On Random Unconditional Convergence in rearrangement invariant spaces

Guillermo P. Curbera

Universidad de Sevilla

December 12, 2014

XIII Encuentro de Análisis Funcional Murcia-Valencia Homanaje a Richard Aron en su 70 cumpleaños Valencia

Authorship

Joint work with:

Authorship

Joint work with:

Sergey V. Astashkin (Samara State University, Russia)

Konstantin E. Tikhomirov (University of Alberta, Canada)

Random Unconditional Convergence

- Random Unconditional Convergence
- RUC in functions spaces

- Random Unconditional Convergence
- RUC in functions spaces
- 3 An extension of a result by DSS

- Random Unconditional Convergence
- RUC in functions spaces
- An extension of a result by DSS

• Recall: a series $\sum x_n$ in a Banach space X converges unconditionally if for every reordering $\sigma \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum x_{\sigma(n)}$$
 converges.

• Recall: a series $\sum x_n$ in a Banach space X converges unconditionally if for every reordering $\sigma \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum x_{\sigma(n)}$$
 converges.

Equivalently conditions are:

• Recall: a series $\sum x_n$ in a Banach space X converges unconditionally if for every reordering $\sigma \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum x_{\sigma(n)}$$
 converges.

- Equivalently conditions are:
 - (a) Subseries convergence, if for every $A \subset \mathbb{N}$ the series

$$\sum_{n\in A} x_n$$
 converges.

• Recall: a series $\sum x_n$ in a Banach space X converges unconditionally if for every reordering $\sigma \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum x_{\sigma(n)}$$
 converges.

- Equivalently conditions are:
 - (a) Subseries convergence, if for every $A \subset \mathbb{N}$ the series

$$\sum_{n \in A} x_n \quad \text{converges.}$$

(b) Sign convergence, if for every choice of signs $\varepsilon_n=\pm 1$ the series

$$\sum \varepsilon_n x_n$$
 converges.

• Recall: a series $\sum x_n$ in a Banach space X converges unconditionally if for every reordering $\sigma \colon \mathbb{N} \to \mathbb{N}$ the series

$$\sum x_{\sigma(n)}$$
 converges.

- Equivalently conditions are:
 - (a) Subseries convergence, if for every $A \subset \mathbb{N}$ the series

$$\sum_{n \in A} x_n \quad \text{converges.}$$

- (b) Sign convergence, if for every choice of signs $\varepsilon_n = \pm 1$ the series $\sum \varepsilon_n x_n$ converges.
- (c) Bounded multiplier convergence, if for every scalars $|a_n| \le M$ the series

$$\sum a_n x_n$$
 converges.

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$.

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(t) e^{int} \text{ converges in } L^2(\mathbb{T})$$

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(t) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

• This is not so for $L^p(\mathbb{T})$ with $1 \le p < \infty$ and $p \ne 2$.

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

- This is not so for $L^p(\mathbb{T})$ with $1 \le p < \infty$ and $p \ne 2$.
- However, for $2 the trigonometric system is a basis in <math>L^p(\mathbb{T})$

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

- This is not so for $L^p(\mathbb{T})$ with $1 \le p < \infty$ and $p \ne 2$.
- However, for $2 the trigonometric system is a basis in <math>L^p(\mathbb{T})$ satisfying, for every $f \in L^p(\mathbb{T})$, that

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^p(\mathbb{T})$$

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

- This is not so for $L^p(\mathbb{T})$ with $1 \le p < \infty$ and $p \ne 2$.
- However, for $2 the trigonometric system is a basis in <math>L^p(\mathbb{T})$ satisfying, for every $f \in L^p(\mathbb{T})$, that

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^p(\mathbb{T})$$

for almost every choice of signs $\varepsilon_n = \pm 1$.

• The trigonometric system $\{e^{int}\}_{-\infty}^{+\infty}$ is an unconditional basis in $L^2(\mathbb{T})$. So, given any $f \in L^2(\mathbb{T})$:

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^2(\mathbb{T})$$

for every choice of signs $\varepsilon_n = \pm 1$.

- This is not so for $L^p(\mathbb{T})$ with $1 \le p < \infty$ and $p \ne 2$.
- However, for $2 the trigonometric system is a basis in <math>L^p(\mathbb{T})$ satisfying, for every $f \in L^p(\mathbb{T})$, that

$$\sum_{-\infty}^{+\infty} \varepsilon_n c_n(f) e^{int} \text{ converges in } L^p(\mathbb{T})$$

for almost every choice of signs $\varepsilon_n = \pm 1$.

