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Abstract
The rapid urbanization observed over recent decades has led to important chal-
lenges in urban mobility, notably traffic congestion, pollution, and inefficient energy 
consumption. Concurrently, the rise in electric vehicles (EVs) offers a promising 
shift towards sustainable urban transport yet introduces complexities such as the 
need for extensive charging infrastructure and effective energy demand manage-
ment. This study addresses these challenges by proposing a predictive model for 
real-time and future traffic volume estimation, leveraging historical data, real-time 
information, scheduled city events, and the availability of EV charging infrastruc-
ture. The methodology proposed employs actuarial techniques to create a com-
prehensive framework that predicts traffic patterns and optimizes energy resources 
within smart cities. By integrating variables such as historical traffic patterns and 
real-time data, our model provides accurate traffic forecasts essential for urban plan-
ning and energy distribution. We utilize a time-series based algorithm to predict 
traffic, validated through real data from pilot projects in Ljubljana, Slovenia. The 
study’s findings underscore the model’s potential to enhance urban mobility and 
energy efficiency, providing a robust tool for city planners and policymakers.

Keywords  Urban mobility · Electric vehicles · Traffic prediction · Smart cities · 
Energy management · Predictive modelling
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1  Introduction

Over the past few decades, the increasing global urbanization has led to an unprec-
edented rise in urban mobility (Miskolczi et al. 2021). This phenomenon has exacer-
bated traffic problems in cities around the world, resulting in congestion, increased 
pollution, and inefficient energy consumption (Lu et al. 2021). Concurrently, the surge 
in electric vehicles (EVs) represents a substantial transformation in urban transport, 
promoting more sustainable mobility (Dlugosch et al. 2022), though it introduces 
new and significant challenges, such as the need for adequate charging infrastructure 
(Aduama et al. 2023; Gauglitz et al. 2020) and efficient energy demand management 
(Bibri and Krogstie 2020).

The urbanization phenomenon is closely linked to population growth in major 
urban centres. Every year, millions of people worldwide relocate to cities, seeking 
better job opportunities, education, and essential services (Hamnett 2024; Salov and 
Semerikova 2023). This has led to a substantial increase in population density in 
urban areas, further intensifying the challenges related to mobility and traffic man-
agement (Zhang et al. 2023). Demographic projections indicate that this trend toward 
concentration in major urban centres will continue to grow (Wang and Long 2023), 
necessitating innovative and effective solutions to accommodate an ever-increasing 
number of residents and vehicles in the same urban space.

In this context, access to and analysis of large volumes of mobility data become essen-
tial tools to address these challenges. The ability to predict traffic volume in different 
areas and at different times can facilitate not only urban planning and traffic manage-
ment but also the optimization of the electrical supply network and the distribution of the 
energy resources needed to support the growth of the electric vehicle fleet.

This paper proposes an innovative method that uses advanced data analysis tech-
niques and predictive modelling to estimate traffic volume in real-time and with 
future projections. This method integrates variables such as historical traffic patterns, 
real-time information, scheduled city events, and the availability of EV charging 
infrastructure, among others. With our proposal, we aim to offer a tool that not only 
improves traffic management and urban mobility but also optimizes the allocation of 
energy resources in an increasingly electrified urban environment.

Our methodology leverages applied quantitative techniques and actuarial analysis 
to construct a thorough framework aimed at solving mobility-related issues, with a 
specific focus on traffic management within the Smart City context. By identifying 
patterns and formulating informed predictions about future occurrences, we address a 
longstanding and common social challenge, especially in relation to various interop-
erability strategies within a smart city.

We propose an adaptive algorithm embedded in time series to predict traffic and 
explore whether accuracy can be improved by addressing the problem in a continuous 
self-improvement manner. We assess the accuracy of the proposed error estimations using 
real data to improve interoperability in the city. This approach not only aims to enhance 
the responsiveness and efficiency of urban infrastructures but also to foster sustainable 
and adaptive development in the face of the growing challenges of modern urbanization.

