Sobre operadores cíclico convexos

T. Bermúdez, A. Bonilla * and N. Feldman

* Departamento de Analisis Matematico Universidad de La Laguna

Introducción

Definición

Un operador lineal y continuo T en un espacio de Banach X se dice hiperciclico(débilmente hiperciclico) si existe un vector $x \in X$, cuya órbita $\{T^nx : n = 0, 1, \cdots\}$ es densa (con la topología débil) en X.

Introducción

Definición

Un operador lineal y continuo T en un espacio de Banach X se dice hiperciclico(débilmente hiperciclico) si existe un vector $x \in X$, cuya órbita $\{T^nx : n = 0, 1, \cdots\}$ es densa (con la topología débil) en X.

Definición

Un operador lineal y continuo T en un espacio de Banach X se dice ciclico(cíclico convexo) si existe un vector $x \in X$, tal que el conjunto de las combinaciones lineales finitas de la órbita $\{p(T)x : p \text{ polinomio }\}$ (el conjunto de las combinaciones lineales convexas de la órbita $\{p(T)x : p \text{ polinomio convexo}\}$ es denso en X.

Introducción

Definición

Un operador lineal y continuo T en un espacio de Banach X se dice hiperciclico(débilmente hiperciclico) si existe un vector $x \in X$, cuya órbita $\{T^nx : n=0,1,\cdots\}$ es densa (con la topología débil) en X.

Definición

Un operador lineal y continuo T en un espacio de Banach X se dice ciclico(cíclico convexo) si existe un vector $x \in X$, tal que el conjunto de las combinaciones lineales finitas de la órbita $\{p(T)x : p \text{ polinomio }\}$ (el conjunto de las combinaciones lineales convexas de la órbita $\{p(T)x : p \text{ polinomio convexo}\}$ es denso en X.

 $hiperciclico \Rightarrow w - hiperciclico \Rightarrow ciclico \ convexo \Rightarrow ciclico$

H. Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, **438** (2013), 4190-4203.

H. Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, **438** (2013), 4190-4203.

Cuestión

Es todo operador ciclico convexo en un espacio infinitamente dimensional débilmente hiperciclico?

H. Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, **438** (2013), 4190-4203.

Cuestión

Es todo operador ciclico convexo en un espacio infinitamente dimensional débilmente hiperciclico?

Cuestión

Si $S: X \to X$ es un operador ciclico convexo en un espacio infinitamente dimensional, entonces es S^n un operador ciclico-convexo para todo entero n > 1?

H. Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, **438** (2013), 4190-4203.

Cuestión

Es todo operador ciclico convexo en un espacio infinitamente dimensional débilmente hiperciclico?

Cuestión

Si $S: X \to X$ es un operador ciclico convexo en un espacio infinitamente dimensional, entonces es S^n un operador ciclico-convexo para todo entero n > 1?

Teorema

Un operador diagonal en \mathbb{C}^m is ciclico convexo si y solo si tiene m autovalores distintos no reales fuera del disco unidad cerrado.

Un operador $T \in L(X)$ se dice Cesaro-hiperciclico si existe un vector $x \in X$ tal que el conjunto

$$\left\{\frac{x+Tx+\cdots+T^{N-1}x}{N},\ N\in\mathbb{N}\right\}$$

es denso en X.

F. León-Saavedra, Operators with hypercyclic Cesaro means. Studia Math. **152** (2002), no. 3, 201–215.

Un operador $T \in L(X)$ se dice hiperciclico con soporte N si existe un vector $x \in X$ tal que el conjunto

$$\left\{ T^{k_1}x + T^{k_2}x + \dots + T^{k_N}x : k_1, \dots, k_N \in \mathbb{N} \right\}$$

es denso en X.

Un operador $T \in L(X)$ se dice hiperciclico con soporte N si existe un vector $x \in X$ tal que el conjunto

$$\left\{ T^{k_1} x + T^{k_2} x + \dots + T^{k_N} x : k_1, \dots, k_N \in \mathbb{N} \right\}$$

es denso en X.

