Antonio Pérez Hernández (joint work with B. Cascales and J. Orihuela)

Universidad de Murcia

December 12th, 2014

Table of contents

- James Theorem
- One-side James Theorem
- One-side results

Notation

 $(E, \|\cdot\|)$ Banach space.

X nonempty set. If $f \in \mathbb{R}^X$ we write

$$\sup (f,X) := \sup \{f(x) \colon x \in X\}$$

$$\inf(f,X) := \inf\{f(x) \colon x \in X\}$$

We say $\sup (f, X)$ is **attained** if there is $x \in X$ with $\sup (f, X) = f(x)$.

$$\sup (f, A) < c < \inf (f, B)$$

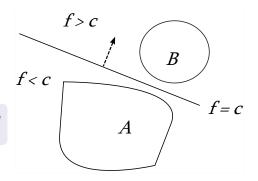


Table of Contents

- James Theorem
- One-side James Theorem
- One-side results

James Theorem

Theorem (James, 1964)

If every $x^* \in E^*$ is norm-attaining, then E is reflexive.

 $C \subset E$ bounded, closed, convex

Theorem (James, 1964)

If every $x^* \in E^*$ attains its supremum on C, then C is weakly compact.

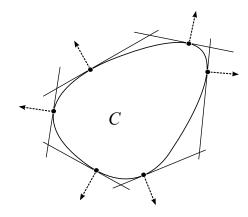
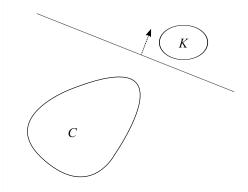


Table of Contents

- 1 James Theorem
- One-side James Theorem
- One-side results

 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

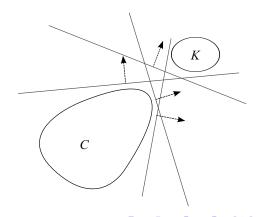
$$x^* \in E^*$$
 with $\sup (x^*, C) < \inf (x^*, K)$



 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

$$x^* \in E^*$$
 with

$$\sup (x^*, C) < \inf (x^*, K)$$



 $C \subset E$ convex closed bounded

 $K \subset E$ convex weakly compact

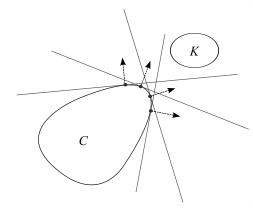
 $C \cap K = \emptyset$

Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.



 $C \subset E$ convex closed bounded

 $K \subset E$ convex weakly compact

 $C \cap K = \emptyset$

Hypothesis 1:

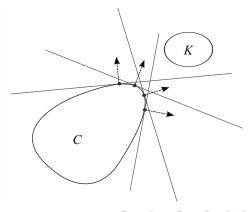
Every $x^* \in E^*$ with

$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.

Technical hypothesis:

 (B_{E^*}, ω^*) convex block compact.



 $C \subset E$ convex closed bounded

 $K \subset E$ convex weakly compact

 $C \cap K = \emptyset$

Hypothesis 1:

Every $x^* \in E^*$ with

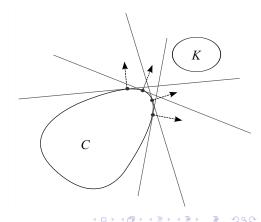
$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.

Technical hypothesis:

 (B_{E^*}, ω^*) convex block compact.

Thesis: *C* is weakly compact.



Motivation: Delbaen's Problem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let A be a bounded convex and closed subset of $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ with $0 \notin A$. Assume that for every $Y \in \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ with

$$\inf\{\mathbb{E}[X\cdot Y]:X\in A\}>0$$

we have that this infimum is attained. Is A necessarily uniformly integrable?

Motivation: Delbaen's Problem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let A be a bounded convex and closed subset of $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ with $0 \notin A$. Assume that for every $Y \in \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ with

$$\inf\{\mathbb{E}[X\cdot Y]:X\in A\}>0$$

we have that this infimum is attained. Is A necessarily uniformly integrable?

Yes

One-side James' theorem for $E = \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, C = -A and $K = \{0\}$.

