(DiSta

Developing Statistical Objects

Forrest W. Young

October, 1996
Research Memorandum Number 96-1

THE L.L. THURSTONE

CHAPEL HILL, N.C.
PSYCHOMETRIC LABORATORY U.S.A. 27599-3270
UNIVERSITY OF NORTH CAROLINA







1Sta

eveloping Statistical (Jbjects

Forrest W. Young

The L.L. Thurstone
Psychometric Laboratory
University of North Carolina
Chapel Hill NC 27599-3270



ViSta: Developing Statistical Objects
Copyright © 1996 by Forrest W. Young.
All rights reserved.

The correct reference for this document is:

Young, F.W. (1996) ViSta: Developing Statistical Objects. Research Memorandum
96-1. L.L.Thursone Psychometric Laboratory, University of North Carolina.
Chapel Hill, NC.

ViStais available free of charge from:
www: http://forrest.psych.unc.edu/research/vista html
ftp: ftp.psych.unc.edu/pub/forrest/vista

For more information contact the author at:

UNC Psychometrics
CB 3270 Davie Hall
Chapel Hill NC 27599-3270

Phone: 919-962-5038
e-mail: forrest@unc.edu
www: http://forrest.psych.unc.edu/

For ViSta version 134.25 (October, 1996)
Printed October 28, 1996



(DiSta: )eveloping
Statistical (Jbjects

This monograph is designed to guide those who are programming new data or model
objects (statistical objects) for ViSta, the Visual Statistics system (Young, 1996).

The monograph overviews the inheritance structure of ViSta's data and model object sys-
tems; discusses ViStas global variables, presents details on the methods, functions and
messages that can be used with statistical objects; reviews the steps taken during the con-
struction of an instance of a model object; and presents a detailed example of how one of
ViSta's model objects was developed.

This monograph assumes you are familiar with Lisp-Stat (Tierney, 1990).






1 ViSta’'s Statistical Object System

ViSta's statistical object system is based on Lisp-Stat’s object-oriented program-
ming system. The statistical object system consists of prototype objects which have
methods (pieces of LispStat object-oriented code) and information designed with
statistical data analysis in mind. The prototype objects permit the instantiation of
the statistical objects which are represented on the WorkMap by icons. The objects
use the methods to send and receive messages that access and manipulate the infor-
mation. We discuss the statistical object system in this chapter.

ViSta's prototype statistical objects fall into two major categories: prototype data
objects and prototype model objects. There are three different kinds of data proto-
types, each specialized for one kind of data— multivariate, matrix and table data.
There are several kinds of model prototypes, each specialized to one way of model-
ing data. Examples include the analysis of variance prototype, the two regression
prototypes, the univariate analysis prototype, etc.

The statistical prototypes are related to each other hierarchically to take advantage
of the Lisp-Stat object system’s inheritance feature. The hierarchical structure is
shown in Figure 1. Note that the model prototypes inherit from mv-model-object-
proto, an abstract model prototype which contains methods and information com-
mon to all model prototypes. It in turn inherits from mv-data-object-proto, which
contains methods and information used by all statistical objects.

| mv-data-object-proto |

tab-data-object-proto | | diss-data-object-proto

| mv-model-obj ect—proto|

| anova-model-object-proto | | pca-modei-object-proto |
| mmr-model -object-proto | morals-model -object-proto |
A 4
| corresp-proto | [ univar-model-object-proto |

Figure 1: Statistical Object Prototype Hierarchy

ViSta: The Visua Statistics System



4 ViSta: Developing Statistical Objects

2 Global Variables

ViSta defines a number of global variables — variables whose values are aways
available for use. We present them in this section

One of the statistical objects is aways the “current object”. The current object is
indicated in the workmap by the high-lighted icon. It is aso always pointed to by
the global variable * cur r ent - obj ect *, to which messages can be sent. The
current object can be changed by clicking on anew icon on the workmap, by choos-
ing a new object from the data or model menus, or by using theset cd or set cm
functions described in sections 3.2 and 4.1. The global variables *current -
dat a* and *curr ent - nodel * are also discussed in those sections.

There are several global variables that point to special directories in your com-
puter’s file system. These are *st art up- di r *, which points to the directory
containing the LispStat load module; * vi st a- di r - nanme* whose value is the
directory containing the basic vista code and sub-directories. The variables
*dat a- di r-name*, *hel p-dir-nane*, *guide-dir-nanme*, and
*exanpl e- di r- name* specify ViSta'sdata, help, guidance and example direc-
tories.

In addition, there are global variables whose values point to various windows and
menus. These include *wor kmap*, *gui demap*, *expert map*, *obs-
wi ndow* (also referred to by *mat - wi ndow*), *var - wi ndow*, *edit -
menu*, *file-menu*, *conmand- nenu*, *data-nmenu*, *trans-
menu*, *anal yze- nenu* and * nodel - menu*. In addition, *vi st a* points
to the vista system abject, and * copyri ght * points to the copyright message
window. Many of these are nil until used.

3 Data Objects

Data objects are used to define data used by ViSta. In this section we discuss the
dat a function for defining data objects, and the keywords which can be used with
the function. We then discuss data object types, the concept of the current data
object, and the messages which can be sent to an existing data object. Note that the
(1 oad- dat a) function may be used to load datainto ViStafrom aViSta datdfile,
the (open- dat a) function loads data into ViSta from a ViSta datafile and then
displays it as a datasheet, and the (i nport - dat a) function imports data con-
tained in a text file. Each of these functions takes an optional string argument to
specify the name of the file containing the data. Thus, it is possible to load data
from the data directory, by using the global variable * dat a- di r - name*, with
the statement
(load-data (strcat * data-dir-name* "cars.Isp"))
These menu items are all discussed in Chapter 3.