O equivalentemente

$$\left\{\frac{T^{k_1}x+T^{k_2}x+\cdots+T^{k_N}x}{N} : k_1, \ldots, k_N \in \mathbb{N}\right\}$$

es denso en X.

F. Bayart and G. Costakis, Cyclic operators with finite support, Israel J. of Math., **193**(2013), 131-167.

Definición

Sea $\varepsilon \in (0,1)$ y $T: X \to X$ un operador lineal y continuo. Un vector $x \in X$ se dice es un vector ε -hiperciclico para T si para todo vector no nulo $y \in X$ existe un entero no negativo n tal que

$$||T^nx-y|| \le \varepsilon ||y||.$$

T se dice es ε -hiperciclico si tiene un vector ε -hiperciclico

C. Badea, S. Grivaux, V. Muller, Epsilon-hypercyclic operators. Ergodic Theory Dynam. Systems **30** (2010), no. 6, 1597-1606.

F. Bayart, Epsilon-hypercyclic operators on a Hilbert space. Proc. Amer. Math. Soc. **138** (2010), no. 11, 4037-4043.

Definición

Sea $\varepsilon \in (0,1)$ y $T: X \to X$ un operador lineal y continuo. Un vector $x \in X$ se dice es un vector ε -hiperciclico para T si para todo vector no nulo $y \in X$ existe un entero no negativo n tal que

$$||T^nx-y|| \le \varepsilon ||y||.$$

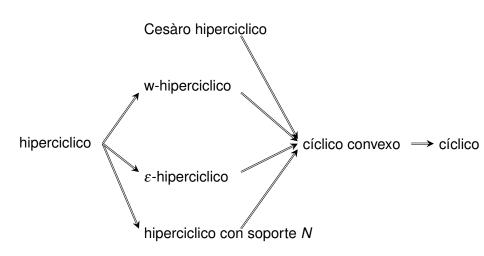
T se dice es ε -hiperciclico si tiene un vector ε -hiperciclico

C. Badea, S. Grivaux, V. Muller, Epsilon-hypercyclic operators. Ergodic Theory Dynam. Systems **30** (2010), no. 6, 1597-1606.

F. Bayart, Epsilon-hypercyclic operators on a Hilbert space. Proc. Amer. Math. Soc. **138** (2010), no. 11, 4037-4043.

Teorema

Todo vector ε -hiperciclico es un vector ciclico convexo.



La caracterización Hahn-Banach para ciclico convexos

Teorema (La caracterización Hahn-Banach para operadores ciclico convexos)

Sea X un espacio localmente convexo sobre \mathbb{C} o \mathbb{R} , $T: X \to X$ un operador lineal y continuo, y $x \in X$. Entonces son equivalentes:

- x es un vector ciclico convexo para T .
- Para todo funcional lineal y continuo f en X tenemos que

$$\sup Re(f(Orb(T,x))) = \infty.$$

La caracterización Hahn-Banach para ciclico convexos

Teorema (La caracterización Hahn-Banach para operadores ciclico convexos)

Sea X un espacio localmente convexo sobre \mathbb{C} o \mathbb{R} , $T:X\to X$ un operador lineal y continuo, y $x\in X$. Entonces son equivalentes:

- 1 x es un vector ciclico convexo para T.
- Para todo funcional lineal y continuo f en X tenemos que

$$\sup Re(f(Orb(T,x))) = \infty.$$

Definición

Un operador se dice 1-débilmente hiperciclico si existe x tal que para todo funcional lineal y continuo f en X tenemos que (f(Orb(T,x))) es densa en \mathbb{C} .

N. S. Feldman, N-weakly hypercyclic and n-weakly supercyclic operators, J. Funct. Anal. 263 (2012), no. 8, 2255–2299.

La caracterización Hahn-Banach para ciclico convexos

Teorema (La caracterización Hahn-Banach para operadores ciclico convexos)

Sea X un espacio localmente convexo sobre \mathbb{C} o \mathbb{R} , $T:X\to X$ un operador lineal y continuo, y $x\in X$. Entonces son equivalentes:

- 1 x es un vector ciclico convexo para T.
- Para todo funcional lineal y continuo f en X tenemos que

$$\sup Re(f(Orb(T,x))) = \infty.$$

Definición

Un operador se dice 1-débilmente hiperciclico si existe x tal que para todo funcional lineal y continuo f en X tenemos que (f(Orb(T,x))) es densa en \mathbb{C} .

