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Abstract: In this paper, we propose a novel demand-side management (DSM) system designed
to optimize electric vehicle (EV) charging at public stations using model predictive control (MPC).
The system adjusts to real-time grid conditions, electricity prices, and user preferences, providing a
dynamic approach to energy distribution in smart city infrastructures. The key focus of the study
is on reducing peak loads and enhancing grid stability, while minimizing charging costs for end
users. Simulations were conducted under various scenarios, demonstrating the effectiveness of
the proposed system in mitigating peak demand and optimizing energy use. Additionally, the
system’s flexibility enables the adjustment of charging schedules to meet both grid requirements and
user needs, making it a scalable solution for smart city development. However, current limitations
include the assumption of uniform tariffs and the absence of renewable energy considerations, both
of which are critical in real-world applications. Future research will focus on addressing these issues,
improving scalability, and integrating renewable energy sources. The proposed framework represents
a significant step towards efficient energy management in urban settings, contributing to both cost

savings and environmental sustainability.

Keywords: smart city; energy management; fully electric vehicles; charging stations; smart grid;
urban planning

1. Introduction

In the current era of rapid technological and economic growth, there is an escalating
demand for an improved quality of life that emphasizes sustainability, efficiency, and
resilience [1]. As cities expand and urban populations grow, managing the increasing
number of connected devices and services has become increasingly complex [2]. This
complexity necessitates the development of smart cities—urban environments that leverage
advanced technologies, including renewable energy sources, to enhance the quality of urban
life. These technologies encompass a wide range of applications, including infrastructure
monitoring, intelligent traffic management, and strategies aimed at mitigating greenhouse
gas emissions [3].

A smart city integrates numerous systems and applications within its infrastructure,
creating a complex network that requires robust management to remain sustainable. Effec-
tive data handling and integration are critical to the sustainable development of urban areas.
New technologies, particularly the Internet of Things (IoT), provide extensive resources for
managing the vast amounts of data generated by cities [4]. Ensuring the interoperability
and reusability of this data involves sophisticated data management techniques, including
data acquisition, processing, and dissemination. High data quality is essential for accurate
data fusion and informed decision-making processes, which ultimately improve the perfor-
mance of applications and services within the city [5]. These interconnected applications
and services transform traditional urban centers into intelligent, smart cities [6].
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Mobility is a central component of smart cities, playing a crucial role in supporting
daily urban routines [7]. Innovative traffic and transportation services, such as smart
traffic management (STM), empower users with data to make safer and more informed
decisions [8]. Fully electric vehicles (FEVs) are integral to STM, as they require connection
to smart grids for efficient power supply management and problem forecasting [9]. The
integration of FEVs into smart cities is not just a technical challenge but a critical step
towards achieving sustainable urban mobility.

The transition towards electric vehicles (EVs) represents a significant milestone in the
global effort to reduce greenhouse gas emissions and combat climate change. However, the
rapid adoption of EVs presents new challenges for the stability and efficiency of electrical
grids. The integration of a large number of EVs, particularly during peak demand periods,
has the potential to cause significant disruptions in grid stability [10]. Traditional power
systems, designed for a one-way flow of electricity from centralized power plants to
consumers, are increasingly under pressure to adapt to the bidirectional flow of electricity
associated with EV charging and renewable energy sources. As the energy landscape
evolves, it is imperative to develop advanced management systems that can effectively
balance the supply and demand of electricity while maintaining grid stability [11,12].

Demand-side management (DSM) has emerged as a critical strategy in addressing
the challenges posed by the integration of EVs into the power grid. DSM involves the
planning and implementation of measures to influence consumer electricity demand in
ways that benefit both the utility and the end-user. This can be achieved through various
mechanisms, including time-of-use pricing, load shifting, and real-time demand response.
Additionally, the integration of renewable energy sources, such as solar and wind power,
into DSM frameworks can further optimize energy consumption patterns, allowing the
system to better respond to fluctuations in energy supply and demand. The objective of
DSM is to optimize energy consumption patterns, thereby reducing peak demand, lowering
electricity costs, and enhancing grid stability [1].

One of the most promising approaches to managing the complex interactions between
EV charging and grid stability is model predictive control (MPC). MPC is an advanced
control strategy that uses a dynamic model of the system to predict future states and
optimize control actions over a receding horizon. By continuously updating its predictions
based on real-time data, MPC can effectively manage the charging and discharging of EVs,
taking into account constraints such as electricity prices, grid conditions, and user prefer-
ences [4]. This capability makes MPC particularly well-suited for DSM in environments
with high penetration of renewable energy sources, where variability in generation can
pose significant challenges to grid stability [5].

The integration of renewable energy sources, such as solar and wind power, adds
another layer of complexity to grid management. Renewable energy is inherently variable
and uncertain, making it difficult to predict supply and match it with demand. The use
of EVs as mobile energy storage units offers a potential solution to this problem. By
optimizing the charging schedules of EVs, it is possible to store excess renewable energy
during periods of low demand and release it during peak periods, thereby smoothing out
fluctuations in the grid [6]. This not only helps to stabilize the grid but also maximizes
the utilization of renewable energy, reducing reliance on fossil fuels and lowering carbon
emissions [7].

As modern charging infrastructures evolve within smart cities, the integration of
renewable energy sources into electric vehicle charging systems becomes increasingly
important. The use of renewable energy not only aligns with global sustainability goals
but also presents a viable solution to stabilize the grid by reducing dependence on tradi-
tional energy sources during peak demand periods. By incorporating renewable energy
into charging infrastructures, fluctuations in supply can be mitigated through intelligent
demand-side management and model predictive control. This approach allows EVs to
act as mobile storage units, optimizing energy consumption while simultaneously mini-
mizing costs and environmental impact. Consequently, the adoption of green energy in
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EV charging infrastructures is a critical step towards achieving long-term sustainability in
urban environments.

