Topologies on spaces of holomorphic functions

Jerónimo López-Salazar Codes

Universidad Politécnica de Madrid

H(U): holomorphic functions from U into \mathbb{C} .

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

 τ_{ω} : Nachbin topology on H(U).

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

 τ_{ω} : Nachbin topology on H(U).

 $τ_δ$: Coeuré-Nachbin topology on H(U).

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

 τ_{ω} : Nachbin topology on H(U).

 $τ_δ$: Coeuré-Nachbin topology on H(U).

If
$$dim(E) < \infty$$
, then $\tau_0 = \tau_\omega = \tau_\delta$.

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

 τ_{ω} : Nachbin topology on H(U).

 $τ_δ$: Coeuré-Nachbin topology on H(U).

If
$$dim(E) < \infty$$
, then $\tau_0 = \tau_\omega = \tau_\delta$.

If
$$dim(E) = \infty$$
, then $\tau_0 < \tau_\omega \le \tau_\delta$.

H(U): holomorphic functions from U into \mathbb{C} .

 τ_0 : compact open topology on H(U).

 τ_{ω} : Nachbin topology on H(U).

 $τ_δ$: Coeuré-Nachbin topology on H(U).

If $dim(E) < \infty$, then $\tau_0 = \tau_\omega = \tau_\delta$.

If $dim(E) = \infty$, then $\tau_0 < \tau_\omega \le \tau_\delta$.

Problem

To find Banach spaces E and open subsets $U \subset E$ such that $\tau_{\omega} = \tau_{\delta}$ on H(U).

Definition (Nachbin)

A seminorm p on H(U) is τ_{ω} continuous if there is a compact subset $K \subset U$ with the following property:

If V is open and $K \subset V \subset U$, then there is C > 0 such that

$$p(f) \le C \sup_{x \in V} |f(x)| \quad \forall f \in H(U).$$

Definition (Nachbin)

A seminorm p on H(U) is τ_{ω} continuous if there is a compact subset $K \subset U$ with the following property:

If V is open and $K \subset V \subset U$, then there is C > 0 such that

$$p(f) \le C \sup_{x \in V} |f(x)| \quad \forall f \in H(U).$$

Definition (Coeuré, Nachbin)

A seminorm p on H(U) is τ_{δ} continuous if for each sequence $(V_n)_{n=1}^{\infty}$ of open subsets of U such that

$$V_1 \subset V_2 \subset V_3 \subset \cdots$$
 and $\bigcup_{n=1}^{\infty} V_n = U$

there exist $n_0 \in \mathbb{N}$ and C > 0 such that

$$p(f) \le C \sup_{x \in V_{p_0}} |f(x)| \quad \forall f \in H(U).$$

Let E be a Banach space with an unconditional Schauder basis. If U is a balanced open subset of E, then $\tau_{\omega} = \tau_{\delta}$ on H(U).

Let E be a Banach space with an unconditional Schauder basis. If U is a balanced open subset of E, then $\tau_{\omega} = \tau_{\delta}$ on H(U).

U balanced: if $x \in U$ and $|\lambda| \le 1$, then $\lambda x \in U$.

Let E be a Banach space with an unconditional Schauder basis. If U is a balanced open subset of E, then $\tau_{\omega} = \tau_{\delta}$ on H(U).

U balanced: if $x \in U$ and $|\lambda| \le 1$, then $\lambda x \in U$.

Theorem (Coeuré)

$$au_{\omega} = au_{\delta} \text{ on } H\left(L^{1}[0,1]\right).$$

Let E be a Banach space with an unconditional Schauder basis. If U is a balanced open subset of E, then $\tau_{\omega} = \tau_{\delta}$ on H(U).

U balanced: if $x \in U$ and $|\lambda| \le 1$, then $\lambda x \in U$.

Theorem (Coeuré)

$$au_{\omega} = au_{\delta} \text{ on } H\left(L^{1}[0,1]\right).$$

Theorem (Dineen, Mujica)

Let E be a separable Banach space with the bounded approximation property.

If *U* is a balanced open subset of *E*, then $\tau_{\omega} = \tau_{\delta}$ on H(U).

If U is balanced, then $(H(U), \tau_{\delta})$ is complete.

If U is balanced, then $(H(U), \tau_{\delta})$ is complete.

Problem

Let U and V be open subsets of a Banach space E.

$$\tau_{\omega} = \tau_{\delta} \text{ on } H(U) \stackrel{?}{\Longrightarrow} \tau_{\omega} = \tau_{\delta} \text{ on } H(V).$$

Problem

Let U be a balanced open subset of a Banach space E. Let A be a closed bounded subset of E such that $A \subset U$. $\tau_{\omega} = \tau_{\delta}$ on $H(U \setminus A)$?

Problem

Let U be a balanced open subset of a Banach space E. Let A be a closed bounded subset of E such that $A \subset U$. $\tau_{\omega} = \tau_{\delta}$ on $H(U \setminus A)$?

Theorem (Hartogs)

Let U be an open subset of \mathbb{C}^n , $n \geq 2$.

Let K be a compact subset of U such that $U \setminus K$ is connected.

If $f \in H(U \setminus K)$, then there is $f \in H(U)$ such that $f = \tilde{f}$ on $U \setminus K$.

1. Alexander: if U is a bounded open subset of a Banach space.

- 1. Alexander: if U is a bounded open subset of a Banach space.
- 2. Mujica: if U is an open subset of a separable Hilbert space.

- 1. Alexander: if U is a bounded open subset of a Banach space.
- 2. Mujica: if U is an open subset of a separable Hilbert space.
- 3. Ramis: for every U and every Banach space?