ViSta: The Visua Statistics System



Data Objects 5

3.1 The Data Function

The several ways of creating data that we
discussed in section 3.3 of Chapter 3 of | ‘data "HealthClub”

Young (1996) al create data by using the | "mata from a Health Club®
dat a function. This is an object-constructor EE?Eing% aiet® "SI tupe" )
function which creates an instance of adata | .4, ti ! 'ﬂ = RS
object. It can create any of the threetypesof | 191 26 162

data objects — multivariate, matrix or table | %2 27 110

. < 193 38 101
data objects. The specifics of thedat a func- | 162 25 105
tion for each type of data object are | 122 25 153
explained in the each of the next three sub- | 211 22 101
sections. 167 34 123
176 21 200

o 154 33 251

3.1.1 Multivariate Data 169 34 120
166 33 210

154 34 215

An example of the dat a function being | 12z 25 70

used to create an instance of a multivariate | 202 37 210

data object is shown in Figure 2. The dat a }QE 3; 223

function has one initial required argument | 156 33 225

and two required keyword arguments. The | '#% =% 110

initial required argument is a string that is Figure 2: Data function for
used to name the data. In the Figure, thisis multivariate data
“Heal t hCl ub”. Any characters may be used in this string, including spaces. In
addition to the name, you must also use the : vari abl es and :data key-
words, following each with alist of elements. The: vari abl es keyword speci-
fies the names of the variables and (indirectly) the number of variables. It is
followed by alist of character strings which are the variable names. The : dat a
keyword specifiesthelist of datavalues. If n isthe number of variables, thefirst n
elements of the list are the values for the first observation (row) of the data, the next
n elements are the values for the second observation, etc. The total number of ele-
ments of the data list must be an exact integer multiple of the number of variables.

There are several optiona keywords which may be used with the dat a function,
one of which, the: ti t | e keyword, is shown in the example. This keyword is fol-
lowed by a character string to specify the data-object’s title, which is used in vari-
ous windows. When not specified, the data titteisUntitl ed Data Object.
The :types keyword, which isfollowed by alist of character strings, one for
each variable, specifies the type of each variable. The type may be “cat egory”,
“ordinal”, or “numeric”. If this keyword is not used, all variables are
assumed to be numeric. Finally, the : | abel s keyword, which is followed by a
list of character strings, specifiesthe label for each observation (row of the data). If
not used, the observation labels are Cbs0, Cbs1, etc.

ViSta: The Visua Statistics System



6 ViSta: Developing Statistical Objects

3.1.2 Matrix Data

An example of a dat a

. . tdata "FlgHiles"
function for creating an | :title "Flging Mileages betwssn 10 Cities"
instance of a matrix gariables "Ctatlanta” "chicago” "denwer” “houston”
i ) . "los angeles" "miami" "rnew gork”
data Ob]eCt is shown in "zan francisco” "seattle” "wash.d.c.")
Figure 3. A matrix data clabels ‘C"atlanta” "chicago” "denwver” "houston”
~ o i "los angeles" "miami” "new york”
object is a data object "san francisco” "seattle” “"wash.d.c. ")
: matrices  COUMi leagesT )
whose data consist of | @i i, B
one or more matrices of 0 587 1212 701 1936 604 748 2139 2182 543

. . 537 0 920 940 1745 1133 712 1858 1737 597
data. ViSta malrices ae | 1212 gz0 0 279 =31 1726 1631 949 1021 1404
not as general asthosein 701 940 979 0 1374 953 1420 1645 1331 1220
; i 1936 1745 931 1374 0 2339 2451 347 953 2300
Lispstat: They must be G604 1128 1726 968 2330 0 1092 2594 2734 023
square, and the row and 743 713 1631 1420 2451 1092 0 2571 2402 205

2130 1852 040 1645 247 2594 2571 0 672 2442
columns must refer to | zisz 1737 1021 1221 999 2734 2408 678 0 2320
the same set of things 543 S0 1404 1ZE0 2300 023 205 2442 23Z00 0
: |
Wh'Ch. are named by the Figure 3: Data function to define matrix data.
:vari abl es key-
word.

Matrix data objects are defined in exactly the same way as multivariate data objects,
except that the : mat ri ces keyword must be used. This keyword, which is fol-
lowed by alist of character strings, specifies that the data are matrix data, and spec-
ifies the names (and, indirectly, the number) of the matrices. The :nmatri ces
keyword is required for matrix data, and must not be used for other types of data.
The : shapes keyword, which is followed by a list of character strings, one for
each matrix, specifies the shape of each matrix. The shapes may be “ synmet -
ric”, or “asymmetric”. If shapes are not specified, then all matrices are
assumed to be symmetric. In the example shown in Figure 3, both the : shapes
and the : t ypes keywords are not needed, because they both specify characteris-
tics of the data which are assumed by default. If the data consists of several matri-
ces, then the : dat a list consists of al the values for the first matrix, followed by
all the values for the second matrix, etc.

3.13 Table Data

Instances of table data objects are defined in the same way as previous data objects
except that only one variable can be specified by the : vari abl es keyword (i.e.,
the data must be univariate), the : dat a keyword must be followed by alist of lists
(rather than a list of values), and the : cl asses and : ways keywords must be
used.

ViSta: The Visua Statistics System



Data Objects 7

An example is shown P——

in Figure 4. The cvariables ' ("FatContant")
. k d . cways ' CULab” tSample® »
“Ways eyword IS classes 'C¢"A Lab" "B Lab" "C Lab"
; "D Lab” "E Lab" "F Lab"?

fO“O\Ned by .a' ||$ Of " 1=t Sample" "Znd Sample" 22
character strings that sdata ¢
are used to name the | ; Sample 1 Somple 2

¢0.62 0.55 0.80 0.68) (0.34 0.24 0.76 0.65); Lab A
ways of the data. In the ¢0.30 0.40 0.39 0.40) (0.33 0.42 0.29 0.18); Lab B

am (0.46 0.38 0.37 0.42) (0.27 0.37 0.45 0.54); Lab C

example the ways are ¢0.12 0.47 0.40 0372 (0.53 0.32 0.31 0.43); Lab O
“Lab” and “Sam ¢0.35 0.39 0.42 0.367 (0.37 0.33 0.20 0.412; Lab E

(0.37 0.43 0.1 0.200 (0.23 0.36 0.26 0.06); Lab F

pl e”. The arguments | »;
of the :classes
keyword specify the
names and the number of levels of each way of the table. For one-way data the
: cl asses keyword isfollowed by alist of character strings. For multi-way data it
is followed by a list of lists of character strings. The number of lists must corre-
spond to the number of ways. In the two-way example shown in Figure 4, the
: cl asses keyword isfollowed by alist of two lists. Since thefirst list has six ele-
ments and the second list has two, these data form a 6x2 table. Finaly, the: dat a
keyword must be followed by alist of lists of values. Each sub-list is a cell of the
design. The list of lists alows varying numbers of data-elements per cell. In the
example, there are 4 elements in each list. Thus, these data are balanced (same
number of observationsin each cell) 6x2 two-way data that are replicated 4 times.