N. S. Feldman, N-weakly hypercyclic and n-weakly supercyclic operators, J. Funct. Anal. 263 (2012), no. 8, 2255–2299.

Teorema

Si T es un operador ciclico convexo en un espacio localmente convexo X, entonces T tiene rango denso

Demostración.

Sea x un vector ciclico convexo para T y rango de T no denso.

Entonces existe un funcional f tal que $f(R(T)) = \{0\}$ y sup $Re(f(Orb(T,x)) = \infty$.

Absurdo porque $\sup Re(f(Orb(T,x)) = \sup Re(\{f(x),0\}) < \infty$.

Teorema

Si T es ciclico convexo en X y c > 1, entonces cT es ciclico convexo. Además todo vector ciclico convexo para T es ciclico convexo para cT.

Demostración.

Sea x un vector ciclico convexo para T, entonces sup $Re(f(T^nx)) = \infty$.

$$c > 1$$
, $\sup Re[f((cT)^n x)] = \sup c^n Re[f(T^n x)] \ge \sup Re[f(T^n x)] = \infty$.

Por la caracterización Hahn-Banach, x es ciclico convexo para cT. \Box

Corolario

En cualquier espacio de Banach existe un operador ciclico convexo que no es 1-débilmente hiperciclico.

Demostración.

Sea T= I+K hiperciclico con K compacto then 2T es ciclico convexo y no 1-débilmente hiperciclico.

Operadores ciclico convexos cuyo cuadrado no lo es

S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem. J. Operator Theory **54** (2005), no. 1, 147-168.

Teorema

Sea T un operador hiperciclico en un espacio de Banach separable e infinito dimensional. Las siguientes afirmaciones son equivalentes:

- \bullet $T \oplus T$ es hiperciclico.
- \bigcirc $T \oplus T$ is ciclico.

Operadores ciclico convexos cuyo cuadrado no lo es

S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem. J. Operator Theory **54** (2005), no. 1, 147-168.

Teorema

Sea T un operador hiperciclico en un espacio de Banach separable e infinito dimensional. Las siguientes afirmaciones son equivalentes:

- \bullet $T \oplus T$ es hiperciclico.
- 2 $T \oplus T$ is ciclico.
- F. Bayart and G. Costakis, Cyclic operators with finite support, Israel J. of Math., **193**(2013), 131-167.
- S. Shkarin, Orbits of coanalytic Toeplitz operators and weak hypercyclicity, arXiv:1210.3191

Teorema

Sea T un operador hiperciclico en un espacio de Banach separable. Entonces $T \oplus -T$ es hiperciclico con soporte 2 y 1-débilmente hiperciclico

Corolario

Si T un operador hiperciclico en un espacio de Banach separable tal que $T \oplus T$ no es hiperciclico, entonces $T \oplus -T$ es ciclico convexo y $(T \oplus -T)^2$ no es ciclico.

Demostración.

Supongamos que T es hiperciclico tal que $T \oplus T$ no lo es . Entonces $T \oplus T$ no es ciclico.

Por tanto $(T \oplus -T)^2 = (T \oplus T)^2$ tampoco.

Corolario

Si T un operador hiperciclico en un espacio de Banach separable tal que $T \oplus T$ no es hiperciclico, entonces $T \oplus -T$ es ciclico convexo y $(T \oplus -T)^2$ no es ciclico.

Demostración.

Supongamos que T es hiperciclico tal que $T \oplus T$ no lo es . Entonces $T \oplus T$ no es ciclico.

Por tanto $(T \oplus -T)^2 = (T \oplus T)^2$ tampoco.

