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Random Unconditional Convergence

Unconditional Convergence

Recall: a series
∑

xn in a Banach space X converges unconditionally if
for every reordering σ : N→ N the series∑

xσ(n) converges.

Equivalently conditions are:
(a) Subseries convergence, if for every A ⊂ N the series∑

n∈A

xn converges.

(b) Sign convergence, if for every choice of signs εn = ±1 the series∑
εnxn converges.

(c) Bounded multiplier convergence, if for every scalars |an| ≤ M the
series ∑

anxn converges.
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Random Unconditional Convergence

An example

The trigonometric system {eint}+∞−∞ is an unconditional basis in L2(T).
So, given any f ∈ L2(T):

+∞∑
−∞

εncn(f )eint converges in L2(T)

for every choice of signs εn = ±1.

This is not so for Lp(T) with 1 ≤ p <∞ and p 6= 2.

However, for 2 < p <∞ the trigonometric system is a basis in Lp(T)
satisfying, for every f ∈ Lp(T), that

+∞∑
−∞

εncn(f )eint converges in Lp(T)

for almost every choice of signs εn = ±1.

Note: this is not the case for 1 ≤ p < 2.
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Random Unconditional Convergence

Random Unconditional Convergence

Following Billard, Kwapién, Pełczyǹski, and Samuel (1986):
a biorthogonal system (xi , x∗i ), where xi ∈ X ∗, x∗i ∈ X ∗, is Random
Unconditionally Convergent (RUC) if∑

εix∗i (x)xi converges in X

for almost every choice of signs εi = ±1, and all x ∈ [xi ].

Equivalently: there exists a constant K > 0 such that

1∫
0

∥∥∥ n∑
i=1

ci ri(t)xi

∥∥∥
X

dt ≤ K
∥∥∥ n∑

i=1

cixi

∥∥∥
X
,

for every n = 1,2, . . . and arbitrary scalars c1, c2, . . . , cn.
Here, (rn) are the Rademacher functions.
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Random Unconditional Convergence

Comparison

Unconditional convergence corresponds to

max
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥
X
� min
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥
X
,

i.e., the maximum of the signed sums being equivalent to the minimum.

Random unconditional convergence corresponds to

min
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥
X
� 1

2n

∑
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥
X
.

i.e., the minimum of the signed sums being equivalent to the average.
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Random Unconditional Convergence

Some properties

RUC systems are stable under permutations.

RUC systems are stable when taking subsequences.

In a type 2 Banach space, every Besselian system (xi , x∗i ) is RUC.(
Besselian:

∑∣∣(x∗i , x)‖xi‖
∣∣2 <∞, for all x ∈ [xi ].

)

Let (xi , x∗i ) be a biorthogonal, fundamental and total system in X .
Then:
(xi) is an unconditional basis in X iff (xi , x∗i ) and (x∗i , xi) are RUC
systems in X and X ∗, resp.
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RUC in functions spaces

Function spaces

For a measurable function f on [0,1], its decreasing rearrangement f ∗ is
the right continuous inverse of its distribution function

τ 7−→ m({t ∈ [0,1] : |f (t)| > τ}).

An rearrangement invariant space X on [0,1] is a Banach space of
classes of measurable functions on [0,1] satisfying that

g∗ ≤ f ∗& f ∈ X ⇒ g ∈ X & ‖g‖X ≤ ‖f‖X .

Every rearrangement invariant space on [0,1] satisfies

L∞([0,1]) ⊆ X ⊆ L1([0,1]).

X0 denotes the closure of L∞ in X .
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RUC in functions spaces

A sample of results

The Walsh system is a (conditional) RUC basis for Lp([0,1]) with
2 < p <∞.

The Haar system in an RUC basis in every separable, rearrangement
invariant space X in [0,1] satisfying

0 < αX ≤ βX < 1 (lower and upper Boyd indices).

Semenov 1996.
(This same condition holds for the Haar system being unconditional.)

L1([0,1]) has no fundamental RUC system.
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RUC in functions spaces

A remarkable result

By Dodds, Semenov, and Sukochev (2002):

Theorem

Let X be a separable rearrangement invariant space on [0,1].