Figure 4: Data function to define two-way table data.

A second example appearsin Figure 5. In thisexample the :cl asses list hasonly
one list of four classes, hence the data are one way, and the way has four levels.
Note that the :ways keyword specifies one way. The data consist of four sub-lists
of different lengths. Since each sublist specifies al of the multiple observations for
each cell of the table, these data are unbalanced.

tdata "Singers"

ttitle "Singer's Heaights"

arigbles " ("Height"

s types CUHumer e

Tways CUPartt

relasses ‘" Sopranos” Al tos" "Tenors" "Basses" 12
rdata B

(64 62 66 65 60 61 65 66 65 63 67 65 62 65 63 65 63 65
62 65 66 62 63 63 65 66 65 62 65 66 65 61 65 66 65 62
(ES 62 62 67 67 632 67 66 62 VX 62 61 66 64 60 61 66 66
GBS 62 70 65 64 B2 65 69 61 66 65 61 62 64 67 66 622
CEQ Y2 Y OBE YR T4 71 66 B2 6T VO BT T2 V0 62 V2 66 62
67 643

oY2 TY0OY2 B0 YR V1 OVZ 6E B2 V1 B6 62 V1 V3R T2 V0 62 VO
ToOEE V1 OO T4 VO VI VS B9 V2 VL YO V1 B2 PO VYS Y2 66
T2 OT0 B9x0d

Figure 5: Data function for
one-way unbalanced table data

ViSta: The Visua Statistics System



8 ViSta: Developing Statistical Objects

3.2 Current Data and Data Object Names

One of the data objectsis always the “ current” data. The current dataisindicated in
the data menu by the checked menu item. It is also be indicated in the workmap as
the high-lighted dataicon, if one is high-lighted. The current data's object identifi-
cation can always be found in the global variable * cur r ent - dat a*, to which
messages can always be sent. The current data can be changed by clicking on anew
dataicon, or by choosing a new item of the data menu.

The dat a function defines a variable whose name is the name of the data object,
and whose value is the object’s identification information. Using this name, the cur-
rent data can be changed from the keyboard by using the set cd (set current data)
function. For example, if there is a data object named car s, you make it the cur-
rent datawith (set cd cars).

3.3 Data Object Messages and Functions

Messages can be sent to data objects. The messages can be sent to *cur r ent -

dat a* or to the name of a specific data object. For example, the message (send
*current-data* :data) returnsthelist of datavaluesfor the current data. If
thereis adata object named car s, you could type (send cars : data) tosee
alisting of its data values, whether or not it is the current data.

Slot Information Messages: There is a group of messages which can be used to
obtain information about the data object. For example (send cars :title)

causes the data-object to tell youitstitle. In additiontothe: tit | e message, mes-
sages in this group are : nobs, which returns the number of observations in the
dataobject; : nvar , which returns the number of variablesin the object; : vari -

abl es, which returns the names of the variables; : | abel s, which returns the
labels of the observations; : t ypes, which returns the type of each variable;
: dat a, which returns the data as a list; : dat a- mat r i x, which returns the data
asamatrix; and: name which returns the name of the data object. The messages
: obs- states and : var - st at es return the state of each observation or vari-
ablein the observation window (the states can be normal, selected or invisible). For
matrix data, the message : mat ri ces can be used to obtain the names of the
matrices, and you can use the messages : nnat , : mat - st at es and : shapes
(to see whether the matrices are symmetric or asymmetric). For table data, you can
usethe messages: nways, : ncl asses,: ncell s,: cellfreqgs,:cl asses,
: source- names, : | evel -nanes;and: i ndi cator-matrices.

1. These messages are dlot-accessor messages, and therefore can aso be used to change the
information in data object sots. This should not be done since ViSta will not work correctly
if theinformation is changed.

ViSta: The Visua Statistics System



Data Objects 9

Data Menu Item Messages and Functions. There is another group of messages
which perform the same actions as those performed by items of the data menu. The
name of each message corresponds to the name of a menu item. For example, the
data menu’s Save Data menu item correspondsto (send *current - dat a*

: save-data). The messagesinclude : save- dat a, which saves data into a
ViSta datafile specified in adialog-box; and : cr eat e- dat a, which creates anew
data object from the active portion of the current data. These two messages can be
followed by a string argument to name the file or data object. If the string is not
specified, a dialog box is presented. The message : br owse- dat a shows the
datasheet; : edit - dat a shows the datasheet and enables editing of the data;
:report-data creates a report (listing) of the data; : |i st-vari abl es
shows a window with a list of the variables in the current data (you can aso use
:list-vars or :list-var); and :list-observations (or:|list-

obs) shows awindow with alist of the observations in the current data. For matrix
data you may use : list-matrices (or :list-mats or :list-nmat) to
show a window with alist of the matrices in the data. For table data you may use
clist-cells.

Each message in the previous paragraph also has a short form, called a generic
function. For example, (save-dat a) isshortfor (send *current-dat a*
:save-data). Thelong-form message can be used to send messages to a spe-
cifically named data object that is not the current data. The short-form generic func-
tion always sends the message to the current data.

There are four menu items which have a short-form that effects the * cur r ent -
dat a*, but do not have along-form message that can be sent to data objects that
are not current. Theseare (vi sual i ze- dat a) , which visualizes the active data,
(mer ge-vari abl es), which merges variables using the active data in the cur-
rent data and the active data in the previously current data; ( mer ge- obser va-
ti ons), which merges observations using the active data in the current data and
the previously current data, and (mer ge- mat ri ces), which merges matrices
using the active data in the current and previously current data (both have to be
matrix data). The merge functions take an optional argument which is a character
string that is used to name the new data object. If no character string is present, a
dialog box is presented to obtain the name.