The structure of this paper is outlined as follows: Sect. 2 provides a review of 
related work. In Sect. 3, we analyze the issues that need addressing and introduce 
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our proposed model. Sections 4 and 5 delve into the validation and design of a time-
series system for traffic prediction, which is to be integrated into the mobility model 
for Smart Cities. Section  6 is dedicated to the development of model validation, 
while Sect. 7 discusses a practical case study to estimate the prediction error. Finally, 
Sect. 8 offers some conclusions and outlines potential future lines of research.

2  Background

Smart cities are redefining urban management by leveraging advanced technologies 
to address challenges related to mobility, energy, and environmental sustainability 
(Wu et al. 2021). As cities face increasing urbanization and energy demands, smart 
mobility and efficient traffic management become essential components for enhanc-
ing the quality of urban life (Zhao et al. 2017). Smart mobility systems, supported 
by large volumes of data and wireless connectivity, enable more effective traffic 
management, and optimize transport flows to reduce congestion. Cassandras (2017) 
demonstrates how Connected Automated Vehicles (CAVs) can increase efficiency at 
traffic-light-free intersections, optimizing traffic coordination and minimizing usual 
delays and congestion in large cities. Chatfield and Reddick (2016) examine how 
smart cities, using information infrastructures and distributed renewable energies 
such as smart microgrids, significantly contribute to the reduction of carbon emis-
sions in urban environments, promoting more sustainable and efficient development.

In addition to improving mobility, efficient energy management in smart cities 
is crucial for the sustainability and efficiency of urban mobility systems. Ejaz et al. 
(2017) discuss the importance of efficient energy management in the context of the 
Internet of Things (IoT) in smart cities, providing a framework for energy optimi-
zation and harvesting, which is essential for extending the lifespan of low-power 
devices used in urban infrastructure.

The need to reduce energy consumption and CO2 emissions becomes even more 
critical in the context of smart cities. Mekhum (2020) highlights cities, which con-
tribute to 70% of global CO2 emissions, must adopt the concept of Smart Energy 
City (SEC) to radically address energy demand through renewable sources. Abdallah 
and El-Shennawy (2013) also emphasize the relevance of smart grids for improving 
energy efficiency and facilitating the integration of renewable energies. On the other 
hand, Badai (2021) proposes innovative solutions such as the use of autonomous 
electric vehicles and the management of residual energies to optimize energy con-
sumption and reduce CO2 emissions.

Various methods/technologies have been proposed/used recently with the same 
goal: to try to reduce the energy needs derived from mobility in cities. Chen et al. 
(2022) propose an efficient and smart street lighting system based on IoT architec-
ture, which uses smart electric poles with sensors to adjust LED lamps through a 
controller that optimizes energy use based on traffic flow and the presence of occu-
pants. In Pieroni et al. (2018), there is a discussion on how to improve the Quality of 
Life (QoL) and the Quality of Services (QoS) in cities through the use of Informa-
tion and Communication Technologies (ICT) to collect and analyze large amounts of 
data, with a particular focus on the implementation of a Smart Energy Grid that uses 
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Blockchain technology to facilitate the exchange of information and the buying/sell-
ing of energy among involved nodes.

Together, these technologies and strategies not only aim to solve the immediate 
problems of congestion and energy management but also seek to ensure the long-
term sustainability of urban environments. By integrating smart mobility systems 
with advanced energy management, smart cities can transform into models of effi-
ciency, sustainability, and high quality of life for their citizens. Nevertheless, efficient 
energy management in large cities is a very complex problem (Guo et al. 2022), and 
it is necessary to propose new methods that can improve interoperability between 
different technologies and platforms used. These methods should focus on optimizing 
energy consumption, integrating renewable sources, and adapting systems to chang-
ing demand patterns. For this, it is crucial to develop algorithms that not only manage 
energy resources efficiently in real-time but also anticipate future needs based on 
predictive analysis and historical data.