 $C \subset E$ convex closed bounded

 $K \subset E$ convex weakly compact

 $C \cap K = \emptyset$

Hypothesis 1:

Every $x^* \in E^*$ with

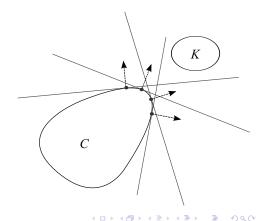
$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.

Technical hypothesis:

 (B_{E^*}, ω^*) convex block compact.

Thesis: *C* is weakly compact.



Block compactness

Let $(y_n)_{n\in\mathbb{N}}$ and $(x_n)_{n\in\mathbb{N}}$ in (E,τ) topological vector space

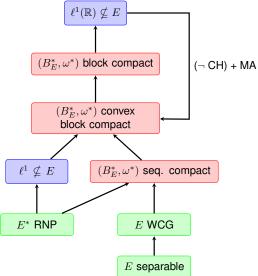
 $(y_n)_{n\in\mathbb{N}}$ is a **block subsequence** of $(x_n)_{n\in\mathbb{N}}$ if there are sequences:

- $(A_n)_{n \in \mathbb{N}}$ finite subsets of \mathbb{N} with $max(A_n) < min(A_{n+1})$.
- $(\lambda_j)_{j\in\mathbb{N}}$ in \mathbb{R}

such that $y_n = \sum_{j \in A_n} \lambda_j x_j$ for every $n \in \mathbb{N}$.

Normalized block subsequence if $\sum_{j\in A_n} |\lambda_j| = 1$ for each $n\in \mathbb{N}$. Convex block subsequence if $\sum_{j\in A_n} \lambda_j = 1$, $\lambda_j \geq 0$ for every $n\in \mathbb{N}$.

 $C \subset E$ is block compact (resp. convex block compact): every sequence in C admits a normalized block subsequence (resp. convex block subsequence) which converges in C.



Proofs of James Theorem

- Fonf-Lindenstrauss
- Godefroy
- James
- Kalenda
- Moors
- Morillon
- Pfitzner
- Pryce
- Simons

Proofs of James Theorem

- Fonf-Lindenstrauss
- Godefroy
- James
- Kalenda
- Moors
- Morillon
- Pfitzner
- Pryce
- Simons

Sketch of Pryce's proof:

- \bigcirc Suppose C is not weakly compact.
- ② Find $(f_n)_n$ in E^* with some properties...
- ightharpoonup Find $(g_n)_n$ convex subsequence of $(f_n)_n$ with some properties...
- 4 If g is a weak*-cluster point of $(g_n)_n$ then

$$\sum_{n\in\mathbb{N}}\frac{1}{2^n}(g_n-g)$$

does not attain the supremum.

Table of Contents

- James Theorem
- One-side James Theorem
- One-side results

Another one-side James Theorem

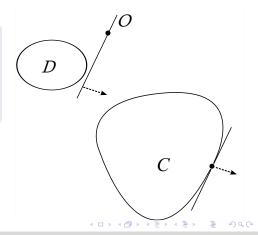
 $C \subset E$ convex closed bounded $0 \notin D \subset E$ convex weakly compact

Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup (x^*, D) < 0$$

attains $\sup(x^*, C)$.



Another one-side James Theorem

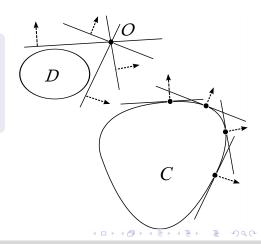
 $C \subset E$ convex closed bounded $0 \notin D \subset E$ convex weakly compact

Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup\left(x^{*},D\right)<0$$

attains $\sup(x^*, C)$.



Another one-side James Theorem

 $C \subset E$ convex closed bounded $0 \notin D \subset E$ convex weakly compact

Hypothesis 1:

Every $x^* \in E^*$ with

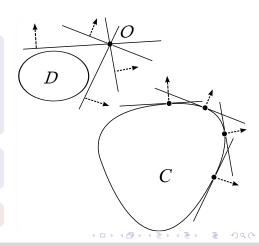
$$\sup (x^*, D) < 0$$

attains $\sup(x^*, C)$.