You can also usethe: sunmmar i ze- dat a messageor the ( summar i ze- dat a)
function to see a summary report (listing of summary statistics) of the data. The
message and function each have five keyword arguments, each of which must be
followed with t or ni | (the default). The arguments are : monent s, : quar -
tiles, :ranges, :correlations,:covariances, and: di al og. The
last argument determines if adialog box is presented to obtain the desired types of
statistics. The others determine which statistics are reported if no dialog is shown.

ViSta: The Visua Statistics System



10 ViSta: Developing Statistical Objects

Active Data M essages. There are numerous messages which deal with the “active”
data: i.e., the subset of the current data which is specified by selections in the win-
dows which list observations, variables and matrices. The active data consists of the
subset of data elements whose variable (or matrix) names and observation labels
which appear in the "Vars' (or “Mats’) and “Obs’ windows, or, if any names or
labels are selected in a window, those which are selected as well as visible. The
concept of active data does not apply to table data, which may not be subsetted.

The messages : sel ect -vari abl es, and : sel ect - observati ons, and
the short-form functions (sel ect - vari abl es) and (sel ect - observa-
ti ons) can be used to select the variables or observations which are to be active.
Similarly, with matrix data you may select matrices with the message : sel ect -
mat ri ces or the function (sel ect - matri ces). Each message or function
must be followed by alist of strings specifying the names of the variables or matri-
ces or the labels of the observations that are to be activated. For example, you can
select dl of the variables with
(sel ect-variables (send *current-data* :variables)).

There are several messages that provide information about the selected subset of
data. Many of these messages take an argument that isalist of symbols (not strings)
that specifies the variable “type’. The type symbols are | abel s, cat egory,
ordi nal ,numeri c oral | (inupper, lower or mixed-case). The messages using
these symbols return information about the data elements whose active variables
have types which match the specified types. For example, you could type

(send cars :active-data ‘(ordi nal category))
to see alist of the data elements whose variables are active and are either ordinal or
categorical. The messages that use type-symbols are : acti ve-data (to get a
list of the active portion of thedata), : acti ve-data- mat ri x (to get amatrix
of the active portion of thedata), : acti ve-nvar (tofind out how many active
variablesthereare), : acti ve-vari abl es (toobtainalist of the names of the
active variables), and : acti ve-types (toobtainalist of the types of the active
variables). In addition, the messages :active-matrices, :active-
shapes,and: acti ve- nnat take an argument that isalist of the shape symbols
all ,symmetric,andasymet ri c. Finaly, there are two active data messages
;active-label s and: acti ve- nobs do not have an argument. These mes-
sages can be used to get alist of the labels of the active observations, or the number
of active observations. Note that there are no short-form functions for any of the
active data messages mentioned in this paragraph.

Miscellaneous M essages. Themessage : var i abl e reports values of the variable
whose name is the argument of the message. The messages : neans, : st an-
dar d- devi ati ons, :variances, :skewnesses, :kurtoses,
:mni nums, :nmedi ans, :maxi muns, :ranges:, :m d-ranges,
cinterquartile-ranges, andcovari ance- nmatri x report smple statis-
tics of the active data. Thereis no short-form function for these messages.

ViSta: The Visua Statistics System



Model Objects 11

4 Model Objects

Model objects are used to define models in ViSta. There are severa functions for
constructing instances of model objects, one function for each of the model object
prototypes given in Figure 1. As shown in the figure, each prototype inherits meth-
ods and information from mv- nodel - obj ect - pr ot 0, the general model object
prototype that contains methods and information useful to all model objects. This
prototype in turn inherits al of the methods and information in the nv- dat a-
obj ect - pr ot o that were discussed in the previous section. Thus, the messages
discussed in section 3 can be sent to model objects aswell as to data objects.

4.1 Current Model and Model Object Names

One of the modelsis always the “current” model. The model’s object identification
isin the global variable * cur r ent - nodel *, to which messages can always be
sent. The current model is indicated in the model menu by the checked menu item,
and is shown in the workmap when a model icon is the high-lighted icon. The cur-
rent model can be changed by clicking on a new model icon or choosing a new
menu item in the model menu. Every model has a name which appears below the
model’sicon and in the model menu. The name can be used in the set cmfunction
to change the current model from the keyboard. If there is a model named pca-

car s, youcantype(setcm pca- cars) tochange the current model to pca-

cars. You can aso get information about a model by sending messages to any
model. For example, you could type (send pca-cars :title).

4.2 ViSta Model Object Messages and Methods

As noted above, all model objects have many methods inherited from nmv- dat a-

object-proto and from nv-nodel - obj ect - pr ot 0. However, some
methods that are needed by all model objects are not inherited from the ancestor
objects. These must be uniquely defined for each individual model object so that
their actions are appropriate to the particular model. These methods are called ViSta
model object methods. These methods are;

1. : opti ons — showsadiaog box to obtain values for the options of the analy-
sis method. It places options values in slots that are unique to the model object.

2. :anal ysi s — performs the analysis. It reads the information in the options
slots and places results in analysis slots that are unique to the model object.

: save-nodel -t enpl at e — used by the Save Model menu item.
: creat e- dat a — used by the Create Data menuitem.

: report - nodel — used by the Report Model menu item.
:visual i ze- nndel — used by the Disualize Madel menu item.

o o A~ ow

ViSta: The Visua Statistics System



12 ViSta: Developing Statistical Objects

If you are planning on writing your own ViSta model object, you will have to write
these methods yourself, as well as some additional methods and functions. We
show an example of how thisis donein section 5.

4.3 Steps Taken During Object Construction

When the user requests a data analysis (by using the Analysis menu, atoolbar but-
ton, a script, or by typing in the listener) ViSta takes a series of actions. These
actions begin with the invocation of the model’s constructor function.

The model’s constructor function first checks on the validity of its argument values.
If they are valid it then issues the : new message to the prototype model object.
This message must be followed by the following set of arguments: The first several
arguments are the parameters specific to the particular model (such as covarii -

ances for the principal components model). Then, there must be five arguments:
1) an integer which specifies the number of the model’s method-button; 2) the
object identification information for the data object being analyzed; 3) the model’s
title; 4) the model’s name; and 5) alogical value indicating whether adialog box is
to be presented to obtain parameter values.