The mobility model presented in this document, based on a traffic prediction algo-
rithm, addresses an issue that has not yet been deeply treated in the literature: the impact 
of electric vehicles concerning the energy needs in the city. This model is necessary to 
complete our initial algorithms that attempted to predict energy demand in the city and 
estimate the availability of energy supply in the network of charging stations.

The preliminary results of this research were presented in Fernandez et al. (2018), 
where we began to design different parts of the algorithms to manage the energy sup-
ply in the network of charging stations in the city. However, many points needed to be 
improved in these algorithms to make electric vehicles interoperate with the city not 
only to control and manage the energy supply from a control center but also to design 
and integrate a required traffic forecast system, which had not been considered at that 
time due to its mathematical complexity.

3  Prediction Problem to be Addressed and Proposed Model

As mentioned, it is of paramount importance to describe traffic management in the Smart 
City. This will allow us to reach conclusions on how to develop a new interoperability 
model that lets us predict behavior and that self-learns from itself to optimize all available 
resources. This problem posed an innovative challenge to the entire European society.

The formulation of the problem requires, on one hand, a mathematical description 
of the traffic movements in the city at each time t , and, on the other hand, proceed-
ings to obtain the real recurrences in the traffic. This leads to the definition of patterns 
whose similarities are analyzed with actuarial tools and allow us to find predictions 
based on the traffic measured at the current time and before.

Let Ft  be the random variable representing the units of vehicle volume per unit of 
time, such as ‘vehicles per hour’ or ‘vehicles per day’, at time t . In other words, the 
traffic prediction at time t . So, these units allow traffic flow to be analyzed at specific 
time intervals and help evaluate density and usage patterns on a given transportation 
network. It can be built then a family of continuous random variables depending on 
time. To avoid working with continuous variables like time, we decide to discretize 
this family of continuous variables. To do this, we sample at certain times of the day, 
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represented by slots. Let J = {k ∈ Z}k≤ t  be the set of indexes associated to these 
slots. We have therefore got a series of random variables {Ft}t∈ J  dependent on each 
other and temporarily ordered.

As Ft  depends on the traffic measurement at time t− i , i > 0, we can say that 
Ft = φ

(
{Ft−n}n≥ 1

)
, being φ  the function of recurrence representing that depen-

dence. So, without loss of generality, we can approximate φ  by a linear combination 
of {Ft−n}n≥ 1, becoming necessary to ensure that this linear dependence is valid for a 
forecast of traffic as close as possible to reality. Using the so called simple and partial 
autocorrelation functions, we do it in the next section.

When approximating φ
(
{Ft−n}1≤ n≤ p

)
 for the commented linear combination 

of {Ft−n}n≥ 1 we can write the error made as follows:

	
φ

(
{Ft−n}1≤ n≤ p

)
∼= approx

(
{Ft−n}1≤ n≤ p

)
= a0 +

∑
p
k=1ak Ft−k � (1)

where {ai}1≤ i≤ p  are the dependency coefficients between the current traffic forecast 
and the previous one.

	
ε t = Ft − approx

(
{Ft−n}1≤ n≤ p

)
= Ft −

(
a0 +

∑
p
k=1ak Ft−k

)
� (2)

Therefore Ft  can be written as the time series:

	 Ft = a0 +
∑

p
k=1ak Ft−k + ε t � (3)

Hence the estimation model of traffic forecast at time t is defined by this formulation, 
autoregressive of order p, as it can be seen in Frees et al. (2014) and author (year).

The p + 1 parameters {aj}pj=0 define the lineal regression function 
f
(
{Ft−k}pk=1, {aj}

p
j=0

)
 = approx

(
{Ft−k}pk=1, {aj}

p
j=0

)
 which best approximates 

Ft  from {Ft−k}pk=1 . To find the value of these parameters we will require that the 
mean square error when approximating Ft  for f

(
{Ft−k}1≤ k≤ p

)
 is minimum.