• Note: this is not the case for 1 .

Following Billard, Kwapién, Pełczyński, and Samuel (1986):

Following Billard, Kwapién, Pełczyński, and Samuel (1986):
a biorthogonal system (x_i, x_i*), where x_i ∈ X*, x_i* ∈ X*, is Random Unconditionally Convergent (RUC) if

$$\sum \varepsilon_i x_i^*(x) x_i \quad \text{converges in } X$$

for almost every choice of signs $\varepsilon_i = \pm 1$, and all $x \in [x_i]$.

Following Billard, Kwapién, Pełczyński, and Samuel (1986):
a biorthogonal system (x_i, x_i*), where x_i ∈ X*, x_i* ∈ X*, is Random Unconditionally Convergent (RUC) if

$$\sum \varepsilon_i x_i^*(x) x_i \quad \text{converges in } X$$

for almost every choice of signs $\varepsilon_i = \pm 1$, and all $x \in [x_i]$.

Equivalently:

7/21

Following Billard, Kwapién, Pełczyński, and Samuel (1986):
a biorthogonal system (x_i, x_i*), where x_i ∈ X*, x_i* ∈ X*, is Random Unconditionally Convergent (RUC) if

$$\sum \varepsilon_i x_i^*(x) x_i \quad \text{converges in } X$$

for almost every choice of signs $\varepsilon_i = \pm 1$, and all $x \in [x_i]$.

• Equivalently: there exists a constant K > 0 such that

$$\int_{0}^{1} \left\| \sum_{i=1}^{n} c_{i} r_{i}(t) x_{i} \right\|_{X} dt \leq K \left\| \sum_{i=1}^{n} c_{i} x_{i} \right\|_{X},$$

for every n = 1, 2, ... and arbitrary scalars $c_1, c_2, ..., c_n$. Here, (r_n) are the Rademacher functions.

Unconditional convergence corresponds to

Unconditional convergence corresponds to

$$\max_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X \asymp \min_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X,$$

i.e., the maximum of the signed sums being equivalent to the minimum.

Unconditional convergence corresponds to

$$\max_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X \asymp \min_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X,$$

i.e., the maximum of the signed sums being equivalent to the minimum.

• Random unconditional convergence corresponds to

Unconditional convergence corresponds to

$$\max_{\varepsilon_i = \pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X \asymp \min_{\varepsilon_i = \pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X,$$

i.e., the maximum of the signed sums being equivalent to the minimum.

Random unconditional convergence corresponds to

$$\min_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X \asymp \frac{1}{2^n} \sum_{\varepsilon_i=\pm 1} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|_X.$$

i.e., the minimum of the signed sums being equivalent to the average.

RUC systems are stable under permutations.

- RUC systems are stable under permutations.
- RUC systems are stable when taking subsequences.

- RUC systems are stable under permutations.
- RUC systems are stable when taking subsequences.
- In a type 2 Banach space, every Besselian system (x_i, x_i^*) is RUC.

Some properties

- RUC systems are stable under permutations.
- RUC systems are stable when taking subsequences.
- In a type 2 Banach space, every Besselian system (x_i, x_i^*) is RUC.

(Besselian:
$$\sum |(x_i^*, x)||x_i||^2 < \infty$$
, for all $x \in [x_i]$.)

Some properties

- RUC systems are stable under permutations.
- RUC systems are stable when taking subsequences.
- In a type 2 Banach space, every Besselian system (x_i, x_i^*) is RUC.

(Besselian:
$$\sum |(x_i^*, x)||x_i||^2 < \infty$$
, for all $x \in [x_i]$.)

• Let (x_i, x_i^*) be a biorthogonal, fundamental and total system in X.

Some properties

- RUC systems are stable under permutations.
- RUC systems are stable when taking subsequences.
- In a type 2 Banach space, every Besselian system (x_i, x_i^*) is RUC.

(Besselian:
$$\sum |(x_i^*, x)||x_i||^2 < \infty$$
, for all $x \in [x_i]$.)

- Let (x_i, x_i^*) be a biorthogonal, fundamental and total system in X. Then:
 - (x_i) is an unconditional basis in X iff (x_i, x_i^*) and (x_i^*, x_i) are RUC systems in X and X^* , resp.