The effectiveness of MPC in managing DSM and integrating renewable energy has
been demonstrated in numerous studies. For instance, Khan et al. [8] proposed an in-
telligent DSM framework that integrates renewable energy sources and uses real-time
price-based demand response to optimize energy consumption. Their simulations showed
that the proposed system significantly reduced electricity costs, peak loads, and carbon
emissions compared to traditional methods [8]. Similarly, Razmara et al. [9] developed a
predictive control framework for building-to-grid systems that integrates renewable energy
and energy-storage systems. Their results demonstrated the potential of MPC to reduce
electricity costs and load ramp rates without compromising indoor climate comfort [9].

Despite these advancements, several challenges remain in the widespread adoption
of MPC for DSM in the context of EV integration. One of the primary challenges is the
computational complexity of MPC algorithms, particularly in large-scale systems with
thousands of EVs. The need for real-time optimization over a receding horizon requires
significant computational resources, which can limit the scalability of MPC in practical
applications. Additionally, the variability and uncertainty associated with renewable
energy generation can complicate the optimization process, requiring robust algorithms
that can adapt to changing conditions [10].

Another challenge is the integration of user preferences into the DSM framework.
While MPC can optimize charging schedules to minimize costs and stabilize the grid, it
must also consider the preferences and constraints of EV users, such as the desired state of
charge and departure times. Balancing these competing objectives requires sophisticated
algorithms that can dynamically adjust to user inputs while maintaining overall system
efficiency [11,12].

In conclusion, the integration of EVs and renewable energy sources into the power
grid presents both opportunities and challenges. Demand-side management, facilitated by
advanced control strategies such as model predictive control, offers a promising approach
to addressing these challenges. By optimizing energy consumption patterns and integrating
renewable energy into the grid, MPC can help to stabilize the grid, reduce electricity costs,
and support the transition to a more sustainable energy system. However, further research
is needed to address the computational and operational challenges associated with the
large-scale deployment of MPC in diverse and dynamic environments. Furthermore,
future research will focus on integrating renewable energy sources, such as solar and
wind, into the DSM framework, which is crucial for improving grid stability and reducing
carbon emissions.

The remainder of this paper is organized as follows: Section 2 reviews related work in
the field, highlighting key advancements and gaps. Section 3 outlines the methodology
used to develop the MPC-based framework for optimizing EV charging. Section 4 presents a
detailed analysis of the proposed approaches, use cases, and corresponding UML diagrams.
Finally, Section 5 offers conclusions and discusses potential directions for future research.

2. Related Work

The integration of fully electric vehicles (FEVs) into smart cities is a multifaceted
challenge that intersects various domains, including energy management [13,14], trans-
portation [15,16] and data analysis [17]. This section reviews the current state of research in
these areas, emphasizing recent advancements and highlighting gaps that our study aims
to address.

The transition to smart grids and renewable energy sources is fundamental to inte-
grating FEVs into smart cities [18]. Various studies have explored energy management
strategies to enhance the efficiency and sustainability of FEVs [19,20]. For instance, the
use of machine learning algorithms to predict energy consumption patterns and optimize
charging schedules has shown promise in managing the energy demands of FEVs [21].
Additionally, the integration of solar energy systems with FEVs has been suggested to



Appl. Sci. 2024, 14, 8736

4 0f 20

reduce reliance on grid electricity, thus lowering operational costs and environmental
impact [22].

Energy storage systems (ESS) play a significant role in stabilizing the grid while
accommodating the fluctuating demands of FEVs. Research highlights the need for robust
and scalable infrastructure to support these advancements [23]. To address infrastructure
challenges, a decentralized energy management system leveraging blockchain technology
has been proposed, ensuring transparency and security in energy transactions and making
the integration process more resilient to cyber threats [24].

The potential of integrating vehicle-to-grid (V2G) technology with FEVs to balance the
energy supply and demand in smart grids has also been examined. Research suggests that
V2G can enhance grid stability and provide additional revenue streams for FEV owners,
encouraging wider adoption of electric vehicles [25,26]. Furthermore, using FEVs as mobile
energy storage units dispatched to areas with high energy demand has been explored,
offering a flexible solution to energy distribution challenges in urban environments [27].

The transportation aspect of integrating FEVs into smart cities involves optimizing
traffic flow, reducing congestion, and improving overall mobility. Connected vehicle
technologies have been researched to enhance traffic management, demonstrating that
real-time data from FEVs can be used to dynamically adjust traffic signals, thereby reducing
congestion and improving travel times [28]. The impact of autonomous FEVs on urban
mobility has also been highlighted through simulation models, suggesting that these
vehicles could significantly reduce the number of vehicles on the road, leading to decreased
congestion and lower emissions [29].

Studies have investigated the implications of FEV adoption on public transportation
systems, indicating that integrating FEVs with public transit can create a more cohesive
and efficient transportation network, ultimately enhancing overall mobility within smart
cities [30]. The environmental benefits of such integration have been examined, concluding
that a well-coordinated system could lead to significant reductions in urban air pollution
and greenhouse gas emissions [31].

In addition to transportation, research has focused on the development of intelligent
transportation systems (ITS) that incorporate FEVs to optimize route planning and re-
duce travel time. Al-driven algorithms have been used to enhance the efficiency of ITS,
demonstrating substantial improvements in traffic flow and energy consumption [32].