Let M  be the number of data obtained from the traffic measurements in previous 
slots. The function to minimize is then the following one:

	 MSE (f ) =

√
1

M

∑
M
t=1( f (Ft−k, 1 ≤ k ≤ p)− Ft)

2 =

√
1

M

∑
M
t=1

(
a0 +

∑
p
k=1ak Ft−k − Ft

)2� (4)

Without loss of generalization, it is the same to minimize MSE (f ) as to minimise 
its square. Therefore, this will lead us to minimize its square to simplify the associ-
ated calculations:
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E = (MSE (f ))2

=
1

M

∑
M
t=1( f (Ft−k, 1 ≤ k ≤ p)− Ft)

2

=
1

M

∑
M
t=1

(
a0 +

∑
p
k=1ak Ft−k − Ft

)2

= E (a0, a1, . . . , ap)

� (5)

To minimize this non-linear expression, the critical points of this new error function 
E  must be obtained. To achieve our results and according to Frees et al. (2014), we 
will match the gradient of E  to zero. This implies calculating the roots of each one 
of the partial derivatives of the error function.

	
∂ E

∂ a0
= 0 →

∑
M
t=12

(
a0 +

∑
p
k=1ak Ft−k − Ft

)
= 0� (6)

	
∂ E

∂ ai
= 0 →

∑
M
t=12

(
a0 +

∑
p
k=1ak Ft−k − Ft

)
Ft−i = 0 , 1 ≤ i ≤ p � (7)

Developing these p + 1 equations, the coefficients {ai}pi=0 will be found by solving 
the next system.

	

{
M a0 +

∑ p
k=1ak

(∑
M
t=1Ft−k

)
=

∑
M
t=1Ft

a0
∑

M
t=1Ft−i +

∑ p
k=1ak

(∑
M
t=1Ft−kF t−i

)
=

∑
M
t=1FtF t−i , 1 ≤ i ≤ p

}
� (8)

In this way, by using algorithms to solve systems of linear equations, we obtain the 
coefficients for the traffic prediction approximation in each time slot. This allows 
us, in the next step, to estimate the potential error by validating the proposed model.

4  Methodology to Validate the Proposed Model

In the same way as the traffic measurement at time t  depends on predicted traffic in 
previous slots, it is important to note that the error in predicting traffic at t  also natu-
rally depends on the prediction error from previous slots. To examine the relationship 
between the traffic prediction at a given slot i  and the prediction i  slots earlier, we 
calculate the simple autocorrelation coefficient of order i , as expressed below:

	
SACi [(Ft − µ )(Ft−i − µ )] = ri =

∑
M
t=1(Ft − µ )(Ft−i − µ )

(p − i)
∑

M
t=1(Ft − µ )2/p

, � (9)

where µ  represents the mean of the random variable Ft . This mean is easily obtained 
from the historical traffic data provided by the prediction algorithm, which is designed 
and described in the following section.

This set of coefficients rn  come from the simple autocorrelation function (SAF) 
for our purpose in the urban model. The SAF will be a sequence where SAF (n) = rn
, 1 ≤ n ≤ p , being SAF (0) = r0 = 1 .
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However, the SAF is not enough to validate the prediction of traffic at slot n
. It is also necessary to remove the possible effect of intermediate results between 
two given predictions. To achieve our goal, it is vital to follow the proceeding it is 
designed.

Once obtained the simple autocorrelation coefficients rn , the Yule-Walker (Kallas 
et al. 2013) equations let us state that these rn  are a linear combination of {rj}j<n , 
the smallest order autocorrelation coefficients:

	 rn =
∑

p
i=1α irn−i , 1 ≤ n ≤ p � (10)

The partial autocorrelation coefficients sn , and so the proportionality constants α i , 
can be calculated as follows:

	
s1 = r1

[
r0 r0
r1 r1

]−1 [
r1
r2

]
=

[
*
α 2

]
, s2 = α 2




r0 r1 r2
r1 r0 r1
r2 r1 r0





−1 


r1
r2
r3



 =




*
*
α 3



 , s3 = α 3�(11)

The partial autocorrelation function (PAF) for our problem is therefore defined with 
the coefficients sn , being obtained recurrently. These coefficients of order n , sn , 
show the correlation between two samples separated in n slots when the linear depen-
dence between the two samples is suppressed due to intermediate values.