F. León-Saavedra, M. P. Romero de la Rosa, Powers of convex-cyclic operators, Abstract and Applied Analysis, volume **2014** (2014), Article ID 631894, 3 pages.

$$\mu > 1, \lambda I \oplus \mu B$$
 en $\mathbb{C} \oplus I^p$

Diagonal Operators and Adjoint Multiplication Operators

Teorema

Sea $T: X \to X$ un operador lineal y continuo en un espacio Fréchet real o complejo . Son equivalentes:

- T tiene un conjunto denso de vectores ciclico convexos.
- ② Para cualquier par de abiertos U, V en X, existe un polinomio convexo p tal que $p(T)U \cap V \neq \emptyset$.
- **3** T tiene un G_{δ} denso de vectores ciclico convexos.

<u>Te</u>orema

Sea $\{T_k: X_k \to X_k\}_{k=1}^{\infty}$ una sucesión de operadores uniformemente acotados en una sucesión de espacios de Banach $\{X_k\}_{k=1}^{\infty}$ tal que para todo $n \ge 1$, el operador $S_n = \bigoplus_{k=1}^n T_k$ on $X^{(n)} = \bigoplus_{k=1}^n X_k$ tiene un

conjunto denso de vectores ciclico convexos. Entonces $T = \bigoplus_{k=1}^{n} T_k$

tiene un conjunto denso de vectores ciclico convexos en $X^{(\infty)} = \bigoplus_{k=1}^{\infty} X_k$.

Demostración.

Veamos que T es tiene un conjunto denso de vectores ciclico convexos. Es suficiente ver que si U y V dos abiertos no vacios en $X^{(\infty)}$, then $p(T)U \cap V \neq \emptyset$.

Demostración.

Veamos que T es tiene un conjunto denso de vectores ciclico convexos. Es suficiente ver que si U y V dos abiertos no vacios en $X^{(\infty)}$, then $p(T)U\cap V\neq\emptyset$.

Puesto que los vectores en $X^{(\infty)}$ con un número finito de coordenadas no nulas son densos en X, podemos elegir $x=(x_k)_{k=1}^{\infty}$ e $y=(y_k)_{k=1}^{\infty}$ en $X^{(\infty)}$ tal que $x_k=0$ e $y_k=0$ $\forall k\geq N$ con $x\in U$ e $y\in V$.

Demostración.

Veamos que T es tiene un conjunto denso de vectores ciclico convexos. Es suficiente ver que si U y V dos abiertos no vacios en $X^{(\infty)}$, then $p(T)U \cap V \neq \emptyset$.

Puesto que los vectores en $X^{(\infty)}$ con un número finito de coordenadas no nulas son densos en X, podemos elegir $x=(x_k)_{k=1}^{\infty}$ e $y=(y_k)_{k=1}^{\infty}$ en $X^{(\infty)}$ tal que $x_k=0$ e $y_k=0$ $\forall k\geq N$ con $x\in U$ e $y\in V$.

Puesto que S_N tiene un conjunto denso de vectores ciclico convexos en $X^{(N)}$, existe un vector $u=(u_1,u_2,\ldots,u_N)\in X^{(N)}$ tal que u es un vector ciclico convexo para S_N y (u_1,u_2,\ldots,u_N) está proximo a (x_1,x_2,\ldots,x_N) asi que el vector infinito $\hat{u}=(u_1,u_2,\ldots,u_N,0,0,\ldots)\in U$. Puesto que S_N tiene un conjunto denso de vectores ciclico convexos , existe un polinomio convexo tal que $p(S_N)(u_1,u_2,\ldots,u_N)$ está tan cerca de (y_1,y_2,\ldots,y_N) tal que $p(T)\hat{u}\in V$.

Teorema

Sea T un operador normal diagonalizable en un espacio de Hilbert separable (real o complejo)con autovalores $\{\lambda_k\}_{k=1}^{\infty}$.

- (a) Si el espacio de Hilbert es complejo, entonces T es ciclico convexo si y solo si los autovalores $\{\lambda_k\}_{k=1}^{\infty}$ son distintos $\forall k \geq 1$, $|\lambda_k| > 1$ y $Im(\lambda_k) \neq 0$.
- (b) Si el espacio de Hilbert es real, entonces T es ciclico convexo si y solo si los autovalores $\{\lambda_k\}_{k=1}^{\infty}$ son distintos $\forall k \geq 1$ y $\lambda_k < -1$.

