first argument,
and w, the window identification, as its second argument. The print-matrix-
to-window function has two required arguments: The first is the matrix which is
to be printed, the second is w, the place it is to be printed. This function also has

20 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

two optional arguments. One is :labels, which must be followed by a list of
strings. These are used to label the rows of the matrix. The other is :decimals,
which must be followed by an integer. The integer determines the number of deci-
mals that are printed following the decimal point.

Finally, note that the method contains the statement
(if (not (eq current-object self)) (setcm self))

to ensure that the proper object is reported.

(defmeth pca-model-object-proto :report
 (&key (dialog nil))
 (if (not (eq *current-object* self)) (setcm self))
 (let* ((w (report-header (send self :title)))
 (labels (send self :labels))
 (vars (send self :variables))
 (scores (send self :scores))
 (coefs (transpose (send self :coefs)))
 (eigenvalues (send self :eigenvalues))
 (proportions (/ eigenvalues (sum eigenvalues)))
 (fitmat (transpose
 (matrix (list 3 (min (send self :nobs)
 (send self :nvar)))
 (combine eigenvalues proportions
 (cumsum proportions)))))
 (lc-names
 (mapcar #'(lambda (x) (format nil "PC~a" x))
 (iseq (send current-model :nvar)))))
 (display-string
 (format nil "Principal Components Analysis of") w)
 (if (send self :corr)
 (display-string (format nil " Correlations~2%") w)
 (display-string (format nil " Covariances~2%") w))
 (display-string
 (format nil "Model: ~a~2%" (send self :name)) w)
 (display-string
 (format nil "Variable Names: ~a~2%" vars) w)
 (display-string
 (format nil "Fit Indices for each Component:~
 ~2% Eigenvalue Proportion ~
 Cum Propor Component~%") w)
 (print-matrix-to-window fitmat w
 :labels lc-names :decimals 5)
 (display-string
 (format nil "~%Coefficients (EigenVectors):~%") w)
 (print-matrix-to-window coefs w
 :labels lc-names :decimals 3)
 (display-string
 (format nil "~%Component Scores:~%") w)
 (print-matrix-to-window scores w
 :labels labels :decimals 3)
 w))

An Example: The Principal Components Model Object 21

ViSta: The Visual Statistics System

Step 4: Define the :isnew method: The next step is to define the model’s
:isnew method, the method which is invoked by the :new message in the
model’s constructor function. For principal components this method is:

(defmeth pca-model-object-proto :isnew (corr &rest args)
 (cond
 ((> (send current-data :active-nvar '(numeric))
 (send current-data :active-nobs))
 (error-message
 (format nil "Note: Cannot analyze data ~
 with fewer active observations (~d) ~
 than active numeric variables (~d)."
 (send current-data :active-nobs)
 (send current-data :active-nvar '(numeric))))
 (send *toolbox* :reset-button 6))
 ((< (send current-data :active-nvar '(numeric)) 2)
 (error-message
 (format nil "Cannot analyze data ~
 that has less than two active ~
 numeric variables."))
 (send *toolbox* :reset-button 6))
 (t
 (send self :model-abbrev "PCA")
 (send self :corr corr)
 (apply #'call-next-method args))))

First, the :isnew method creates a new instance of the model. This is done by the
Lisp-Stat object system, there are no statements in the :isnew method that corre-
spond to this action. The first thing that explicitly takes places in the :isnew
method is that the data are checked to see if there are more active variables than
active observations or less than two active numeric variables. If so, an error mes-
sage is issued, the appropriate method button (number 6) is reset, and the analysis
does not take place. Note that the (error-message) function displays the mes-
sage in a dialog box. If there are at least as many observations as variables, the
model abbreviation is set to “PCA”, and the value (t or nil) of the corr argu-
ment is stored in the corr slot. Then call-next-method is applied to each of
the remaining arguments, calling the isnew method for mv-model-object-
proto.

This general flow should be followed in any other model’s :isnew method: First,
check on the validity of argument values. If they are not valid, use (error-mes-
sage) to report an error. Then reset the button. If they are valid, store the model
abbreviation and argument values in their slots. Then, apply call-next-
method to the remaining arguments

22 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Step 5: Define the Model’s Constructor function: You must create a constructor
function to construct an instance of the model object prototype. This is the function
that is actually used to analyze the data. It is used by the menu system, by the tool-
bar, by the data analyst via the keyboard and by script files. The constructor func-
tion for principal components is:

(defun principal-components
 (&key
 (data *current-data*)
 (title "Principal Components")
 (name nil)
 (dialog nil)
 (covariances nil))
 (if (not (eq *current-object* data)) (setcd data))
 (send pca-model-object-proto
 :new (not covariances) 6 data title name dialog))

This function uses keyword arguments. The defaults are such that if the analyst
types the statement (principal-components) the analysis will be performed
on correlations computed from the active numeric variables in the current data
object. The dialog box will not be presented. The analysis menu generates the
statement (principal-components :dialog t), so that the dialog box is
presented to see if the user wishes to perform the analysis on correlations or covari-
ances.