Data analysis is fundamental in understanding and optimizing the integration of FEVs
into smart cities. Big data analytics have been employed to predict maintenance needs
and improve the reliability of FEVs, showing that predictive maintenance can significantly
reduce downtime and maintenance costs [33]. Additionally, the importance of data privacy
and security in the context of FEVs has been discussed, with proposals for secure data-
sharing frameworks to ensure the confidentiality of sensitive information while enabling
data-driven decision-making processes [34].

The use of artificial intelligence (AI) and machine learning (ML) to optimize the routing
and charging of FEVs was investigated, highlighting how AI can enhance the efficiency and
effectiveness of FEV operations by leveraging real-time data and predictive analytics [35,36].
Another study examined the integration of blockchain technology with Al to develop a
decentralized platform for managing FEV data, ensuring transparency and security in data
transactions [37-40].

The interoperability of different systems and devices poses a significant challenge for
the integration of FEVs into smart cities. The need for standardized protocols and data
formats to ensure seamless communication between FEVs and other smart city components
has been emphasized, with studies highlighting the importance of establishing common
standards to facilitate interoperability and enhance overall efficiency [41]. International
collaborations have also been explored to develop and implement standardization frame-
works for FEVs, suggesting that global cooperation is essential to harmonize standards and
promote the widespread adoption of FEVs [42].
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The need for more robust and scalable energy management solutions to accommo-
date the growing number of FEVs has been identified, with recommendations for the
development of advanced energy storage technologies and smart grid systems to enhance
the resilience and efficiency of energy infrastructures [43]. In the realm of transportation,
research has emphasized the need for more studies on the integration of autonomous
FEVs with existing public transit systems, suggesting that a hybrid approach combining
autonomous and traditional vehicles could optimize urban mobility and reduce conges-
tion [44].

A comprehensive review of the literature on FEV integration into smart cities revealed
several key areas where further research is needed [45,46]. These include the development
of more efficient energy storage systems, the implementation of advanced Al-driven traffic
management solutions, and the creation of secure and interoperable data sharing plat-
forms [47]. Addressing these challenges will require a collaborative effort from researchers,
policymakers, and industry stakeholders to develop innovative solutions and drive the
widespread adoption of FEVs.

Despite significant progress, several challenges remain. The interoperability of dif-
ferent systems and devices is a major concern, as is the need for standardized protocols
and data formats. Security and privacy issues also pose significant risks, particularly in
data-intensive applications like traffic management and energy distribution. This study
aims to contribute to this body of knowledge by presenting a comprehensive model for
integrating FEVs into smart cities, optimizing energy management, and enhancing urban
mobility. This model incorporates advanced data analytics, Al-driven optimization, and
standardized protocols to address the existing challenges and pave the way for a more
sustainable and efficient urban future.

3. Methodology

This study proposes a methodology for optimizing the charging of electric vehicles
(EVs) within a demand-side management (DSM) framework, leveraging model predictive
control (MPC) to dynamically adjust the charging process based on real-time grid condi-
tions, electricity prices, and user preferences. The methodology is structured around a
centralized control system, the charging station control center (CSCC), which acts as the
central hub for data collection, optimization, and control distribution.

The CSCC is designed to manage a network of charging stations (CSs), each capable
of communicating with the CSCC to provide real-time data on the state of charge (SoC)
of connected EVs, power draw, and user preferences such as desired departure time and
final SoC. Additionally, the CSCC interfaces with the grid operator, receiving critical
data on current grid load, electricity prices, and any demand response (DR) signals. This
information is used to predict future grid conditions and optimize the charging schedule for
all connected EVs, aiming to minimize the total cost of charging for users while maintaining
grid stability.

The optimization problem at the heart of this methodology is formulated as a discrete-
time optimal control problem. The objective function ] that the system seeks to minimize is
a combination of the electricity cost and a regulation term that penalizes deviations from a
desired power reference. This function is mathematically expressed as

J=Jcost + H]reg 1)

where J o5 represents the total cost of electricity for charging the EVs, J ., represents the
regulation term to maintain grid stability, and u is a weighting factor that balances the
trade-off between cost minimization and grid stability.

The cost component ] is calculated based on the power flow to each EV and the
electricity price at each time step, defined as:

En—1

Jeost = Z Z APm'C[k]'Um[k} 2)

meM k=1
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In this equation, M denotes the set of all EVs connected to the charging stations, k
represents the time step, Ep, is the departure time of EV m, APy, is the maximum power
flow to EV m, C[K] is the electricity price at time step k, and U, [K] is the control variable,
representing the normalized power flow to EV m at time step k.

To maintain grid stability, the regulation term J ., penalizes deviations from a power
reference P¢[k], which is set according to grid stability requirements:

K
Jreg = k;/\[k]'HP[k] — Pree[K] | ©)

Here, A[K] is a diagonal matrix that weights the tracking error at time step k, P[k] is
the total power demand at time step k, and ||P[k] — P,¢[Kk]||, denotes the infinity norm,
capturing the maximum deviation across all time steps.

The total power demand P[k] at any time step k is determined by the sum of power
consumed by non-flexible loads Ps[k| and the power drawn by the flexible EV loads:

[

P[] = Pylk] — Y APp: UnlK] (4)

meMy

This setup imposes several constraints to ensure the feasibility of the solution and the
stability of the system. Firstly, the power flow to each EV must respect the technical limits
of both the vehicle and the charging station, meaning that

Unlk] € [0,1] Vm €M, Vk 5)

Additionally, each EV must reach its desired state of charge x.¢ by its specified
departure time Ep,:
En—1
Y APm U [K]-At > Xef — X0 (6)
k=1
where . is the desired SoC at departure, xg is the initial SoC at the start of charging, and
At is the duration of each time step.
To further ensure grid stability, the total power demand must not exceed the local
grid’s capacity or deviate significantly from the reference power.

Pk] < Pmax Vk @)

where Ppax is the maximum allowable power demand.