Outline

- Random Unconditional Convergence
- RUC in functions spaces
- 3 An extension of a result by DSS

• For a measurable function f on [0,1], its decreasing rearrangement f^* is the right continuous inverse of its distribution function

$$\tau \longmapsto m(\{t \in [0,1]: |f(t)| > \tau\}).$$

• For a measurable function f on [0,1], its decreasing rearrangement f^* is the right continuous inverse of its distribution function

$$\tau \longmapsto m(\{t \in [0,1]: |f(t)| > \tau\}).$$

 An rearrangement invariant space X on [0, 1] is a Banach space of classes of measurable functions on [0, 1] satisfying that

$$g^* \le f^* \& f \in X \Rightarrow g \in X \& ||g||_X \le ||f||_X.$$

• For a measurable function f on [0,1], its decreasing rearrangement f^* is the right continuous inverse of its distribution function

$$\tau \longmapsto m(\{t \in [0,1] : |f(t)| > \tau\}).$$

 An rearrangement invariant space X on [0, 1] is a Banach space of classes of measurable functions on [0, 1] satisfying that

$$g^* \le f^* \& f \in X \Rightarrow g \in X \& ||g||_X \le ||f||_X.$$

Every rearrangement invariant space on [0, 1] satisfies

$$L_{\infty}([0,1]) \subseteq X \subseteq L^{1}([0,1]).$$

• For a measurable function f on [0,1], its decreasing rearrangement f^* is the right continuous inverse of its distribution function

$$\tau \longmapsto m(\lbrace t \in [0,1] : |f(t)| > \tau \rbrace).$$

 An rearrangement invariant space X on [0, 1] is a Banach space of classes of measurable functions on [0, 1] satisfying that

$$g^* \le f^* \& f \in X \Rightarrow g \in X \& ||g||_X \le ||f||_X.$$

Every rearrangement invariant space on [0, 1] satisfies

$$L_{\infty}([0,1]) \subseteq X \subseteq L^{1}([0,1]).$$

• X_0 denotes the closure of L_{∞} in X.

• The Walsh system is a (conditional) RUC basis for $L^p([0,1])$ with 2 .

- The Walsh system is a (conditional) RUC basis for $L^p([0,1])$ with 2 .
- The Haar system in an RUC basis in every separable, rearrangement invariant space X in [0,1] satisfying

 $0 < \alpha_X \le \beta_X < 1$ (lower and upper Boyd indices).

- The Walsh system is a (conditional) RUC basis for $L^p([0,1])$ with 2 .
- The Haar system in an RUC basis in every separable, rearrangement invariant space X in [0,1] satisfying

$$0 < \alpha_X \le \beta_X < 1$$
 (lower and upper Boyd indices).

Semenov 1996.

- The Walsh system is a (conditional) RUC basis for $L^p([0,1])$ with 2 .
- The Haar system in an RUC basis in every separable, rearrangement invariant space X in [0,1] satisfying

$$0 < \alpha_X \le \beta_X < 1$$
 (lower and upper Boyd indices).

Semenov 1996.

(This same condition holds for the Haar system being unconditional.)

- The Walsh system is a (conditional) RUC basis for $L^p([0,1])$ with 2 .
- The Haar system in an RUC basis in every separable, rearrangement invariant space X in [0,1] satisfying

$$0 < \alpha_X \le \beta_X < 1$$
 (lower and upper Boyd indices).

Semenov 1996.

(This same condition holds for the Haar system being unconditional.)

• L¹([0, 1]) has no fundamental RUC system.

By Dodds, Semenov, and Sukochev (2002):

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

(a) Each orthonormal uniformly bounded system (in the L_{∞} -norm) is an RUC system in X.

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

- (a) Each orthonormal uniformly bounded system (in the L_{∞} -norm) is an RUC system in X.
- (b) There exists an orthonormal uniformly bounded system which is a fundamental RUC system in X.

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

- (a) Each orthonormal uniformly bounded system (in the L_{∞} -norm) is an RUC system in X.
- (b) There exists an orthonormal uniformly bounded system which is a fundamental RUC system in X.
- (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

- (a) Each orthonormal uniformly bounded system (in the L_{∞} -norm) is an RUC system in X.
- (b) There exists an orthonormal uniformly bounded system which is a fundamental RUC system in X.
- (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

Here: G denotes the closure of L_{∞} in the Orlicz space generated by the function $\exp(t^2) - 1$.