Both functions, SAF and PAF, validate the autoregressive model of order p  
because the SAF coefficients do not cancel out quickly while the first PAF coeffi-
cients define a rapidly convergent recurrence to zero. This implies that the behavior 
of the considered time series follows a linear autoregressive model of at least order 2 
(according to the consequences of Yule-Walker equations), that is, p ≥ 2.

5  Traffic Forecasting Time-Series Based Algorithm

To design the time-series based algorithm to predict the traffic, the boundary con-
ditions to determine the prediction tasks are required. These initial conditions are 
defined by different factors influencing the traffic behavior like tourist movements, 
school holidays, destination, temperature during the day, among others. Through 
direct observation, the traffic movements in the city present a repetitive daily pattern:

	● A stationary behavior is ensured from a statistical point of view.
	● The same pattern can be observed in traffic during working days, for instance. 

This leads us to guarantee that traffic behavior is similar in the week.

Once obtained the time series Ft = a0 +
∑ p

k=1ak Ft−k + ε t  and developed the pro-
cedure to validate its dependence by analyzing the SAF and PAF related functions, 
the next step is to discriminate Ft  into two components, one related to stochastic 
information and the other one with stationary information, being the first one not fea-
sible to calculate precisely. This last part of Ft  is the one characterizing the behavior 
and traffic variations between apparently similar days. The methodology we have 
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developed to forecast the traffic, the final data series, at any moment t , is composed 
by the next processed (shown in Fig. 1) we have defined to design the associated 
algorithm:

i.	 Once collected the data associated to the traffic in previous moments (historic 
data) it is of paramount importance to calculate the mean values at each moment 
t  defined. This series composed by the mean values will be called stationary or 
deterministic part of the process.

ii.	 Next step will consist of subtracting these mean values ​​from the (real) data that 
we have at t . So we can get the traffic variations at each time t  of the day. This 
second series will be called stochastic traffic data in our process.

�These two first steps build our model we will apply recurrently to proceed with 
an ecological inference, as we can see in the next steps:

a.	 Firstly, the mean square error between the traffic variations at time t  and 
those obtained in the stochastic data series will be minimized. So the traffic 
variations in the next slots will be able to be approximated. The more rel-
evant step in this calculation is the previous step where the stochastic part is 
obtained.

b.	 The model will be modified with the new coefficients calculated, leading then 
to a new model. Therefore, a new series is generated to compare with the 
previous ones.

c.	 These comparisons lead to a continuous modification of the stochastic time 
series, which give us the ones related to the different slots of the day.

Fig. 1  Traffic prediction algorithm
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iii.	 Finally, the addition of this calculated stochastic parts and the deterministic part 
obtained in the first step will let us get the prediction of traffic at the moment t , 
given as a time series.

To see convergence, the procedure will need a few hundred iterations for our traffic 
prediction model. To get a more accurate estimate, we can:

	● Experiment with different hyperparameters and model architectures to find the 
optimal configuration for the specific dataset and problem.

	● Monitor the training process and adjust hyperparameters as needed to improve 
convergence.

	● Use early stopping to prevent overfitting and reduce training time.

By carefully considering these factors, our traffic prediction algorithm will be opti-
mized for efficient convergence.

6  Model Validation

The initial data we used to obtain the final data and validate our model come from the 
interoperability information system between full electric vehicles and the smart grid, 
implemented and tested in Ljubljana (Slovenia) as part of the final pilot results of the 
European MOBINCITY project (Mobincity 2015). The MOBINCITY project (“Smart 
Mobility in Smart City”), funded by the European Union under Grant Agreement Num-
ber 314,328, aimed to develop solutions for integrating electric vehicles into the smart 
city environment, optimizing both energy management and user experience. The plat-
form developed enabled electric vehicles to dynamically connect to the grid and coordi-
nate energy consumption based on resource availability and grid requirements.