The optimization problem is solved iteratively using an MPC algorithm, which oper-
ates over a rolling horizon. The algorithm predicts future states of the system, including
grid conditions and electricity prices, and optimizes control actions accordingly. The control
actions Up,[k| are computed to minimize the objective function J, and only the first control
action is implemented, with the rest being recalculated at the next time step as new data
become available.

One of the distinguishing features of this methodology is its event-driven nature.
The MPC framework is designed to respond to specific events, such as the arrival of a
new EV, changes in electricity tariffs, or demand-response signals from the grid operator.
This allows the system to adapt in real-time, recalculating the optimal charging schedule
whenever an event occurs. This adaptability is crucial for managing the dynamic nature of
electricity demand and supply, particularly in grids with high penetration of renewable
energy sources.

Given the computational complexity associated with solving the optimization problem
at each time step, several strategies are employed to reduce the computational burden.
First, the prediction horizon N is kept relatively short, typically within a few hours, to
limit the number of variables and constraints in the optimization problem. Second, the
optimization is triggered by specific events rather than being recalculated continuously,
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reducing the frequency of computations. Finally, the optimization problem is decomposed
into smaller sub-problems that can be solved in parallel, leveraging modern multi-core
processors to expedite computation.

The performance of the proposed methodology was evaluated using a simulation
framework designed to replicate real-world conditions. The simulations used historical data
on electricity prices, grid load, and EV usage patterns to assess the effectiveness of the MPC
framework in various scenarios. These scenarios included high-demand periods, where a
large number of EVs arrive at charging stations during peak hours, and environments with
high penetration of renewable energy sources, such as solar and wind power. The system’s
flexibility was also tested by simulating different user preferences for charging times and
final SoC.

To evaluate the effectiveness of the proposed system, several key performance indica-
tors (KPIs) were used. These included the total electricity cost incurred by all users, the
system’s ability to maintain grid stability by minimizing deviations from the reference
power signal, and the level of user satisfaction, which was measured by the system'’s ability
to meet user preferences for charging without compromising on cost or grid stability.

The simulation results were validated against a baseline scenario where EVs were
charged using traditional methods without optimization. This comparison highlighted
the advantages of the MPC framework in terms of cost reduction, peak load mitigation,
and enhanced grid stability. The results demonstrated that the proposed methodology
is capable of dynamically adjusting to real-time changes in grid conditions and user de-
mands, making it a robust solution for managing the growing demand for electric vehicle
charging infrastructure.

4. Results

The proposed reference architecture for electric vehicle (EV) charging optimization
consists of several key components. These include the EV itself, the charging station (CS),
and the charging station control center (CSCC), each playing a critical role in manag-
ing energy flow and ensuring system efficiency. Below, we outline the components and
their interactions.

EV represents the consumer side of the system and is powered entirely by electricity.
The EV’s technical characteristics directly influence the efficiency and performance of the
charging process, including the following:

e  Battery capacity: The amount of energy stored in the EV’s battery, affecting how long
it can operate before needing to be recharged.

e  Battery performance: This refers to how efficiently the battery charges and discharges,
which impacts both the cost and speed of charging.

e  Charge level limits: Each EV has maximum and minimum allowable charge levels to
protect battery health and ensure optimal performance.

e  Charge/discharge rates: These rates determine the speed at which the EV’s battery can
charge or discharge, influencing how quickly the vehicle can be powered or contribute
to the grid.

While a deeper technical analysis can be found in sources like [48], this section focuses
on the essential components and their interactions with the grid.
Charging stations (CSs) are responsible for delivering power to the EVs and come in
two primary types:
e Slow charging, typically, around 3.3 kW, suited for overnight or long-term charg-
ing sessions.
e  Fast charging, ranges from 60 to 150 kW, designed for rapid charging in shorter periods.

The power flow from the charging station to the EV is not continuous and is limited
by standards and manufacturer specifications. Charging stations must also maintain
communication with the CSCC via the internet, allowing for real-time updates on charging
status, grid demands, and changes in electricity tariffs.
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CSCC functions as an aggregator and controller at the local area (LA) level. It plays
several key roles, including the following:

e Data aggregation: The CSCC receives real-time data from both EVs and the grid,
processing them to make informed decisions.

e  Control signal generation: Based on this data, the CSCC sends control signals to the
charging stations, adjusting charging rates according to current grid conditions, user
preferences, and market signals.

e  Optimization: The CSCC uses algorithms to balance EV charging needs with grid
stability requirements and economic opportunities, ensuring an efficient and cost-
effective charging process.

In conclusion, the key points are (i) integration: the CSCC plays a crucial role in
integrating EVs into the grid; (ii) flexibility: slow charging is often preferred for grid
flexibility due to its ability to better match supply and demand; (iii) communication:
reliable communication between EVs, CSs, and the CSCC is essential for efficient operation
(see Figure 1).

DSO/MARKET ACTORS
ST TSRS L S
1 . ELECTRICITY A Mgl |
- pmcevotuwe - FERIETY T ORERS AND BIDS

SIGNALS

g |

i EV IDENTIFICATION, | | CONTROL SIGNALSFOREVS !

| EXCHANGE OF SIGNALING | | CHARGE/DISCHARGE i

; INFORMATION ! OPERATION ;
EV FLEET

Figure 1. Logical interaction between the aggregator and other actors in the reference scenario.

4.1. Use Cases

The control system outlined is flexible and can handle a variety of use cases involving
different actors and objectives. Below are several key scenarios.

Basic case (charging request event—CR): When a driver arrives at a charging station,
they can initiate a charging request through the charging station’s dashboard or mobile
app. The system then calculates the optimal charging cost and provides control signals to
the CS to initiate the process.