TFAE:

(a) Each orthonormal uniformly bounded system (in the L∞-norm) is an
RUC system in X.

(b) There exists an orthonormal uniformly bounded system which is a
fundamental RUC system in X.

(c) The continuous embeddings G ⊆ X ⊆ L2 hold.

Here: G denotes the closure of L∞ in the Orlicz space generated by the
function exp(t2)− 1.
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RUC in functions spaces

Analyzing DSS’ result

Note that the requirement of uniform boundedness of an RUC system is
not present in condition

(c) The continuous embeddings G ⊆ X ⊆ L2 hold.

The following questions naturally arise:

To what extend the uniform boundedness (in the L∞-norm) is
relevant for the existence of RUC systems?

Can uniform boundedness in the L∞-norm be replaced by the
uniform boundedness of the system in a larger space (i.e., for a
weaker norm)?
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An extension of a result by DSS

Marcinkiewicz spaces

Let ψ : [0,1]→ [0,∞) be such that ψ is increasing, ψ(0) = 0, and ψ(t)
t is

decreasing.

The Marcinkiewicz space M(ψ) is

M(ψ) =

{
f : ‖f‖M(ψ) := sup

0<t≤1

ψ(t)
t

∫ t

0
f ∗(s)ds <∞

}
.

Examples: Lp,∞, the Orlicz space LM generated by M(t) := et2 − 1.
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An extension of a result by DSS

Averages in Marcinkiewicz spaces

We need to estimate averages of norms of signed series in
Marcinkiewicz spaces,

1∫
0

∥∥∥ ∞∑
i=1

ci ri(t)fi
∥∥∥

M(ψ)
dt ,

where M(ψ) is a Marcinkiewicz space and (ci) ∈ `2.

For this, we proceed to estimate, in the average, the distribution of the
signed series

s 7−→
∞∑
i=1

εici fi(s).
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An extension of a result by DSS

A technical lemma

Lemma (Astashkin, C., Tikhomirov)

Let ψ be an increasing concave function on [0,1].
Suppose that the upper dilation index of ψ satisfies δψ < 1/2.

Then, there exists K > 0 such that

for fi ∈ M(ψ) with ‖fi‖M(ψ) ≤ 1, and

for (ci) ∈ `2 with ‖(ci)‖2 = 1,

we have

∫ 1

0

∣∣∣{s ∈ [0,1] :
∣∣ ∞∑

i=1

ci ri(t)fi(s)
∣∣ ≥ τ}∣∣∣dt ≤ 2

1∫
0

e(−Kτ2ψ(t)2) dt ,

for all τ > 0.
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An extension of a result by DSS

Main result

Theorem (Astashkin, C., Tikhomirov)

Let X be a separable rearrangement invariant space on [0,1].

For α > 0, let M(ϕα) be the Marcinkiewicz space generated by exp(tα)− 1.

Set β := 2α/(α+ 2) and consider M(ϕβ).

TFAE:

(a) Every orthonormal sequence uniformly bounded in M(ϕα) is an RUC
system in X.

(b) The continuous embeddings M(ϕβ)0 ⊂ X ⊂ L2 hold.
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(a) Every orthonormal sequence uniformly bounded in M(ϕα) is an RUC
system in X.

(b) The continuous embeddings M(ϕβ)0 ⊂ X ⊂ L2 hold.
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An extension of a result by DSS

Comparison

1. Note that:
L∞ ⊂ M(ϕα), so ‖ · ‖∞ ≥ ‖ · ‖M(ϕα).

That is, uniform boundedness in M(ϕα) is weaker than uniform
boundedness in L∞.

2. Note, for α > 0, that β = 2α/(α+ 2) < 2, so

M(ϕ2) ( M(ϕβ), and so G = M(ϕ2)0 ( M(ϕβ)0.

That is, M(ϕβ)0 ⊂ X is more restrictive than G ⊂ X .
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An extension of a result by DSS

Thank you
Gracias
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