- Note that the requirement of uniform boundedness of an RUC system is not present in condition
 - (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

- Note that the requirement of uniform boundedness of an RUC system is not present in condition
 - (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

• The following questions naturally arise:

- Note that the requirement of uniform boundedness of an RUC system is not present in condition
 - (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

- The following questions naturally arise:
 - To what extend the uniform boundedness (in the L_{∞} -norm) is relevant for the existence of RUC systems?

- Note that the requirement of uniform boundedness of an RUC system is not present in condition
 - (c) The continuous embeddings $G \subseteq X \subseteq L^2$ hold.

- The following questions naturally arise:
 - To what extend the uniform boundedness (in the L_{∞} -norm) is relevant for the existence of RUC systems?
 - Can uniform boundedness in the L_{∞} -norm be replaced by the uniform boundedness of the system in a larger space (i.e., for a weaker norm)?

Outline

- Random Unconditional Convergence
- RUC in functions spaces
- 3 An extension of a result by DSS

• Let $\psi \colon [0,1] \to [0,\infty)$ be such that ψ is increasing, $\psi(0) = 0$, and $\frac{\psi(t)}{t}$ is decreasing.

- Let $\psi \colon [0,1] \to [0,\infty)$ be such that ψ is increasing, $\psi(0) = 0$, and $\frac{\psi(t)}{t}$ is decreasing.
- The Marcinkiewicz space $M(\psi)$ is

$$M(\psi) = \left\{ f : \|f\|_{M(\psi)} := \sup_{0 < t \le 1} \frac{\psi(t)}{t} \int_0^t f^*(s) \, ds < \infty \right\}.$$

- Let $\psi \colon [0,1] \to [0,\infty)$ be such that ψ is increasing, $\psi(0) = 0$, and $\frac{\psi(t)}{t}$ is decreasing.
- The Marcinkiewicz space $M(\psi)$ is

$$M(\psi) = \left\{ f : \|f\|_{M(\psi)} := \sup_{0 < t \le 1} \frac{\psi(t)}{t} \int_0^t f^*(s) \, ds < \infty \right\}.$$

• Examples: $L^{p,\infty}$, the Orlicz space L_M generated by $M(t) := e^{t^2} - 1$.

Averages in Marcinkiewicz spaces

Averages in Marcinkiewicz spaces

 We need to estimate averages of norms of signed series in Marcinkiewicz spaces,

$$\int_{0}^{1} \left\| \sum_{i=1}^{\infty} c_{i} r_{i}(t) f_{i} \right\|_{M(\psi)} dt,$$

where $M(\psi)$ is a Marcinkiewicz space and $(c_i) \in \ell^2$.

Averages in Marcinkiewicz spaces

 We need to estimate averages of norms of signed series in Marcinkiewicz spaces,

$$\int_{0}^{1} \left\| \sum_{i=1}^{\infty} c_{i} r_{i}(t) f_{i} \right\|_{M(\psi)} dt,$$

where $M(\psi)$ is a Marcinkiewicz space and $(c_i) \in \ell^2$.

 For this, we proceed to estimate, in the average, the distribution of the signed series

$$s \longmapsto \sum_{i=1}^{\infty} \varepsilon_i c_i f_i(s).$$

Lemma (Astashkin, C., Tikhomirov)

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Suppose that the upper dilation index of ψ satisfies $\delta_{\psi} < 1/2$.

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Suppose that the upper dilation index of ψ satisfies $\delta_{\psi} < 1/2$.

Then, there exists K > 0 such that

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Suppose that the upper dilation index of ψ satisfies $\delta_{\psi} < 1/2$.

Then, there exists K > 0 such that

• for $f_i \in M(\psi)$ with $||f_i||_{M(\psi)} \leq 1$, and

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Suppose that the upper dilation index of ψ satisfies $\delta_{\psi} < 1/2$.

Then, there exists K > 0 such that

- for $f_i \in M(\psi)$ with $||f_i||_{M(\psi)} \le 1$, and
- $for(c_i) \in \ell^2 \text{ with } ||(c_i)||_2 = 1$,

we have

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0, 1].