(a) Si T es ciclico convexo con vector ciclico convexo $x=(x_n)_{n=1}^{\infty}\in\ell^2_{\mathbb{C}}(\mathbb{N})$, entonces $\forall k\geq 1$ tenemos que

$$\infty = \sup_{n \ge 1} Re(\langle T^n x, e_k \rangle) = \sup_{n \ge 1} Re(\lambda_k^n x_k).$$

(a) Si T es ciclico convexo con vector ciclico convexo $x=(x_n)_{n=1}^{\infty}\in\ell^2_{\mathbb{C}}(\mathbb{N})$, entonces $\forall k\geq 1$ tenemos que

$$\infty = \sup_{n \ge 1} Re(\langle T^n x, e_k \rangle) = \sup_{n \ge 1} Re(\lambda_k^n x_k).$$

Esto implica que $x_k \neq 0$ y que $|\lambda_k| > 1$ para cada $k \geq 1$ y distintos.

(a) Si T es ciclico convexo con vector ciclico convexo $x=(x_n)_{n=1}^{\infty}\in\ell^2_{\mathbb{C}}(\mathbb{N})$, entonces $\forall k\geq 1$ tenemos que

$$\infty = \sup_{n \ge 1} Re(\langle T^n x, e_k \rangle) = \sup_{n \ge 1} Re(\lambda_k^n x_k).$$

Esto implica que $x_k \neq 0$ y que $|\lambda_k| > 1$ para cada $k \geq 1$ y distintos.

$$\infty = \sup_{n \geq 1} Re\left(\langle T^n x, \frac{-i}{\overline{x_k}} e_k \rangle\right) = \sup_{n \geq 1} Re\left(\lambda_k^n x_k \frac{i}{x_k}\right) = \sup_{n \geq 1} Re(i\lambda_k^n) \ .$$

Por tanto $Im(\lambda_k) \neq 0, \forall k \geq 1$.

Inversamente supongamos que $\forall k \geq 1$ tenemos que $|\lambda_k| > 1$ y $Im(\lambda_k) \neq 0$.

Entonces $\forall n \geq 1$, sea $T_n := diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ la matriz diagonal sobre \mathbb{C}^n donde λ_k es la k^{th} entrada diagonal.

Entonces $\forall n \geq 1$, sea $T_n := diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ la matriz diagonal sobre \mathbb{C}^n donde λ_k es la k^{th} entrada diagonal. Puesto que los autovalores

 $\{\lambda_k\}_{k=1}^{\infty}$ son distintos y $|\lambda_k| > 1$ y $Im(\lambda_k) \neq 0$ para $1 \leq k \leq n$, Por Rezai T_n es ciclico convexo en \mathbb{C}^n y todo vector con todas la coordenadas no nulas es ciclico convexo para T_n .

Entonces $\forall n \geq 1$, sea $T_n := diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ la matriz diagonal sobre \mathbb{C}^n donde λ_k es la k^{th} entrada diagonal. Puesto que los autovalores

 $\{\lambda_k\}_{k=1}^{\infty}$ son distintos y $|\lambda_k| > 1$ y $Im(\lambda_k) \neq 0$ para $1 \leq k \leq n$, Por Rezai T_n es ciclico convexo en \mathbb{C}^n y todo vector con todas la coordenadas no nulas es ciclico convexo para T_n .

Por tanto T_n tiene un conjunto denso de vectores ciclico convexos en $\mathbb{C}^n \, \forall n \geq 1$.

Entonces $\forall n \geq 1$, sea $T_n := diag(\lambda_1, \lambda_2, ..., \lambda_n)$ la matriz diagonal sobre \mathbb{C}^n donde λ_k es la k^{th} entrada diagonal. Puesto que los autovalores

 $\{\lambda_k\}_{k=1}^{\infty}$ son distintos y $|\lambda_k| > 1$ y $Im(\lambda_k) \neq 0$ para $1 \leq k \leq n$, Por Rezai T_n es ciclico convexo en \mathbb{C}^n y todo vector con todas la coordenadas no nulas es ciclico convexo para T_n .

