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Jerónimo López-Salazar Codes

Universidad Politécnica de Madrid



U: open subset of a complex Banach space E .

H(U): holomorphic functions from U into C.

τ0: compact open topology on H(U).

τω: Nachbin topology on H(U).

τδ: Coeuré-Nachbin topology on H(U).

If dim(E ) <∞, then τ0 = τω = τδ.

If dim(E ) =∞, then τ0 < τω ≤ τδ.

Problem
To find Banach spaces E and open subsets U ⊂ E such that
τω = τδ on H(U).
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Definition (Nachbin)

A seminorm p on H (U) is τω continuous if there is a compact
subset K ⊂ U with the following property:
If V is open and K ⊂ V ⊂ U, then there is C > 0 such that

p (f ) ≤ C sup
x∈V
|f (x)| ∀f ∈ H (U) .

Definition (Coeuré, Nachbin)

A seminorm p on H (U) is τδ continuous if for each sequence
(Vn)∞n=1 of open subsets of U such that

V1 ⊂ V2 ⊂ V3 ⊂ · · · and
∞⋃
n=1

Vn = U

there exist n0 ∈ N and C > 0 such that

p (f ) ≤ C sup
x∈Vn0

|f (x)| ∀f ∈ H (U) .
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Theorem (Dineen)

Let E be a Banach space with an unconditional Schauder basis.
If U is a balanced open subset of E , then τω = τδ on H (U).

U balanced: if x ∈ U and |λ| ≤ 1, then λx ∈ U.

Theorem (Coeuré)

τω = τδ on H
(
L1[0, 1]

)
.

Theorem (Dineen, Mujica)

Let E be a separable Banach space with the bounded
approximation property.
If U is a balanced open subset of E , then τω = τδ on H (U).
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Theorem (Dineen)

If U is balanced, then (H (U) , τδ) is complete.

Problem
Let U and V be open subsets of a Banach space E .

τω = τδ on H (U)
?

=⇒ τω = τδ on H (V ).
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Problem
Let U be a balanced open subset of a Banach space E .
Let A be a closed bounded subset of E such that A ⊂ U.
τω = τδ on H (U\A)?

Theorem (Hartogs)

Let U be an open subset of Cn, n ≥ 2.
Let K be a compact subset of U such that U\K is connected.
If f ∈ H (U\K ), then there is f̃ ∈ H (U) such that f = f̃ on U\K .
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Hartogs Theorem for infinite dimensional spaces:

1. Alexander: if U is a bounded open subset of a Banach space.

2. Mujica: if U is an open subset of a separable Hilbert space.

3. Ramis: for every U and every Banach space?

Theorem
Let U be a balanced open subset of a Banach space E ,
dim(E ) ≥ 2.
Let A be a closed bounded subset of U such that U\A is
connected.
If f ∈ H (U\A), then there is f̃ ∈ H (U) such that f = f̃ on U\A.
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Theorem (Coeuré, Hirschowitz)

Let V ⊂ U be connected open subsets of a Banach space.
If every f ∈ H (V ) has an extension f̃ ∈ H (U), then

f ∈ (H (V ) , τδ) 7→ f̃ ∈ (H (U) , τδ)

is a topological isomorphism.

Theorem (Josefson)

Let I be an uncountable set.
There are open subsets V ⊂ U ⊂ c0(I ) such that
every f ∈ H (V ) has an extension f̃ ∈ H (U) but the mapping

f ∈ (H (V ) , τω) 7→ f̃ ∈ (H (U) , τω)

is not continuous.
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Theorem
Let E be a separable Banach space with the bounded
approximation property.
If U is a balanced open subset of E , A is a closed bounded subset
of U and U\A is connected, then τω = τδ on H (U\A).



Proof
V = U\A.

Coeuré, Hirschowitz: the mapping

f ∈ (H (V ) , τδ)→ f̃ ∈ (H (U) , τδ)

is a topological isomorphism.

U ⊂ Envelope (V ) = Spec (H (V ) , τ0) ⊂ Spec (H (V ) , τω) .

Dineen: as U ⊂ Spec (H (V ) , τω), the mapping

f ∈ (H (V ) , τω)→ f̃ ∈ (H (U) , τω)

is a topological isomorphism.

Dineen, Mujica: τω = τδ on H (U), so τω = τδ on H (V ).
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Coeuré, Hirschowitz: the mapping

f ∈ (H (V ) , τδ)→ f̃ ∈ (H (U) , τδ)

is a topological isomorphism.

U ⊂ Envelope (V ) = Spec (H (V ) , τ0)

⊂ Spec (H (V ) , τω) .

Dineen: as U ⊂ Spec (H (V ) , τω), the mapping

f ∈ (H (V ) , τω)→ f̃ ∈ (H (U) , τω)

is a topological isomorphism.

Dineen, Mujica: τω = τδ on H (U), so τω = τδ on H (V ).



Proof
V = U\A.
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Theorem
Let A be a closed bounded subset of a Banach space E such that
E\A is connected.
Then τω = τδ on H (E ) if and only if τω = τδ on H (E\A).

Theorem (Dineen)

τω < τδ on H (`∞).

Theorem
If A is a closed bounded subset of `∞ and `∞\A is connected,
then τω < τδ on H (`∞\A).
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1. G. Coeuré: Fonctionnelles analytiques sur certains espaces de
Banach. Ann. Inst. Fourier (Grenoble), 21, 1971, 15-21.

2. S. Dineen: Holomorphic functions on (c0,Xb)−modules.
Math. Ann., 196, 1972, 106-116.

3. S. Dineen: Complex analysis on infinite dimensional spaces.
Springer-Verlag, 1999.
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