The constructor function’s : new message invokes the prototype's : i snew
method. The first few arguments of this method correspond to the arguments that
were used in the constructor function’s : new message which are unique to the
model. Then (& est ar gs can be used for the last several arguments. This
method creates a new model instance. Then, the values of the arguments that are
unique to the model must be saved in the instance's slots. The method must then
apply call-next-nmethod to args. This cals nv-nodel - obj ect -
proto’ s :isnewmethod with the arguments that it needs. Then nv- nodel -
obj ect-proto’s :i snewmethod takes the following actions:

1. The mv- dat a- obj ect-proto’s :isnew method is caled via cal | -
next - met hod with arguments that are the model’s data, variable list, title,
observation labels, variable types and object name.

2. The model’s analysis icon is added to the workmap when the : copy-t ool -
i con messageissent tothe*t ool box*.

3. Thenv-dat a- obj ect - prot o’sdiaogdotissetto t or nil, depending
on the value of di al og that was used in the constructor function. This deter-
mines whether adialog box will be presented.

4. Themode’s : opt i ons methodisused. If di al ogisni I , it does nothing. If
it istrue, the : opti ons method shows the dialog to get values for the
options, which may or may not be different than those gotten from the construc-
tor function. The :opt i ons method then puts these values, whatever they are,
in the model object’'s dots, ignoring the values that are already there. The
: opti ons method returns ni | when it is not used right, or when it is can-

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object 13

celed, so that the analysis will be halted. Otherwise, the value returned by the
: opt i ons method isignored.

5. Now nv- nodel - obj ect - pr ot o determines whether to proceed with the
analysis. It proceeds when the : opt i ons method returned a non-nil value.

6. Thenv-dat a- obj ect - prot 0’s: dat a- obj ect method saves the object
identification information about the data that are being analyzed in a dot that
existsinnv- nodel - obj ect - pr ot 0.

7. The : anal ysi s method is invoked by mv- nodel - obj ect - prot 0. The
:anal ysi s method uses whatever is in the model object’s slots to carry out
the analysis. Note that the : anal ysi s method doesn't directly use the dialog
results, rather, it uses information that has been put into slots by the dialog.
More generaly, none of the ViSta system methods use the results of any other
method directly. All communication between methods is done via slots.

8. The nmv- dat a- obj ect - pr ot 0’s: new obj ect method updates the sys-
tem to recognize the new model object. It adds a model icon to the workmap
and a menu item to the model menu. The *cur r ent - nodel * and *cur -
rent - obj ect * globa variables are updated to point to the new model. The
variable and observation windows are cleared. A variable is created with the
name of the new model and value of the model’s object identification.

5 An Example:
The Principal Components Model Object

In this section we show the steps that were taken to write ViSta's Principal Compo-
nents model object prototype. This example can be followed by the developer who
wishes to develop a new model object, as the steps are the same for all objects. The
code shown here is from the PCAMOB. LSP file. Note that the steps given here
appear in the order that they were written, not in the order that they are used by the
system.

Step 1: Define the model prototype: The first step in defining a new model object
is to define the model’s prototype object. The def pr ot o statement for the Princi-
pal Components model object is:

(def proto pca-nodel - obj ect-proto

"(scores coefs eigenval ues svd corr)
() mv-nodel - obj ect - prot o)

The dots scor es, coef s, ei genval ues, svd, and corr hold information
specific to thismodel. The prototype inherits from mv- nodel - obj ect - pr ot 0.

ViSta: The Visua Statistics System



14 ViSta: Developing Statistical Objects

Step 2: Define dot-accessor methods. There must be a slot accessor method for
each dot specified in the defproto function. These methods are:

(def net h pca-nodel - obj ect-proto :scores
(&optional (values nil set))
(if set (setf (slot-value 'scores) values))
(sl ot-value 'scores))

(def net h pca-nodel - obj ect-proto :coefs
(&optional (values nil set))
(if set (setf (slot-value 'coefs) values))
(slot-value 'coefs))

(def nmet h pca-nodel - obj ect-proto :ei genval ues
(&optional (values nil set))
(if set (setf (slot-value 'eigenval ues) val ues))
(sl ot-value 'eigenval ues))

(def net h pca- nodel - obj ect-proto :svd
(&optional (structure nil set))
(if set (setf (slot-value '"svd) structure))
(sl ot-value 'svd))
(def net h pca-nodel - obj ect-proto :corr
(&optional (val nil set))
(if set (setf (slot-value 'corr) val))
(slot-value 'corr))

The: scor es and: coef s dotswill contain matrices of the principal component
scores and coefficients, and the : ei genval ues dot will contain a vector of
eigenvalues. The : svd dot will contain the structure resulting from the sv-
deconp function (which is redundant with the information in the first three dots,
but which facilitates retrieving the information). The cor r dlot will containt or
ni | to indicate whether correlations or covariances are to be computed from the
multivariate data.

Step 3: DefineViSta system methods. Asindicated in section 4.2, each model pro-
totype must have certain methods for ViSta to work properly. These methods must
be named opt i ons and anal ysi s (which are used by the i snew method of
mv- nodel - obj ect - prot o), and save-nodel -tenpl ate, create-

data, report-nodel andvi suali ze-nodel (al used by the menu sys-
tem). We discuss these methods here, and indicate how similar methods would be
defined for other model objects.

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object 15

Options: The opt i ons method for the principal components prototype is given
bel ow.

(def net h pca- nodel - obj ect-proto :options ()
(when (send sel f :dialog)
(let ((result nil)
(di al og-val ue (choose-itenmdial og
"Anal ysis Options:"
"("Anal yze Covari ances”
"Anal yze Correlations") :initial 1)))
(when di al og-val ue
(when (= 1 di al og-value) (setf result t))
(send self :corr result))
di al og-val ue)))

This method first checksthe value of thedi al og dot to seeif adialog isto be pre-
sented. This action should always be taken first since when a script file job is in
progress, or when a model is being loaded, the dialog should not be presented. The
model’s constructor function should set the value of dialog to nil by default, as it
does in this example. When appropriate, the dialog is then presented to see if the
analysisisto be performed on correlations or covariances. The dialog sets the value
of thecorr dot for later use by the : anal ysi s method. Note that the results of
the dialog are communicated to the analysis method through the slot. This should
always be this way for al model prototypes. Then, the value that is returned by
choose-itemdi al og (whichisni |l when the dialog is canceled) is used as
the value returned by : opt i ons, so that the analysis can be canceled when the
dialog has been canceled. The : opt i ons method should always return ni | in
this situation for al models. Indeed, it should return ni | whenever the options dia-
log is not properly used. For an example of amore complex dialog, look at the code
for the multivariate multiple regression options dialog.