The tests fields for the pilot were divided into two main categories. The first group was 
called partial validation, and it included the software validation and testing some func-
tionalities such as recovering and updating the route or the reservation module that had 
to be tested as a first step to the second group of tests. The second group (system integra-
tion) of field tests was focused on testing long-chain functionalities involving almost all 
the components and actors available for the pilot. The main functionalities of the system 
were tested, including the trip planning and the re-routing process considering several 
constraints, like the traffic status, the user behavior, or the batteries status.

Figure 2 shows the geographic area selected for the field tests, which includes all 
the energy and transport infrastructure information required to make the system work 
and validate all its functionalities. The simulation scenario considers various environ-
mental and operational parameters:

	● Weather: clear skies with dry road conditions, according to the day we have taken 
as reference, April 2, 2023, as explained above.

	● Traffic data: real-time traffic data collected from sensors, cameras, and GPS de-
vices is incorporated to accurately monitor flow within different areas, especially 
the pilot area highlighted in the figure. These data were provided for us by the city 
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hall of Ljubljana, as explained.
	● Infrastructure: charging stations marked in green, providing critical points for en-

ergy demand analysis, while parking facilities are indicated in blue. The parking 
facilities are particularly important for the study as they account for periods when 
EVs are stationary. Moreover, the positions of the CS (charging stations) will be 
constraints to consider not only in this study but also to implement our results in 
the cities in Europe, where our research is focused.

	● Historical traffic data: historical traffic information for similar conditions is also 
used to enhance model accuracy and support more robust predictions. As ex-
plained before, this will be used to apply our study to other cases, maybe more 
complex, being our research important reference to proceed.

This setup enables a realistic and comprehensive assessment of the system’s perfor-
mance under actual urban conditions.

Fig. 2  Selected geographic area for field tests in Ljubljana, Slovenia. The yellow shaded region marks 
the pilot study zone, while blue points indicate parking facilities and green points denote charging 
stations
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7  Continuous Self-improvement of the Model Based on Error 
Estimation

Based on the data discussed in the previous section, we analyzed the time series for 
a full day (April 2, 2023), including the original data, the stationary data, and the 
resulting stochastic data. For this day, we first calculated the SAF of our series Ft

, finding that the SAF values should not be considered significant according to the 
Yule-Walker equations. This SAF shows slow convergence and includes too many 
significant terms, with the coefficients not converging rapidly to zero. As previously 
noted, this indicates that the dependency model should be linear autoregressive. To 
determine the exact order of dependency or autoregression, it is essential to conduct 
an additional analysis using the PAF, generally aiming for a model order below 5. 
To demonstrate how to estimate prediction error, we present a practical case using a 
second-order autoregressive model (p = 2), defined as follows:

	 Ft = 0.7Ft−1 − 0.3Ft−2� (12)

Starting with this initial time series, we determine the coefficients for a new time 
series using the designed algorithm. This involves using the initial model and mini-
mizing the mean square error, as previously described. The updated coefficients then 
create a refined model, which is used to generate a new series for comparison with 
the previous one. The resulting model is:

	 Ft = 0.651Ft−1 − 0.2985Ft−2� (13)

This model allows for the generation of new data series iteratively. The output of 
Eq.  (13) serves to create a stochastic time series for different times of the day, as 
shown in Fig. 1. The final traffic prediction series at time t  is obtained by adding this 
stochastic component to the deterministic part calculated in the initial step, where we 
derived average values for each time of day.

For this study, we use traffic data from a specific simulation day, April 2, 2023, 
provided by the city hall of Ljubljana (Slovenia). In this context, traffic intensity is 
measured in terms of vehicular flow (vehicles per hour or per unit of time) or vehicu-
lar density (number of vehicles per kilometer). In our model, we express intensity as 
a percentage, using the average value as a reference point.