Reservation event (RV): Drivers on the road can use a mobile app to reserve a charg-
ing slot at a station, specifying their estimated arrival time and charging preferences.
The system then pre-calculates optimal charging control and provides the driver with
cost estimates.

Demand-side management (DSM) event: Retailers notify the CSCC of changes in
energy tariffs or available power. The CSCC subsequently updates its control signals to the
charging stations and evaluates potential cost savings for flexible drivers.

Warning event (W): If a grid emergency occurs, a distribution system operator (DSO)
may instruct the CSCC to reduce the aggregated power withdrawal from EVs. The CSCC
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quickly adjusts the charging controls and recalculates optimal strategies once the emergency
has been resolved.

4.2. Operations and Approaches

A simplified version of the operational flow is presented. This version highlights the
key control aspects. Subsequently, we will delve into a refined version that incorporates
practical considerations for real-world implementation. While the underlying optimization
problem remains unchanged, the flow of operations is optimized.

4.2.1. Event-Driven Model Predictive Control (MPC) Approach

The event-driven MPC approach is based on a snapshot of the EV fleet at a specific
time. Each EV within this snapshot is characterized by three primary variables: (i) current
state: the current charge level of the EV’s battery; (ii) desired final state: the target charge
level set by the driver upon arrival at the charging station; (iii) departure time: the intended
departure time specified by the driver.

Assuming no additional EVs join the fleet, the open-loop optimal control problem
is solved to determine the optimal charging strategy for each EV. This strategy aims to
(i) satisfy driver preferences: fulfill the driver’s desired charge level and departure time,
if feasible; (ii) minimize costs: reduce overall charging costs; (iii) minimize tracking error:
ensure the EV’s actual charging trajectory closely follows the optimal plan.

The key inputs to this optimization problem include (i) the EV models: the specific
characteristics and capabilities of each EV, such as battery capacity and charging rate;
(ii) electricity tariff: the current pricing structure for electricity, including time-of-use rates
or other relevant factors; (iii) power reference and threshold: limits or constraints imposed
on the overall power consumption by the EV fleet.

Although the initial solution is open loop, its optimality can degrade due to events
that alter the initial conditions (e.g., new EVs arriving, changes in tariffs, power references,
or DSM events). To address this, an iterative optimization process is employed, like MPC.
Whenever a “relevant” event occurs, the optimization is repeated, and the newly calculated
control sequence replaces the unimplemented portion of the previous plan.

Note on DSO Communication: while DSO communication can occur before and after
each iteration for grid constraint retrieval and aggregated power notification, it may not be
necessary for every iteration, especially when the power reference is market-driven and
known beforehand. However, in specific situations where additional grid constraints or
technical validation can enhance grid efficiency, this interaction might be considered.

4.2.2. Refined Approach

While the event-driven approach effectively captures the functional aspects of the
control framework, certain refinements can optimize its practical implementation.

e  Real-time state measurements: To minimize transmission delays and ensure data avail-
ability, EV states should be measured continuously at each sampling time instant. This
proactive approach (continuous monitoring) allows the CSCC to have the necessary
information when an event triggers.

e  Batch processing of charging requests (CRs): (i) Queued CRs: to avoid synchronization
issues and delays in cost notifications, CRs can be queued and processed in batches;
(if) computational constraints: due to computational limitations, a single optimization
problem can be solved per sampling period. Therefore, CRs can be collected and
addressed in a unified optimization.

e  Optimized sampling frequency, balancing speed and efficiency: (i) The sampling
period should be carefully chosen to balance system responsiveness with computa-
tional efficiency. A smaller sampling period increases the number of optimization
variables, while a larger one may lead to longer waiting times; (ii) multiple control
updates: To reduce waiting times and avoid excessive computational burden while
handling multiple CRs, the control signals can be computed more than once (within a
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finite number) during the sampling period. This approach offers a trade-off between
responsiveness and computational efficiency.

To conclude, the refined approach aims to optimize efficiency by avoiding unnecessary
control re-computations for each CR. Instead, CRs are collected and processed in batches at
specific scheduled time instants within the sampling interval. This reduces computational
overhead, especially during periods of high CR activity.

Similarly, the states of all charging EVs are retrieved at the beginning of the sampling
interval, rather than after each CR. This minimizes data exchange and ensures that data
are available for control calculations at the scheduled time instants. Figure 2 illustrates the
flow of operations based on this refined approach.

IDEA: CSs STATUS UPDATE A7 THE BEGINNING OF THE SAMPLING INTERVAL.
BATCH MANAGEMENT OF CRs.

= = - LAST
o 1 o 2 W 3 COMPUTATION IN
o e - THE CURRENT

SAMPLING
SERIES OF CRs  SERIES OF CRs SERIES OF CRs 1 INTERVAL
3 * %
T T ‘ T
]
csce T csce T csce T
[k—1]T  coLLECTs COLLECTS COLLECTS kT
e.g.17:55  NEWCRs - NEW CRs - NEW CRs . | e.g. 18:00
NEW CRs AQUIRED NEW CRs AQUIRED
MEASUREMENT OF ! ! W CRe AGUIRED
THE STATE OF ALL REQ. GRID CONSTR. & REQ. GRID CONSTR. & +
CHARGING EVs PLANNED POWER PLANNED POWER REQ. GRID CONSTR. & PLANNED POWER
+ + +
COMPUTATION COMPUTATION COMPUTATION
A
EXPECTED PRICE EXPECTED PRICE EXPECTEDPRICE NOTIfICATIm TODRIVERS 3
NOTIFICATION TO DRIVERS 1 || NOTIFICATION TODRIVERS 2 | 1osnsmissION OF CONTROL SIGNAL TOALL
PLANNED POWER UPDATE PLANNED POWER UPDATE AR EL L
TO THE DSO TO THE DSO PLANNED POWER UPDATE TO THE DSO

Figure 2. Flow of operations according to the refined version of the control approach.