The constructor functions for other models should be similar to this one. Since all
other constructor functions in ViSta use keyword arguments, it is recommended that
new models also have keyword arguments. The first four keywords must be used
with all models as they appear in the example since they are processed by mv-
model-object-proto. Of course, the default value of the title should be
replaced with appropriate strings to identify the model. A default value for the name
keyword is automatically constructed by concatenating the three-letter model
abbreviation with the name of the data. The dialog keyword should also be used
as is, with the default value nil. The covariances keyword is specific to the
components model. For other models it would be replaced with other keywords
specific to the other models. The send statement at the end of the constructor func-
tion should appear as it does here for other models, except for the presence of (not
covariances), which must be replaced by arguments corresponding to the key-
words which are specific to the model. The value 6 corresponds to the number of
the tool icon. Consult the author for how this is changed for other models.2

2. This feature will be modified in the near future. In the meantime, it is suggested that the
number 0 will suffice, although this currently causes the analysis icon to be named “Help”.

An Example: The Principal Components Model Object 23

ViSta: The Visual Statistics System

Step 6: Define the Analysis Menu Item and Button:3 Code to create a new item
for the method menu must be added to the menus.lsp file. See how this is done
for existing menu items in that file to determine how a new item is created. For
principal components the statement is:

(setf prin-model-menu-item
(send menu-item-proto :new "Principal Components"

:action #'(lambda ()
 (principal-components :dialog t))

:enabled nil))
You must then must add the name of the model item (prin-model-menu-
item, in this case) to the list of menu item names associated with the (send
tools-menu :append items statement that appears in the middle of the
menus.lsp file.

In order to have the menu item enable and disable according to the type of the cur-
rent data object, you must modify the setcd function in the dataobj.lsp file.
For principal components, which is appropriate to multivariate data, but not to dis-
similarity and table data, the statement (send prin-model-menu-item
:enabled t) was added to the portion of setcd’s cond function that is true
for multivariate data, and (send prin-model-menu-item :enabled
nil) was added to the portions that are nil for multivariate data.

In order to have the method’s tool-bar button enable and disable according to the
type of the current data object, you must further modify the setcd function in the
dataobj.lsp file. For principal components (whose button is number 6) the
statement (send (select tools 6) :icon-state “normal”) was
added to the portion of setcd’s cond function that is true for multivariate data,
and (send (select tools 6) :icon-state “gray”) was added to
the portions that are nil for multivariate data. A method for adding new method but-
tons has not yet been developed, thus, if your new method does not correspond to
an unused button, it cannot yet be represented by a button.

3. An alternative way of doing this, which is simpler and more general, needs to be worked
out. In the meantime, please consult with the author if necessary.

24 ViSta: Developing Statistical Objects

ViSta: The Visual Statistics System

Step 7: On Demand Code Loading Feature.4 The code for a model-object is not
loaded until the first time that an instance of the object prototype needs to be con-
structed. Usually, this is when the object’s method menu or method button is used.
This delayed, on demand, code loading feature is created by the loading functions
that appear at the end of the modelobj.lsp file. The loading function for princi-
pal components is:

(defun principal-components
 (&key
 (data *current-data*)
 (title "Principal Components")
 (name nil)
 (dialog nil)
 (covariances nil))
 (load (strcat *vista-dir-name* "pcamob"))
 (principal-components
 :data data
 :title title
 :name name
 :dialog dialog
 :covariances covariances))
Notice that the loading function has exactly the same name, argument list and
default values as the constructor function. This must be true for the loading func-
tion for every model. The body of the loading function must always consist of two
statements.The first uses the load function to load the desired model object file.
This file should be located with all other ViSta files, and is accessed by concatenat-
ing *vista-dir-name* (whose value is the directory path) with the name of
the file (pcamob, in this case). The second statement is the constructor function
which constructs the model object. All options must be explicitly specified, and
they must be given values obtained from the argument list of the loading function.

6 References

Tierney, L. (1990) Lisp-Stat: An Object-Oriented Environment for Statistical
Computing & Dynamic Graphics. Addison-Wesley, Reading, Massachusetts.

Young, F.W. (1996) Vista:The Visual Statistics System. Research Memorandum
94-1(b). L.L. Thurstone Psychometric Laboratory, Univ. N. Carolina.

4. This feature will probably be changed to take advantage of the autoload feature.