In the following figures, we illustrate both the stationary data series (after calculat-
ing average values for each time of day from historical data) and the final data series, 
representing the traffic prediction at three different times of day.

Figure 3 corresponds to traffic data from April 2, 2023, recorded at 2:15 AM (sam-
ple 27) and the traffic prediction derived from the previous sample’s data.

Similarly, Fig. 4 displays traffic data from the same day (April 2, 2023) at 11:35 
AM (sample 139) along with the traffic prediction based on prior sample data.

Finally, Fig. 5 shows traffic data from April 2, 2023, at 11:15 PM (sample 279) and 
the corresponding prediction derived from the preceding sample.

From this analysis, we observe that the prediction error remains within an accept-
able range, demonstrating the practical calculation of prediction error, though further 
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improvement is possible. To further reduce the error, the order of dependency p  
would need to be higher than 2. As we incorporate more historical data, our pre-
diction accuracy will continue to improve, enabling us to refine traffic forecasts 
continuously.

Fig. 4  The predicted series (shown in red) is compared against the observed traffic sample (in blue). 
Sample number 139, April 2, 2023, 11:35 AM

 

Fig. 3  The predicted series (shown in red) is compared against the observed traffic sample (in blue). 
Sample number 27, April 2, 2023, 02:15 AM

 

1 3



A New Approach to Interoperability within the Smart City Based on…

8  Conclusions and Future Work

This study presents a robust framework for urban traffic management and energy resource 
allocation within the context of Smart Cities, leveraging advanced data analysis tech-
niques and predictive modeling. The developed methodology enables accurate real-time 
and future traffic pattern predictions, providing an essential tool for urban planning. This 
approach also contributes to optimizing energy distribution within the EV charging net-
work, maximizing efficient use of energy resources in urban environments.

Our model also introduces a continuous self-improvement capability based on error 
estimation, allowing real-time adjustments as new data is collected. This flexibility is cru-
cial for managing variability and fluctuating traffic demands in densely populated urban 
areas. Additionally, it complements our previous work (Fernandez and Pérez 2024), 
which addresses EV charging control in the context of demand-side energy management 
through a predictive control approach. Together, these studies offer a broader framework 
that considers both traffic flow optimization and energy distribution for EVs, aligning 
charging operations with periods of lower traffic and demand.

From a practical perspective, implementing this model provides significant bene-
fits for urban mobility planning and management by offering real-time traffic data and 
predictive analysis, key elements for decision-making in growing cities. The simul-
taneous optimization of the EV charging network ensures efficient energy supply, 
reduces peak demand, promotes sustainable mobility, and enhances overall energy 
efficiency across the city.

As future work, we will consider incorporating covariates as blocking factors for dif-
ferent prediction models, which will expand the model’s scope and improve its accu-
racy by capturing additional elements that influence traffic. Examples of such covariates 

Fig. 5  The predicted series (shown in red) is compared against the observed traffic sample (in blue). 
Sample number 279, April 2, 2023, 11:15 PM
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include weather conditions, school schedules, or major city events, which can signifi-
cantly impact daily and hourly traffic patterns. For instance, incorporating weather as a 
covariate could improve predictions by accounting for variations in traffic flow due to 
rain or extreme temperatures, while school schedules and major events could explain and 
adjust for localized surges in traffic. This extension will further position our contributions 
within the state of the art in traffic prediction, in line with the existing literature.

Additionally, our research will focus on expanding the model’s scope to include 
high-power vehicles, such as buses, vans, and electric trucks, which constitute 
a significant component of urban transport systems. We also envision integrating 
the charging system with smart home technologies, improving energy efficiency in 
residential areas. Another promising direction is applying our model to other sec-
tors, such as agriculture, facilitating optimal energy distribution and usage across a 
broader range of activities within Smart Cities. Through these future developments, 
we anticipate that our model will advance traffic and energy management systems 
and contribute to the sustainable development of urban environments globally.
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