Suppose that the upper dilation index of ψ satisfies $\delta_{\psi} < 1/2$.

Then, there exists K > 0 such that

- for $f_i \in M(\psi)$ with $||f_i||_{M(\psi)} \le 1$, and
- for $(c_i) \in \ell^2$ with $||(c_i)||_2 = 1$,

we have

$$\int_0^1 \left| \left\{ s \in [0,1] : \left| \sum_{i=1}^{\infty} c_i r_i(t) f_i(s) \right| \ge \tau \right\} \right| dt \le 2 \int_0^1 e^{(-K\tau^2 \psi(t)^2)} dt,$$

for all $\tau > 0$.

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0, 1].

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0, 1].

For $\alpha > 0$, let $M(\varphi_{\alpha})$ be the Marcinkiewicz space generated by $\exp(t^{\alpha}) - 1$.

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0, 1].

For $\alpha > 0$, let $M(\varphi_{\alpha})$ be the Marcinkiewicz space generated by $\exp(t^{\alpha}) - 1$.

Set $\beta := 2\alpha/(\alpha + 2)$ and consider $M(\varphi_{\beta})$.

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0, 1].

For $\alpha > 0$, let $M(\varphi_{\alpha})$ be the Marcinkiewicz space generated by $\exp(t^{\alpha}) - 1$.

Set
$$\beta := 2\alpha/(\alpha + 2)$$
 and consider $M(\varphi_{\beta})$.

TFAE:

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0,1].

For
$$\alpha > 0$$
, let $M(\varphi_{\alpha})$ be the Marcinkiewicz space generated by $\exp(t^{\alpha}) - 1$.

Set
$$\beta := 2\alpha/(\alpha + 2)$$
 and consider $M(\varphi_{\beta})$.

TFAE:

(a) Every orthonormal sequence uniformly bounded in $M(\varphi_{\alpha})$ is an RUC system in X.

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0,1].

For $\alpha > 0$, let $M(\varphi_{\alpha})$ be the Marcinkiewicz space generated by $\exp(t^{\alpha}) - 1$.

Set
$$\beta := 2\alpha/(\alpha + 2)$$
 and consider $M(\varphi_{\beta})$.

TFAE:

- (a) Every orthonormal sequence uniformly bounded in $M(\varphi_{\alpha})$ is an RUC system in X.
- (b) The continuous embeddings $M(\varphi_{\beta})_0 \subset X \subset L^2$ hold.

1. Note that:

$$L_{\infty} \subset M(\varphi_{\alpha}), \quad \text{so} \quad \|\cdot\|_{\infty} \geq \|\cdot\|_{M(\varphi_{\alpha})}.$$

Note that:

$$L_{\infty} \subset M(\varphi_{\alpha}), \quad \text{so} \quad \|\cdot\|_{\infty} \geq \|\cdot\|_{M(\varphi_{\alpha})}.$$

That is, uniform boundedness in $M(\varphi_{\alpha})$ is weaker than uniform boundedness in L_{∞} .

Note that:

$$L_{\infty} \subset M(\varphi_{\alpha}), \quad \text{so} \quad \|\cdot\|_{\infty} \geq \|\cdot\|_{M(\varphi_{\alpha})}.$$

That is, uniform boundedness in $M(\varphi_{\alpha})$ is weaker than uniform boundedness in L_{∞} .

2. Note, for $\alpha > 0$, that $\beta = 2\alpha/(\alpha + 2) < 2$, so

$$M(\varphi_2) \subsetneq M(\varphi_\beta)$$
, and so $G = M(\varphi_2)_0 \subsetneq M(\varphi_\beta)_0$.

Note that:

$$L_{\infty} \subset M(\varphi_{\alpha}), \quad \text{so} \quad \|\cdot\|_{\infty} \geq \|\cdot\|_{M(\varphi_{\alpha})}.$$

That is, uniform boundedness in $M(\varphi_{\alpha})$ is weaker than uniform boundedness in L_{∞} .

2. Note, for $\alpha > 0$, that $\beta = 2\alpha/(\alpha + 2) < 2$, so

$$M(\varphi_2) \subsetneq M(\varphi_\beta)$$
, and so $G = M(\varphi_2)_0 \subsetneq M(\varphi_\beta)_0$.

That is, $M(\varphi_{\beta})_0 \subset X$ is more restrictive than $G \subset X$.

Thank you Gracias