Technical hypothesis:

 (B_{E^*}, ω^*) convex block compact.

Thesis: C is weakly compact.

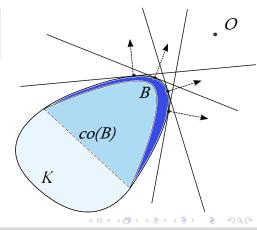


One-side Rainwater's theorem

$$B \subset E^*$$
 bdd, $0 \notin K := \overline{\operatorname{co}(B)}^{\omega^*}$

Hypothesis:

Every $x \in E$ with $\sup (x, K) < 0$ attains $\sup (x, K)$ at some $b^* \in B$.



One-side Rainwater's theorem

$$B \subset E^*$$
 bdd, $0 \notin K := \overline{\operatorname{co}(B)}^{\omega^*}$

Hypothesis:

Every $x \in E$ with $\sup (x, K) < 0$ attains $\sup (x, K)$ at some $b^* \in B$.

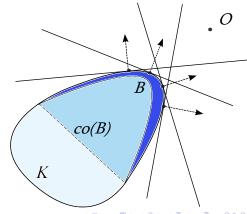
Thesis:

If $(x_n)_{n\in\mathbb{N}}$ is bounded and satisfies

$$\lim_{n} \langle x_n, b^* \rangle = 0 \ \forall b^* \in B$$

then

$$\lim_{n} \langle x_n, x^* \rangle = 0 \ \forall x^* \in K$$

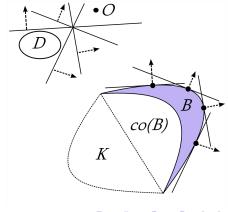


(Unbounded) One-side Godefroy Theorem

 $0 \notin D \subset E^*$ convex weak*-compact $B \subset E^*$, $K := \overline{\operatorname{co}(B)}^{\omega^*}$

Hypothesis 1:

Every $x \in E$ with sup (x, D) < 0 attains sup (x, B).



(Unbounded) One-side Godefroy Theorem

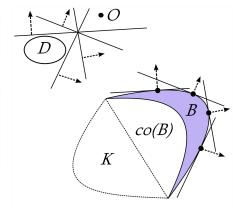
 $0 \notin D \subset E^*$ convex weak*-compact $B \subset E^*$, $K := \overline{\operatorname{co}(B)}^{\omega^*}$

Hypothesis 1:

Every $x \in E$ with sup (x, D) < 0 attains sup (x, B).

Technical hypothesis:

Given $L \subset E$ bounded convex, and $y^{**} \in \overline{L}^{\omega^*} \subset E^{**}$ there is $(y_n)_{n \in \mathbb{N}}$ in L such that $x^{**}(z^*) = \lim_n y_n(z^*)$ for all $z^* \in B \cup D$.



(Unbounded) One-side Godefroy Theorem

 $0 \notin D \subset E^*$ convex weak*-compact $B \subset E^*$, $K := \overline{\operatorname{co}(B)}^{\omega^*}$

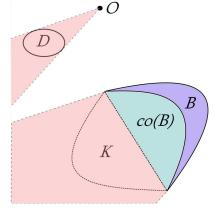
Hypothesis 1:

Every $x \in E$ with sup (x, D) < 0 attains sup (x, B).

Technical hypothesis:

Given $L \subset E$ bounded convex, and $y^{**} \in \overline{L}^{\omega^*} \subset E^{**}$ there is $(y_n)_{n \in \mathbb{N}}$ in L such that $x^{**}(z^*) = \lim_n y_n(z^*)$ for all $z^* \in B \cup D$.

Thesis:
$$\overline{\operatorname{co}(B)}^{\omega^*} \subset \overline{\operatorname{co}(B) + \Lambda_D}^{\|\cdot\|}$$



Things to Think

- Can we remove the "Technical hypothesis" from the one-side James theorems?
- Others one-side problems: one-side Boundary Problem, etc.
- If (B_{E*}, ω*) is block compact, is it in fact convex block compact?