Por tanto T_n tiene un conjunto denso de vectores ciclico convexos en $\mathbb{C}^n \, \forall n \geq 1$.

Por tanto T tiene un conjunto denso de vectores ciclico convexos

Teorema

Sea $S:=\{re^{i\theta}:r>1\ and\ 0<|\theta|<\pi\}=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R}).$ Supongamos T es un operador lineal y acotado en un espacio de Banach complejo X y que T tiene un conjunto numerable de autovectores linealmente independientes cuyas combinaciones lineales finitas son densas en X tal que los correspondientes autovalores son distintos y estan contenidos en S. Entonces T es ciclico convexo y tiene un conjunto denso de vectores ciclico convexos.

Supongamos que $\{v_n\}_{n=1}^{\infty}$ es un conjunto numerable de autovectores linealmente independientes cuyas combinaciones lineales finitas son densas en X tal que los correspondientes autovalores $\{\lambda_n\}_{n=1}^{\infty}$ son distintos y estan contenidos en S y $\sum_{n=1}^{\infty} \|v_n\|^2 < \infty$.

Supongamos que $\{v_n\}_{n=1}^{\infty}$ es un conjunto numerable de autovectores linealmente independientes cuyas combinaciones lineales finitas son densas en X tal que los correspondientes autovalores $\{\lambda_n\}_{n=1}^{\infty}$ son distintos y estan contenidos en S y $\sum_{n=1}^{\infty} \|v_n\|^2 < \infty$.

Sea D la matriz diagonal en $\ell^2(\mathbb{N})$ cuya n^{th} entrada diagonal es λ_n . Definamos $A:\ell^2(\mathbb{N})\to X$ by $A(\{a_n\}_{n=1}^\infty)=\sum_{n=1}^\infty a_nv_n$.

$$||A(\{a_n\}_{n=1}^{\infty})|| = \left\|\sum_{n=1}^{\infty} a_n v_n\right\| \le \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} ||v_n||^2\right)^{1/2} = C||\{a_n\}_{n=1}^{\infty}||a_n|^2$$

Supongamos que $\{v_n\}_{n=1}^{\infty}$ es un conjunto numerable de autovectores linealmente independientes cuyas combinaciones lineales finitas son densas en X tal que los correspondientes autovalores $\{\lambda_n\}_{n=1}^{\infty}$ son distintos y estan contenidos en S y $\sum_{n=1}^{\infty} \|v_n\|^2 < \infty$.

Sea D la matriz diagonal en $\ell^2(\mathbb{N})$ cuya n^{th} entrada diagonal es λ_n . Definamos $A:\ell^2(\mathbb{N})\to X$ by $A(\{a_n\}_{n=1}^\infty)=\sum_{n=1}^\infty a_nv_n$.

$$||A(\{a_n\}_{n=1}^{\infty})|| = \left\|\sum_{n=1}^{\infty} a_n v_n\right\| \le \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} ||v_n||^2\right)^{1/2} = C||\{a_n\}_{n=1}^{\infty}||a_n|^2$$

Tenemos que A tiene rango denso y AD = TA por tanto T es ciclico convexo y tiene un conjunto denso de vectores ciclico convexos.

Corollary

Sea G un conjunto abierto en $\mathbb C$ con componentes $\{G_n\}_{n\in J}$, $\mathscr H$ un espacio de Hilbert de funciones analíticas con nucleo reproductor sobre G y φ un multiplicador de $\mathscr H$. Si φ es no constante sobre todas las componentes de G y $\varphi(G_n)\cap\{z\in\mathbb C:|z|>1\}\neq\emptyset$ para todo $n\in J$, entonces M_φ^* es ciclico convexo en $\mathscr H$ y tiene un conjunto denso de vectores ciclico convexos.

Veamos que las combinaciones lineales finitas de los autovectores de M_{φ}^* con autovalores en $\mathcal{S}=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R})$ son densas en \mathscr{H} .

