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Problem

To find Banach spaces E and open subsets U C E such that
7w = 75 on H(U).
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subset K C U with the following property:
If Vis open and K C V C U, then there is C > 0 such that

p(f)§C5u5|f(x)| Vf e H(U).



Definition (Nachbin)
A seminorm p on H(U) is 7, continuous if there is a compact

subset K C U with the following property:
If Vis open and K C V C U, then there is C > 0 such that

p(f) < Csup |f (x)] Vf e H(U).
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Definition (Coeuré, Nachbin)

A seminorm p on H (U) is 75 continuous if for each sequence
(V)52 of open subsets of U such that

VicVocWzC---  and Uva=u
n=1
there exist ng € N and C > 0 such that

p(f) < Csup |f(x)] Vfe H(U).
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Theorem (Dineen, Mujica)

Let E be a separable Banach space with the bounded
approximation property.
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Theorem (Hartogs)
Let U be an open subset of C", n > 2.

Let K be a compact subset of U such that U\K is connected.
If f € H(U\K), then there is f € H(U) such that f = f on U\K.
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1. Alexander: if U is a bounded open subset of a Banach space.
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Theorem

Let U be a balanced open subset of a Banach space E,

dim(E) > 2.

Let A be a closed bounded subset of U such that U\A is
connected. B B

If f € H(U\A), then there is f € H(U) such that f = f on U\A.
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Let V C U be connected open subsets of a Banach space.
If every f € H(V) has an extension f € H (U), then

fe(HV), 1)~ fe(HWU), )

is a topological isomorphism.

Theorem (Josefson)

Let / be an uncountable set.
There are open subsets V C U C ¢p(/) such that
every f € H(V) has an extension f € H (U) but the mapping

fe(H(V),m)—fe(HWU), )

is not continuous.



Theorem

Let E be a separable Banach space with the bounded
approximation property.

If U is a balanced open subset of E, A is a closed bounded subset
of U and U\A is connected, then 7, = 75 on H (U\A).
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Let A be a closed bounded subset of a Banach space E such that
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Then 7, = 75 on H(E) if and only if 7, = 75 on H(E\A).

Theorem (Dineen)
Tw < 75 on H (lso).

Theorem
If Ais a closed bounded subset of /o, and ¢\ A is connected,
then 7, < 75 on H ({x\A).
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