ViSta: The Visua Statistics System



ViSta: Developing Statistical Objects

Analysis: Theanal ysi s method for the principal components proto is:

(def net h pca-nodel - obj ect-proto :analysis ()
(let* ((left-alpha 1)
(data (send self :data-matrix))
(nobs (select (array-di nensions data) 0))
(prepped- dat a
(if (send self :corr)
(/ (nornalize (center data) 1)
(sgrt (1- nobs)))
(/ (center data) (sqrt (1- nobs)))))
(svd (sv-deconp2 prepped-data))
(svd (if (< (sum(col (select svd 2) 0)) 0)
(list
(* -1 (select svd 0))
(select svd 1)
(* -1 (select svd 2))
(select svd 3))
svd))
(scores (matnult
(select svd 0)
(di agonal (™ (select svd 1) left-alpha))))
(eigenval ues (~ (select svd 1) 2))
(coefs (matmult
(select svd 2)
(diagonal (™ (select svd 1)(1- left-alpha)))))

(send self :svd svd)

(send self :coefs coefs)

(send self :scores scores)

(send self :eigenval ues ei genval ues)

t))

The details of this method are not important for this example, other than to note that
all of the analysis results (i.e., svd, coef s, scor es and ei genval ues) are
computed inside al et * statement (so that they are only locally defined) and then
saved for later use by placing them in appropriate slots. The method communi cates
its results indirectly through dots, not directly by returning them. The method
returnst.

Save-Model-Template: Every model object needs to have a method named
save- nodel - t enpl at e, amethod which is used by the model menu’'s save-

nodel method. The method contains atemplate of the code that creates the model
object. The method must always have as an argument the object identification
information for the data object used by the model, since the data must be saved
along with the model. The nmv- nodel - obj ect - prot o’s : save- nodel

method takes information placed into the template (as explained below) and places
itinafile. When thefileisloaded back into ViStaby (| oad- nodel ), aprincipal
components analysis is performed on the data that were also saved in thefile.

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object

For principal components, the method is:

(defnmet h pca- nodel - obj ect-proto :save-nodel -tenpl ate
(dat a- obj ect)
(pr| nci pal - conmponent s

(title ,(send self :title)
I nane , (send self :nane)
»di al og nil

:covariances , (not (send self :corr))
:data (data ,(send data-object :nane)

ttitle ,(send data-object :title)
:variables ', (send self :variables)
ctypes ", (send self :types)

11 abel s ",(send self :1labels)
:data ', (send self :data))))

Note the unusual backquote syntax (which is explained briefly by Tierney on pp. 98
and 120, as well as on page 197 in the discussion of saving objects). To be clear,
the character in front of ~ (pri nci pal - component s is a backquote. This
character in front of alist causes all elements of the list to be quoted, except those
preceded by commas, which are treated in the normal fashion. Note that the data
for the principal components function come from the model object via the various
(send sel f functions. However, the data’'s name and title must come from the
origina data object that was analyzed.

The nv- nodel - obj ect - prot 0’s: save- nodel method places the pri n-
ci pal - conponent s function, with the functions following commas being
replaced with their results, in a file. When the file is loaded back into ViSta by
(1 oad- nodel ), a principa components analysis is performed on the data that
were also saved in thefile.

Create-Data: For principa components, just as for any other model object, the
method which creates output data objects must work in such a way that it can be
used by the menus, can be typed at the keyboard, or can be contained in ascript file.
The method is shown bel ow.

There are several things to point out about this method. First, note that the method
has optional key-word arguments which determine whether the dialog box is dis-
played, and which determine which output data objects will be created when the
dialog box is not displayed. These optional arguments permit the menu system to
generate:

(send *current-nodel * :create-data :dialogt).

This causes the dialog box to be shown. On the other hand, these arguments permit
ascript to contain the statement:

(send *current-nodel * :create-data :scores t :coefs nil)
which creates one output data object of scores without the user having to intervene
by responding to adialog box. For the system to work in these ways, any cr eat e-
dat a method for another model object must have a similar construction.

ViSta: The Visua Statistics System

17



18 ViSta: Developing Statistical Objects

Also, note the statement, near the beginning of the function:

(if (not (eq current-object self)) (setcmself)) .

This statement must be used at the beginning of the method to assure that the cur-
rent model is properly selected. Finaly, (not (not desires)) causesthe
method to return ni | when the dialog is canceled, andt when it is not canceled.

(def net h pca-nodel - obj ect-proto :create-data
(&key (dialog nil) (scores t) (coefs t) (input nil))
(if (not (eq current-object self)) (setcmself))
(let ((creator (send *desktop* :selected-icon))
(desires (list (list
(if dial (if scores 0)(if coefs 1)(if input 2)))))
[ i al og
(setf desires
(choose-subset - di al og
"Choose Desired Data hjects”
' (" Conmponent Scores"
"Conponent Coefficients"”
"Anal yzed | nput Data")
cinitial (select desires 0))))
(when desires
(when (nenber '0 (select desires 0))
(send *current-nodel *
: pca- scor es-dat a-obj ect creator))
(when (nenber '1 (select desires 0))
(send *current-nodel *
: pca- coef s-dat a- obj ect creator))
(when (nenber '2 (select desires 0))
(send *current-nodel *
: create-input-dat a- obj ect

"PCA" creator)))
(not (not desires))))

This method calls three other methods which actually create the data objects. One
of these (: cr eat e- i nput - dat a- obj ect ) isaready defined by nv- nodel -

obj ect - pr ot 0. It creates a copy of the input data, taking into consideration
which variables are selected and active. The other two methods are specific to the
principal components model. One of these is shown here (they are nearly identical):

(def net h pca- nodel - obj ect - pr ot 0)
. pca- scores-dat a- obj ect (creator)
(data (strcat "Scores-" (send self :nane))
:created creator
:title (strcat "PCA Scores for " (send self :title))
:data (combine (send self :scores))
:vari abl es
(mapcar #' (lanmbda (x) (format nil "PC-a" x))
(iseq (mn (send self :nvar) (send self :nobs))))
:label s (send self :1abels)
:types (repeat "Numeric"
(min (send self :nvar) (send self :nobs)))))

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object 19

Note that the pca- scor es- dat a- obj ect method consists entirely of a data
function to create a new data object (this function was discussed earlier in this
chapter). The arguments of the function were described earlier in the chapter.
except for : cr eat or. This argument specifies which workmap icon object repre-
sents the object which is creating the data object, so it's argument must be the
object identification of the appropriate icon. This information is used to construct
the workmap.