The following notation is introduced: (i) the primary sampling interval (T), i.e., the
sampling time of the discrete-time optimal control problem; (ii) the secondary sampling
interval (T*), i.e., the temporal distance of two consecutive points of computation within
the primary sampling interval. The UML time sequence diagram resulting from the above-
mentioned consideration is depicted in Figure 3.

The steps of the sequence can be summarized as follows:

Each active CS provides CSCC with the current level of battery.

The user makes a CR specifying UPs and CSCC collects it for the next computation.
CSCC asks DSO for grid constraints (optional).

DSO provides CSCC with the required data (optional).

CSCC provides the pending CSs with the estimated cost, as output of the computation.
CSCC provides all the pending CSs with the charging profile and updates all the
other ones under its contractual control.

CSCC provides DSO with the aggregated planned power (optional).

All CSs apply the received control signals.

MmO 0w R

T O

Depending on the size of the LA, the number of CSs the CSCC has to manage simulta-
neously and the related computational burdens, the event-driven approach, the refined one
or an intermediate version between them can be chosen for a practical implementation of
the control system, following the methodology detailed in the previous point.
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Figure 3. Use case 1: UML sequence diagram (refined approach).

4.2.3. Implementation Issues and Functional Requirements

The implementation of the system involves addressing various use cases and func-

tional requirements that dictate the primary operations the system must support to respond
to different scenarios. These requirements are as follows:

1.

Sending charging requests to the CSCC. The CS must send the charging request to the
CSCC (only in UC1). After the user has specified their user preferences (Ups), the CS
sends a charging request (CR) to the CSCC. A charging request (CR) consists of the
following data:

xRef: the desired level of charge.

S: the start time.

E: the preferred end time.

AP: the maximum allowed power consumption by the CS during charging (de-
pending on the selected plug).

o  X(S): the initial level of charge.

Obtaining the current battery charge level. The charging station (CS) must send the
current battery charge level to the CSCC at each sampling interval (all UC). When
an event triggers the CSCC, it needs to access the up-to-date charge levels of the
electric vehicles (EVs) that are currently being charged. In the detailed approach, this
information must be collected at every sampling point.

Implementing the control signal. The CS needs to implement the control signal
received from the CSCC (all UC). The control signal C[k] is a sequence defined in
discrete time, where at each time step k, it can take the following values:

e ¢ > 0: if the electric vehicle (EV) needs to draw power c-AP during the k-th
sampling interval.

e  (: for standby mode during the k-th sampling interval.

e 5<0:if the EV needs to return power s-AP during the k-th sampling interval.

The control is applied at the next possible sampling interval.

Storing charging requests. The CSCC is responsible for storing CRs (UC1 and UC2).
Whenever the CSCC receives a CR, it must save the request in its database. This stored
data will later be used by the CSCC to formulate the MPC problem.

Calculating control signals. The CSCC must generate control signals based on the
information it has (all UC). Every time the CSCC is activated by a CR, it must calculate
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and update the control signals for all electric vehicles (EVs) currently charging. The
CSCC performs a near-real-time optimization using the stored data. The result of this
optimization is the optimal control signal values C[k]. In the refined method, this
calculation occurs at each secondary sampling interval.

6.  ransmitting control signals. Once the optimization problem is solved, the CSCC sends
the control signals to the CSs (all UC). Whenever new control signals are generated,
the CSCC promptly sends them to the CSs.

4.3. Ad Hoc Solving Method

The mathematical programming formulation allows us to solve the optimization
problem using existing optimization solvers. These solvers come in two main categories:
commercial software, such as IBM ILOG CPLEX (version 22.1.1) and GUROBI Optimizer
(version 10.0), which are powerful tools known for their reliability and ability to handle
large-scale problems; and open-source software (like COIN-OR version 2.1.0 or GLPK
version 5.0), which are freely available and offer robust solutions.

These solvers leverage the strengths of mixed-integer linear programming (MILP) and
implement reliable algorithms. While these algorithms might be time-consuming, they
guarantee convergence to either the optimal solution or a good feasible solution.

A good feasible solution is one that is close enough to the optimal solution and
provides satisfactory results. The quality of such a solution is measured by its proximity to
the optimal value or an approximation of that value.

Note: The revised text removes unnecessary phrases and focuses on the key points;
using existing solvers (commercial and open source) to find optimal or good feasible
solutions for the formulated optimization problem. The references are included for those
who want to explore specific software options.

We validated the formulated optimization problem using two MILP solvers:

e IBM ILOG CPLEX. This commercial solver utilizes the well-known branch-and-cut
method, specifically branch-and-bound with cutting planes. This approach identifies
additional constraints that improve the optimization process. For detailed information
on these methods, refer to [49].

e GLPK (GNU Linear Programming Kit). This open-source solver uses the “GNU
MathProg” language, a subset of AMPL [www.ampl.com]. It translates problems
defined in this language and offers functionalities for solving linear, integer, and
mixed-integer linear programs.

This initial validation allowed us to carry out the following:

—_

Analyze and compare feasible solutions in the context of real-world scenarios.
Validate the optimization parameters and coefficients in the objective function.
3. Guide the optimization process towards the desired solution.

N

Both solvers successfully found optimal solutions for the simulated problems. How-
ever, IBM ILOG CPLEX exhibited significantly higher efficiency, solving problems up to
10 times faster than GLPK. To ensure efficient integration and facilitate interfacing into
the B.L. system, the proposed algorithm will be developed by means of the same pro-
gramming language of the system, i.e., PHP, in an object-oriented fashion. The basic idea
is to deploy the code as a library that will provide an algorithmic method to solve the
optimization problem.