Veamos que las combinaciones lineales finitas de los autovectores de M_{φ}^* con autovalores en $S=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R})$ son densas en \mathscr{H} .

Si $\lambda \in G$ y K_{λ} es el nucleo reproductor para \mathscr{H} en el punto $\lambda \in G$ entonces

$$M_{\varphi}^* K_{\lambda} = \overline{\varphi(\lambda)} K_{\lambda}$$

Veamos que las combinaciones lineales finitas de los autovectores de M_{φ}^* con autovalores en $S=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R})$ son densas en \mathscr{H} .

Si $\lambda \in G$ y K_{λ} es el nucleo reproductor para \mathscr{H} en el punto $\lambda \in G$ entonces

$$M_{\varphi}^* K_{\lambda} = \overline{\varphi(\lambda)} K_{\lambda}$$

 $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ es un subconjunto abierto de G_n y φ no aplica $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ en \mathbb{R} . Luego $\forall n \in J$, $E_n = \{\lambda \in G_n : |\varphi(\lambda)| > 1$ y $\varphi(\lambda) \notin \mathbb{R}\}$ es un subconjunto abierto de G_n . Sea $E := \bigcup_{n \in J} E_n$.

Para toda componente G_n of G, φ es no constante en G_n , por tanto

Veamos que las combinaciones lineales finitas de los autovectores de M_{φ}^* con autovalores en $\mathcal{S}=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R})$ son densas en \mathscr{H} .

Si $\lambda \in G$ y K_{λ} es el nucleo reproductor para \mathscr{H} en el punto $\lambda \in G$ entonces

$$M_{\varphi}^* K_{\lambda} = \overline{\varphi(\lambda)} K_{\lambda}$$

 $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ es un subconjunto abierto de G_n y φ no aplica $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ en \mathbb{R} . Luego $\forall n \in J$, $E_n = \{\lambda \in G_n : |\varphi(\lambda)| > 1$ y $\varphi(\lambda) \notin \mathbb{R}\}$ es un subconjunto

Para toda componente G_n of G, φ es no constante en G_n , por tanto

 $\forall \lambda \in E$, K_{λ} es un autovector para M_{φ}^* con autovalor $\overline{\varphi(\lambda)}$ que yace en $S = \mathbb{C} \setminus (\overline{\mathbb{D}} \cup \mathbb{R})$.

abierto de G_n . Sea $E := \bigcup_{n \in \mathcal{A}} E_n$.

Veamos que las combinaciones lineales finitas de los autovectores de M_{φ}^* con autovalores en $S=\mathbb{C}\setminus(\overline{\mathbb{D}}\cup\mathbb{R})$ son densas en \mathscr{H} .

Si $\lambda \in G$ y K_{λ} es el nucleo reproductor para \mathscr{H} en el punto $\lambda \in G$ entonces

$$M_{\varphi}^* K_{\lambda} = \overline{\varphi(\lambda)} K_{\lambda}$$

Para toda componente G_n of G, φ es no constante en G_n , por tanto $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ es un subconjunto abierto de G_n y φ no aplica $\{\lambda \in G_n : |\varphi(\lambda)| > 1\}$ en \mathbb{R} . Luego $\forall n \in J$, $E_n = \{\lambda \in G_n : |\varphi(\lambda)| > 1$ y $\varphi(\lambda) \notin \mathbb{R}$ } es un subconjunto

Luego $\forall n \in J$, $E_n = \{\lambda \in G_n : |\varphi(\lambda)| > 1 \text{ y } \varphi(\lambda) \notin \mathbb{R}\}$ es un subconjunto abierto de G_n . Sea $E := \bigcup_{n \in J} E_n$.

 $\forall \lambda \in E, K_{\lambda}$ es un autovector para M_{φ}^* con autovalor $\overline{\varphi(\lambda)}$ que yace en $S = \mathbb{C} \setminus (\overline{\mathbb{D}} \cup \mathbb{R}).$

Puesto que $E \cap G_n$ es un abierto no vacio $\forall \in J$, entonces las combinaciones lineales finitas de $\{K_{\lambda} : \lambda \in E\}$ son densas en \mathscr{H} .