Various functions are used to create the values for the arguments of the function.
The name is created by concatenating a meaningful prefix (in this case “ Scores-")
with the model object’'sname. Thetitle is created by concatenating a similar prefix
with the model object’stitle. The data consist of alist of scores, the combine func-
tion being used to convert the scores matrix to alist. The variable names are acom-
bination of the string “PC” and a sequence number. The labels and types are self-
explanatory. If this method is copied for new model objects, then these new model
objects will produce data objects that conform with other ViSta data objects.

Visualize-Model: We do not present the vi sual i ze- mrodel method here
because it is too long. The important aspect of it for those constructing the method
for other models is that it has no arguments, and is used by the menu-system and
from the keyboard by the statement

(send *current-nodel * :visualize-nodel).

Report-model: Ther eport - nodel method for the principal components proto-
type is shown below. This function is used by the menu-system, as well as by the
user from either the keyboard or from script files, by the statement:

(send *current-nodel * :report-nodel).

The method uses three specia functions which ensure that the report works cor-
rectly under the various operating systems, and that it's appearance is consistent
between models. These functions are r eport - header, di spl ay-stri ng,
and print-matri x-to-w ndow In constructing other reporting methods, you
should use these functionsin place of standard printing functions since they writeto
the Macintosh text window or to the M S-Windows or X-Windows listener in a con-
sistent fashion. The statement
(report-header (send self :title))

determines how and where the report should be printed, which varies from one
operating system to another. It displays the title and returns a value which identifies
the place that the information should be written (a text window or the listener). In
the example, the variable w getsthisvalue. Thedi spl ay-stri ng andpri nt -

mat ri X-t o- wi ndow functions are used to report the desired information in the
desired way. The di spl ay- st ri ng function takes a string as its first argument,
and w; the window identification, as its second argument. The pri nt - natri x-

t o- wi ndow function has two required arguments: The first is the matrix which is
to be printed, the second isw, the place it is to be printed. This function also has

ViSta: The Visua Statistics System



20 ViSta: Developing Statistical Objects

two optional arguments. One is : | abel s, which must be followed by a list of
strings. These are used to label the rows of the matrix. The other is: deci mal s,
which must be followed by an integer. The integer determines the number of deci-
mal s that are printed following the decimal point.

Finally, note that the method contains the statement
(if (not (eq current-object self)) (setcmself))
to ensure that the proper object is reported.

(def net h pca-nodel - obj ect-proto :report
(&key (dialog nil))
(not (eq *current-object* self)) (setcmself))
* ((w (report-header (send self :title)))
(labels (send self :1abels))
(vars (send self :variables))
(scores (send self :scores))
(coefs (transpose (send self :coefs)))
(ei genval ues (send self :eigenval ues))
(proportions (/ eigenval ues (sum ei genval ues)))
(fitmat (transpose
(matrix (list 3 (mn (send self :nobs)
(send self :nvar)))
(conbi ne ei genval ues proportions
(cumsum proportions)))))

(i f
(let

(1 c-nanes
(mapcar #' (lanmbda (x) (format nil "PC-a" x))
(iseq (send current-nodel :nvar)))))

(display-string

(format nil "Principal Conponents Analysis of") w)
(if (send self :corr)

(display-string (format nil " Correlations~2%) w)

(display-string (format nil " Covariances~2%) w))
(display-string

(format nil "Model: ~a~2% (send self :nane )) w)
(display-string

(format nil "Variable Names: ~a~2% vars) w)
(display-string
(format nil "Fit Indices for each Component: ~

~2% Ei genval ue Proportion ~
Cum Propor Conponent~%) w)
(print-matrix-to-w ndow fitmat w
:label s | c-nanes :decimls 5)
(display-string
(format nil "~%Coefficients (EigenVectors):~%) w
(print-matrix-to-w ndow coefs w
:labels | c-nanes :decinmals 3)
(display-string
(format nil "~%Conponent Scores:~%) w)
(print-matrix-to-w ndow scores w
:label s I abel s :decimls 3)
W)

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object 21

Step 4: Define the : i snew method: The next step is to define the model’s
. i snew method, the method which is invoked by the : new message in the
model’s constructor function. For principal components this method is:

(def net h pca-nodel -obj ect-proto :isnew (corr &rest args)
(cond
((> (send current-data :active-nvar '(numeric))
(send current-data :active-nobs))
(error-nessage
(format nil "Note: Cannot anal yze data ~
with fewer active observations (~d) ~
than active numeric variables (~d)."
(send current-data :active-nobs)
(send current-data :active-nvar '(nunmeric))))
(send *t ool box* :reset-button 6))
((< (send current-data :active-nvar '(nuneric)) 2)
(error-nessage
(format nil "Cannot analyze data ~
that has less than two active ~
nuneric variables."))
(send *tool box* :reset-button 6))
(t
(send sel f :nodel -abbrev "PCA")
(send self :corr corr)
(apply # call-next-method args))))

First, the: i snewmethod creates a new instance of the model. Thisisdone by the
Lisp-Stat object system, there are no statementsin the : i snew method that corre-
spond to this action. The first thing that explicitly takes places in the : i snew
method is that the data are checked to see if there are more active variables than
active observations or less than two active numeric variables. If so, an error mes-
sage is issued, the appropriate method button (number 6) is reset, and the analysis
does not take place. Notethat the(err or - nessage) function displaysthe mes-
sage in a dialog box. If there are at least as many observations as variables, the
model abbreviation is set to “ PCA” , and the value (t or ni | ) of the corr argu-
ment isstoredinthecorr dot. Thencal | - next - met hod isapplied to each of
the remaining arguments, calling the i snew method for nv- nodel - obj ect -
proto.