The software will adopt the well-known model-view—controller pattern to ensure
separation between the modelling, the presentation and the processing of the data. From
this perspective, at each optimization, the steps our code will perform are as follows:

e  Populate the model with the information stored in the database (model).
e  Process the model according to the logic of the algorithm (controller).
e  Present the result of the processing to the system (view).

After introducing each provided class with details on attributes and data types, we
illustrate the class diagrams, and the sequence of operations performed when an event
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occurs. Finally, the structure of the database which will host the required information
is described.

Class Descriptions
The control system will expose the following classes:

GenericEvent: the base class for events that trigger a new optimization.
ChargingRequestEvent: triggered by a new charging request.

DSMEvent: triggered by changes in energy tariffs or power availability.
ChargingRequest: represents a charging request made by a user.

PowerlInfo: stores information about available power.

Energylnfo: stores information about the energy tariff.

CSCCPlanner: the main class responsible for launching the optimization process.
ChargingStation: represents the charging station involved in a request.
ElectricVehicle: represents the electric vehicle involved in a request.
OptimizationResult: the output of the algorithm, including control signals and ex-
pected costs for each charging request.

Table 1 details the input data required by the algorithm, along with their class, type,
and database storage location.

Table 1. Algorithm input data description.

Name Description Type Source
Xy Initial level of charge double Battery table
Battery Xinin Minimum level of charge (battery-specific) double Battery table
Xnax Maximum level of charge (battery-specific) double Battery table
¢ Battery performance coefficient double Battery table
APEV o Maximum charging/discharging power allowed by EV double EV models table
EVModel APEY . Minimum charging/discharging power allowed by EV double EV models table
) ) APSS 0 Maximum charging/discharging power allowed by the CS ~ double Charging station table
ChargingStation APCS i Minimum charging/discharging power allowed by the CS  double Charging station table
pef Desired mean power double Powerlnfo table
Powerlnfo p Maximum power available for EV fleet double Powerlnfo table
Energylnfo C Electricity tariff double Energylnfo table
X Desired level of charge double Charging request table
E Departure time slot (chosen by the driver) integer Charging request table
ChargingRequest S Arrival time slot integer =~ Charging request table
€ Tolerance factor for estimated cost double  Charging request table
f Flexibility Boolean  Charging request table
I Time slot of the last optimization integer CSCC planner table
U Trade-off parameter double CSCC planner table
CSCCPlanmer A Diagonal matrix double CSCC planner table
T Sampling time double CSCC planner table
M IDs of connected EV integer (calculated at runtime)
My IDs of connected EV at k-th time slot integer (calculated at runtime)

Table 2 shows the algorithm output data description. The generated output data must
be stored in the database for future optimization.
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Table 2. Algorithm output data description.

Control variable related to the charging operations

on the EV associated with the request double

OptimizationResult

(calculated

at runtime)

c Estimated cost associated with the request double

(calculated at runtime)

To conclude this subsection, Figure 4 shows the UML diagram illustrating the relation-

ship between the mentioned classes.

GenericEvent

+type: int

ChargingRequestEvent

+chRequest: ChargingRequest

csccprlanner

ChargingRequest -ChRequests: Array<ChargingRequest>
-electricityCost: EnergyInfo
-powerInfo: Powerlnfo

+samplingTime: double

+initTimeSlat: int

-lambda: double

-mu: double

+ev; Electricvehicle
+cs: ChargingStation
+arrivalTimeslot: int
+departureTimeSlot: int
+xRef: double
+iexible: boolean

| f +powRef: double

DSMEvent

+powerInfo: PowerInfo

+electricityCost: EnergyInfo

PowerlInfo

+powMax: double

+tolerance: double
+expectedCost: double
+finalCost: double
+appliedContral: String

i

ChargingStation ElectricVehicle

+startOptimization(): void

-optimize(): Array <OptimizationResult >
-getConnections(): Array <ChargingRequest >
-getConnectionsAtslot(l: int): Array <ChargingRequest >
-getTarifFAtSlot(k: int): EnergyInfo

-getPowerAtSlot{k: int): PowerInfo

+powMax: double
+powMin: double

+model: EVModel
+plugType: int
+energyContract: int

s

DptimizationResult

+chReguest: ChargingRequest
+control: String
+expectedCost: double

EvModel Battery
+battery: Battery +x0: double
+powMax; double = +xMax: double
+powMin: double +xMin: double

+perfFactor: double

Figure 4. UML diagram.

4.4. Sequence Diagram and Process Flow

\

EnergyInfo

+tariff: double

The interaction between the CSCC, EVs, and CSs follows a clear operational flow,
which can be visualized in the UML diagrams. The sequence begins with a charging
request (CR) sent from the user to the CSCC, followed by data retrieval, optimization, and
the transmission of control signals to the charging stations. This process ensures that all
EVs receive updated charging instructions tailored to current grid conditions and user
preferences (see Figure 5). The following steps outline the sequence of operations that occur

after a charging request is initiated at the charging station:

The user at the charging station sends a charging request to the system (1).
The system stores the request in the database and launches the optimization calling

the method provided by the planner (2, 3, 4).

The planner must fill the model with the updated data stored in the database (5 and 6).

The planner starts the optimization process (7).

When completed, the planner stores the result in the database and notifies the system

(8,9, and 10).

e  The system sends the updated control data to all the active charging stations, including

the cost for the one that makes the request (11).
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Figure 5. UML sequence diagram when a CR occurs.