Puesto que φ es no constante en E_n para cada $n \in J$, podemos elegir un conjunto numerable $\{\lambda_{n,k}\}_{k=1}^{\infty}$ en E_n que tiene un punto de acumulación en E_n y φ es inyectiva sobre $\{\lambda_{n,k}\}_{n=1}^{\infty}$.

Puesto que φ es no constante en E_n para cada $n \in J$, podemos elegir un conjunto numerable $\{\lambda_{n,k}\}_{k=1}^{\infty}$ en E_n que tiene un punto de acumulación en E_n y φ es inyectiva sobre $\{\lambda_{n,k}\}_{n,k=1}^{\infty}$.

Entonces $\{K_{\lambda_{n,k}}\}_{n,k=1}^{\infty}$ es un conjunto numerable de autovectores linealmente independientes cuyo combinaciones lineales finitas son densas en \mathscr{H} tal que los correspondientes autovalores son distintos y estan contenidos en S.

Puesto que φ es no constante en E_n para cada $n \in J$, podemos elegir un conjunto numerable $\{\lambda_{n,k}\}_{k=1}^{\infty}$ en E_n que tiene un punto de acumulación en E_n y φ es inyectiva sobre $\{\lambda_{n,k}\}_{n,k=1}^{\infty}$.

Entonces $\{K_{\lambda_{n,k}}\}_{n,k=1}^{\infty}$ es un conjunto numerable de autovectores linealmente independientes cuyo combinaciones lineales finitas son densas en \mathscr{H} tal que los correspondientes autovalores son distintos y estan contenidos en S.

Por tanto M_{φ}^{*} es ciclico convexo en \mathscr{H} y tiene un conjunto denso de vectores ciclico convexos.

Example

Sea M_{2+z}^* en $H^2(\mathbb{D})$.

 M_{2+z}^* no es 1-weakly-hypercyclic (Skharin)

 M_{2+7}^* es ciclico convexo.

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Si $\sigma_p(T^*) = \emptyset$ es cierto.

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Si $\sigma_p(T^*) = \emptyset$ es cierto.

Si T es un operador diagonal en un espacio de Hilbert también

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Si $\sigma_p(T^*) = \emptyset$ es cierto.

Si T es un operador diagonal en un espacio de Hilbert también

Cuestión

Si T es ciclico convexo entonces (-1)T es ciclico convexo?

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Si $\sigma_p(T^*) = \emptyset$ es cierto.

Si T es un operador diagonal en un espacio de Hilbert también

Cuestión

Si T es ciclico convexo entonces (-1)T es ciclico convexo?

Si T2 es ciclico convexo es cierto

Cuestión

Si T es ciclico convexo entonces T tiene un conjunto denso de vectores ciclico convexos?

Si $\sigma_p(T^*) = \emptyset$ es cierto.

Si T es un operador diagonal en un espacio de Hilbert también

Cuestión

Si T es ciclico convexo entonces (-1)T es ciclico convexo?

Si T2 es ciclico convexo es cierto

Si T es ciclico convexo entonces, como de grande puede ser el espectro puntual de T^* ? Puede tener interior no vacio?

Si T es ciclico convexo entonces, como de grande puede ser el espectro puntual de T^* ? Puede tener interior no vacio?

Si T^n es ciclico convexo $\forall n$, el espectro puntual de T^* tiene interior vacio.

Si T es ciclico convexo entonces, como de grande puede ser el espectro puntual de T^* ? Puede tener interior no vacio?

Si T^n es ciclico convexo $\forall n$, el espectro puntual de T^* tiene interior vacio.

Cuestión

Dado un espacio de Banach separable X, existe un operador ciclico convexo S en X tal que S^2 no lo es?

Si T es ciclico convexo entonces, como de grande puede ser el espectro puntual de T^* ? Puede tener interior no vacio?

Si T^n es ciclico convexo $\forall n$, el espectro puntual de T^* tiene interior vacio.

Cuestión

Dado un espacio de Banach separable X, existe un operador ciclico convexo S en X tal que S^2 no lo es?