This general flow should be followed in any other model’s : i snew method: First,
check on the validity of argument values. If they are not valid, use (er r or - nes-
sage) to report an error. Then reset the button. If they are valid, store the model
abbreviation and argument values in their slots. Then, apply cal | - next -
nmet hod to the remaining arguments

ViSta: The Visua Statistics System



22 ViSta: Developing Statistical Objects

Step 5: Define the Model’s Constructor function: You must create a constructor
function to construct an instance of the model object prototype. Thisisthe function
that is actually used to analyze the data. It is used by the menu system, by thetool-
bar, by the data analyst via the keyboard and by script files. The constructor func-
tion for principal componentsis:

(defun principal - component s

(&key
(data *current - dat a*)
(title "Principal Conponents")
(nane nil)
(dial og nil)

(covariances nil))
(if (not (eq *current-object* data)) (setcd data))
(send pca- nodel - obj ect - proto
:new (not covariances) 6 data title name dial og))

This function uses keyword arguments. The defaults are such that if the analyst
typesthe statement ( pri nci pal - conmponent s) theanalysiswill be performed
on correlations computed from the active numeric variables in the current data
object. The dialog box will not be presented. The analysis menu generates the
statement ( pri nci pal - conponents : di al og t), sothat thedialog box is
presented to seeif the user wishes to perform the analysis on correlations or covari-
ances.

The constructor functions for other models should be similar to this one. Since al
other constructor functionsin ViSta use keyword arguments, it is recommended that
new models also have keyword arguments. The first four keywords must be used
with all models as they appear in the example since they are processed by nv-

nodel - obj ect - pr ot 0. Of course, the default value of theti t| e should be
replaced with appropriate stringsto identify the model. A default value for the name
keyword is automatically constructed by concatenating the three-letter model
abbreviation with the name of the data. The di al og keyword should also be used
asis, with the default value ni | . The covari ances keyword is specific to the
components model. For other models it would be replaced with other keywords
specific to the other models. The send statement at the end of the constructor func-
tion should appear asit does here for other models, except for the presence of ( not

covari ances) , which must be replaced by arguments corresponding to the key-
words which are specific to the model. The value 6 corresponds to the number of
the tool icon. Consult the author for how this is changed for other models.?

2. Thisfeature will be modified in the near future. In the meantime, it is suggested that the
number O will suffice, although this currently causes the analysisicon to be named “Help”.

ViSta: The Visua Statistics System



An Example: The Principal Components Model Object 23

Step 6: Define the Analysis Menu Item and Button:2 Code to create a new item
for the method menu must be added to the menus. | sp file. See how thisis done
for existing menu items in that file to determine how a new item is created. For
principal components the statement is:

(setf prin-nodel -nenu-item
(send nmenu-itemproto :new "Principal Conponents"
caction # (lanbda ()
(principal -conmponents :dialog t))
:enabled nil))
You must then must add the name of the model item (pri n- nodel - menu-
i tem in this case) to the list of menu item names associated with the ( send
*t ool s-menu* : append itens statement that appears in the middle of the
menus.Isp file.

In order to have the menu item enable and disable according to the type of the cur-
rent data object, you must modify the set cd function in the dat aobj . | sp file.
For principal components, which is appropriate to multivariate data, but not to dis-
similarity and table data, the statement (send prin- nodel - menu-item
:enabl ed t) was added to the portion of set cd’s cond function that is true
for multivariate data, and (send pri n-nodel -menu-item :enabl ed
ni 1) was added to the portions that are nil for multivariate data.

In order to have the method's tool-bar button enable and disable according to the
type of the current data object, you must further modify the set cd function in the
dat aobj . | sp file. For principal components (whose button is number 6) the
statement (send (select tools 6) :icon-state “nornal”) was
added to the portion of set cd’s cond function that is true for multivariate data,
and (send (select tools 6) :icon-state “gray”) wasadded to
the portions that are nil for multivariate data. A method for adding hew method but-
tons has not yet been developed, thus, if your new method does not correspond to
an unused button, it cannot yet be represented by a button.

3. An alternative way of doing this, which is simpler and more general, needs to be worked
out. In the meantime, please consult with the author if necessary.

ViSta: The Visua Statistics System



24 ViSta: Developing Statistical Objects

Step 7: On Demand Code L oading Feature* The code for a model-object is not
loaded until the first time that an instance of the object prototype needs to be con-
structed. Usually, thisis when the object’s method menu or method button is used.
This delayed, on demand, code loading feature is created by the loading functions
that appear at the end of the nodel obj . | sp file. Theloading function for princi-
pa componentsis:

(defun principal -conmponent s

(&key
(data *current - dat a*)
(title "Princi pal Conponents")
(nane nil)
(dial og nil)

(covariances nil))
(load (strcat *vista-dir-name* "pcanob"))
(princi pal - component s
:data data
title title
: name name
. di al og dial og
:covariances covari ances))
Notice that the loading function has exactly the same name, argument list and
default values as the constructor function. This must be true for the loading func-
tion for every model. The body of the loading function must always consist of two
statements.The first uses the | oad function to load the desired model object file.
Thisfile should be located with al other ViStafiles, and is accessed by concatenat-
ing *vi st a-di r - nanme* (whose value is the directory path) with the name of
the file (pcanob, in this case). The second statement is the constructor function
which constructs the model object. All options must be explicitly specified, and
they must be given values obtained from the argument list of the loading function.

6 References

Tierney, L. (1990) Lisp-Sat: An Object-Oriented Environment for Statistical
Computing & Dynamic Graphics. Addison-Wesley, Reading, M assachusetts.

Young, F.W. (1996) Vista: The Visual Statistics System. Research Memorandum
94-1(b). L.L. Thurstone Psychometric Laboratory, Univ. N. Carolina.

4. Thisfeature will probably be changed to take advantage of the autoload feature.

ViSta: The Visua Statistics System