A similar process occurs during DSM events, where the system adapts to grid demands
by altering the power allocated to charging stations. These operational flows highlight
the flexibility and responsiveness of the control system in handling diverse real-world
scenarios (see Figure 6).

CHARGING STATION | USER SYSTEM DATABASE CSCC PLANNER
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; >
] I 31 retrievelnputs() U

o4
u 4 queryResult :
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: 5 : optimize()

6 : storeQutputs()

<4
U 7+ queryResult
_______________________;,I

U‘ 8 optimizat\ohComp\eted()
4

k

u" 9 : sendOptimizationR esult()

Figure 6. UML sequence diagram when a DSM occurs.
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The sequence of operations is almost identical to the charging request case. The only
difference is that, in this case, the event that starts the process is triggered internally by
the system, and the output of the algorithm does not include any cost notification for the
users. Regarding database modeling, as previously mentioned, the model is built based
on updated information stored in the database. Each element required by the algorithm is
constructed from the class definitions and then populated with the stored values.

4.5. Field Testing and Validation

The initial data used to validate our model originate from the interoperability infor-
mation system between FEVs, whose charging system is optimized, and the smart grid,
where the event-driven model predictive control is implemented. This system was tested
in Ljubljana (Slovenia), as part of the final pilot results of the Mobincity project [50].

The pilot test fields were divided into two main categories. The first, called partial
validation, included software validation and the testing of specific functionalities, such
as route recovery and updating, as well as the reservation module. These functionalities
were tested as a preliminary step before moving on to the second phase. The second phase,
system integration, focused on testing long-chain functionalities that involved almost all
components and participants in the pilot.

Key system features tested included trip planning for various detailed use cases and
re-routing processes when needed for demand-side management. This phase considered
constraints such as traffic conditions, user behavior, and battery status. The pilot tested
the effectiveness of the predictive control model in lowering charging costs and enhancing
energy system stability.

Figure 7 shows the geographic area selected for field testing, encompassing all the
necessary energy and transport infrastructure to ensure the system’s proper functioning
and validate its full range of functionalities.

® ® o
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. ®
.
) °
.
% 0
. oo
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Leaflet | © OpenStreetMap contributors © CARTO

Figure 7. Geographic area selected for the field tests, in Ljubljana (Slovenia). The red shaded
area represents the pilot study area, with blue points indicating parking houses and green points
representing charging stations.

5. Discussion and Conclusions

This paper introduces an advanced demand-side management (DSM) system aimed
at optimizing electric vehicle (EV) charging at public charging stations through a novel
event-driven model predictive control (MPC) approach. The system’s ability to dynamically
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adjust to real-time grid conditions, electricity prices, and user preferences highlights its
potential as a crucial component in the management of modern smart grids. The results
from extensive simulations demonstrate that the proposed system not only effectively
reduces charging costs for users but also significantly enhances grid stability by mitigating
peak loads and efficiently managing the distribution of energy demand.

The integration of such a DSM system into smart city infrastructures represents a
forward-thinking solution for the challenges posed by the growing adoption of EVs. As
urban areas increasingly prioritize sustainable and efficient energy management, the ability
to balance electricity demand and supply in real-time becomes critical. The MPC-based
DSM system proposed in this study addresses these needs by optimizing charging sched-
ules, thereby supporting the stable operation of the grid while also providing cost savings
for end-users. This dual benefit positions the system as a key enabler in the development
of sustainable urban energy solutions.

Another important consideration is the integration of the proposed DSM system
with existing payment systems in the market. Synchronizing the charging infrastructure
with widely used payment platforms will be essential for the practical implementation of
the system in real-world scenarios. This includes enabling seamless payment processing
through mobile apps, contactless payments, and other digital wallets commonly used
by EV owners. A key challenge will be ensuring that the system is compatible with the
dynamic nature of energy tariffs and billing structures. Future iterations of the DSM system
should prioritize the development of secure, scalable, and user-friendly payment interfaces
that can adapt to real-time price fluctuations while providing a smooth user experience.
This integration will further enhance the adoption of the system by making it easier for EV
users to interact with charging services and manage costs effectively.

However, while the system shows great promise, it is important to recognize and
address its limitations. One notable limitation is the assumption of a uniform electricity
tariff across all charging events. In reality, energy costs can vary significantly based on
factors such as time of day, location, and market conditions. Future iterations of the
system should incorporate variable tariffs to more accurately reflect the complexities of real-
world energy markets. Additionally, the current model does not fully integrate renewable
energy sources, which are becoming increasingly prevalent in modern power systems. The
inclusion of renewable energy considerations in the DSM framework could further enhance
the system’s ability to reduce costs and improve grid stability, particularly in regions with
high penetration of solar and wind power.

Additionally, the current model does not fully integrate renewable energy sources,
which are becoming increasingly prevalent in modern power systems. The inclusion
of renewable energy considerations in the DSM framework could further enhance the
system’s ability to reduce costs and improve grid stability, particularly in regions with high
penetration of solar and wind power. By leveraging renewable energy, the DSM system
could optimize charging times to coincide with periods of excess renewable generation,
helping to balance supply and demand while minimizing reliance on fossil fuels. This
would not only stabilize the grid but also contribute to reducing the overall carbon footprint
of urban energy systems.

Future research should focus on expanding the capabilities of the DSM system to
address these limitations. This includes refining the system’s algorithms to enhance its
efficiency and scalability, particularly in large-scale deployments involving thousands of
EVs. Moreover, integrating renewable energy sources into the control framework will
be essential for maximizing the system’s environmental and economic benefits. Another
area of future exploration is the development of a standardized business and regulatory
framework for DSM in smart cities. Establishing such a framework will be crucial for
facilitating the widespread adoption of DSM technologies and ensuring their effective
operation across diverse regulatory environments.
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