- 1. Alexander: if U is a bounded open subset of a Banach space.
- 2. Mujica: if U is an open subset of a separable Hilbert space.
- 3. Ramis: for every U and every Banach space?

Theorem

Let U be a balanced open subset of a Banach space E, $dim(E) \geq 2$.

Let A be a closed bounded subset of U such that $U \setminus A$ is connected.

If $f \in H(U \backslash A)$, then there is $\widetilde{f} \in H(U)$ such that $f = \widetilde{f}$ on $U \backslash A$.

Theorem (Coeuré, Hirschowitz)

Let $V \subset U$ be connected open subsets of a Banach space. If every $f \in H(V)$ has an extension $\widetilde{f} \in H(U)$, then

$$f \in (H(V), \tau_{\delta}) \mapsto \widetilde{f} \in (H(U), \tau_{\delta})$$

Theorem (Coeuré, Hirschowitz)

Let $V \subset U$ be connected open subsets of a Banach space. If every $f \in H(V)$ has an extension $\widetilde{f} \in H(U)$, then

$$f \in (H(V), \tau_{\delta}) \mapsto \widetilde{f} \in (H(U), \tau_{\delta})$$

is a topological isomorphism.

Theorem (Josefson)

Let I be an uncountable set.

There are open subsets $V \subset U \subset c_0(I)$ such that every $f \in H(V)$ has an extension $f \in H(U)$ but the mapping

$$f \in (H(V), \tau_{\omega}) \mapsto \widetilde{f} \in (H(U), \tau_{\omega})$$

is not continuous.

Let E be a separable Banach space with the bounded approximation property.

If U is a balanced open subset of E, A is a closed bounded subset of U and $U \setminus A$ is connected, then $\tau_{\omega} = \tau_{\delta}$ on $H(U \setminus A)$.

Proof $V = U \backslash A$.

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

$$U \subset Envelope(V)$$

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

$$U \subset \mathit{Envelope}(V) = \mathit{Spec}(H(V), \tau_0)$$

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

$$U \subset \mathit{Envelope}\left(V\right) = \mathit{Spec}\left(H\left(V\right), au_0\right) \subset \mathit{Spec}\left(H\left(V\right), au_\omega\right).$$

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

is a topological isomorphism.

$$U \subset \mathit{Envelope}\left(V\right) = \mathit{Spec}\left(H\left(V\right), au_0\right) \subset \mathit{Spec}\left(H\left(V\right), au_\omega\right).$$

Dineen: as $U \subset Spec(H(V), \tau_{\omega})$, the mapping

$$f \in (H(V), \tau_{\omega}) \to \widetilde{f} \in (H(U), \tau_{\omega})$$

$$V = U \backslash A$$
.

Coeuré, Hirschowitz: the mapping

$$f \in (H(V), \tau_{\delta}) \rightarrow \widetilde{f} \in (H(U), \tau_{\delta})$$

is a topological isomorphism.

$$U \subset \mathit{Envelope}\left(V\right) = \mathit{Spec}\left(H\left(V\right), au_0\right) \subset \mathit{Spec}\left(H\left(V\right), au_\omega\right).$$

Dineen: as $U \subset Spec(H(V), \tau_{\omega})$, the mapping

$$f \in (H(V), \tau_{\omega}) \to \widetilde{f} \in (H(U), \tau_{\omega})$$

is a topological isomorphism.

Dineen, Mujica: $\tau_{\omega} = \tau_{\delta}$ on H(U), so $\tau_{\omega} = \tau_{\delta}$ on H(V).

Let A be a closed bounded subset of a Banach space E such that $E \backslash A$ is connected.

Then $\tau_{\omega} = \tau_{\delta}$ on H(E) if and only if $\tau_{\omega} = \tau_{\delta}$ on $H(E \setminus A)$.

Let A be a closed bounded subset of a Banach space E such that $E \setminus A$ is connected.

Then $\tau_{\omega} = \tau_{\delta}$ on H(E) if and only if $\tau_{\omega} = \tau_{\delta}$ on $H(E \setminus A)$.

Theorem (Dineen)

$$\tau_{\omega} < \tau_{\delta}$$
 on $H(\ell_{\infty})$.

Let A be a closed bounded subset of a Banach space E such that $E \setminus A$ is connected.

Then $\tau_{\omega} = \tau_{\delta}$ on H(E) if and only if $\tau_{\omega} = \tau_{\delta}$ on $H(E \setminus A)$.

Theorem (Dineen)

$$\tau_{\omega} < \tau_{\delta}$$
 on $H(\ell_{\infty})$.

Theorem

If A is a closed bounded subset of ℓ_{∞} and $\ell_{\infty} \backslash A$ is connected, then $\tau_{\omega} < \tau_{\delta}$ on $H(\ell_{\infty} \backslash A)$.

- 1. G. Coeuré: Fonctionnelles analytiques sur certains espaces de Banach. Ann. Inst. Fourier (Grenoble), 21, 1971, 15-21.
- 2. S. Dineen: Holomorphic functions on (c_0, X_b) —modules. Math. Ann., 196, 1972, 106-116.
- 3. S. Dineen: Complex analysis on infinite dimensional spaces. Springer-Verlag, 1999.
- 4. J. López-Salazar: Spaces of holomorphic functions on non-balanced domains. J. Math. Ann. Appl. 414, 2014, 1-9.
- 5. J. Mujica: Spaces of holomorphic mappings on Banach spaces with a Schauder basis. Studia Math. 122, 1997, 139-151.
- 6. M. Schottenloher: Spectrum and envelope of holomorphy for infinite dimensional Riemann domains. Math. Ann. 263, 1983, 213-219.

