
Projective norm of products of
random gaussian matrices

(C. H. Jiménez, C. González-Guillén, C. Palazuelos, I. V.)

or

Euclidean distance between Haar and
gaussian matrices

(C. González-Guillén, C. Palazuelos, I. V.)



The first question

We consider a random gaussian matrix Y = (yi ,j)
n
i ,j=1 and a haar

distributed random orthogonal matrix U = (ui ,j)
n
i ,j=1.

For fixed (i , j), Borel (1906) showed that
√
nui ,j converges in

distribution to yi ,j , when n→∞.

Question 1: How many indices i , j can we choose so that all of
the chosen

√
nui ,j are simultaneously well approximated by the

corresponding yi ,j?

Actually a family of questions.
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Studied, among others, by

Borel, 1906,
Gallardo, Stam, Yor, Diaconis, Freedman 80’s
Diaconis, Eaton, Freedman, 90’s
Jiang, 05



Previous results

Best estimate in variation distance (Jiang, ’05)
For each n ≥ 1, let Zn be the pn × qn upper left block of a
orthogonal Haar distributed random matrix Γn. Let Gn be the
corresponding block of a random gaussian matrix.
If pn, qn = o(

√
n) then

lim
n
‖L(
√
nZn)− L(Gn)‖ = 0.

Moreover, o(
√
n) is optimal.



Previous results

Best known estimate for the supremum in probability (Jiang,
’05)
For each n ≥ 2, let Yn = (yij)

n
i ,j=1 be a random Gaussian matrix

and let Un = (ui ,j)
n
i ,j=1 be its Gram-Schmidt orthonormalization.

Then Un is Haar distributed in the orthogonal group O(n) and if
we set

εn(m) = max
1≤i≤n, 1≤j≤m

|
√
nui ,j − yi ,j |

for m = 1, 2, · · · , n, then εn(m)→ 0 in probability as n→∞
provided mn = o(

n

ln n
) as n→∞.

Moreover, for any β > 0 , we have that εn(
nβ

ln n
)→ 2

√
β in

probability as n→∞.
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Applications

Computational complexity of linear optics (Aaronson, Arkhipov)

Random matrices: Universal properties of eigenvectors (Tao, Vu)

Many others



Our question

What can be said of the euclidean distance of the rows of
Y −

√
nU?

Specially in the ”constant ratio regime”
m

n
= α



Our first result

Let m, n ∈ N such that α =
m

n
∈ (0, 1]. Let Y , U be as above.

For every 1 ≤ i ≤ n, let Fm
i be the vector formed by the the first

m-coordinates of the ith row of Y −
√
nU. Then

‖Fm
i ‖ ≈

√(
α

2
+
α2

12
+
α3

32
+ · · ·

)
m

with probability exponentially close to 1.



Application I

Slight improvement of the best previously estimate obtained by
Jiang for the supremum norm.

One uses the fact that the distance between the normalized
euclidean norm and the supremum norm of a gaussian vector is√

ln n, with high probability.
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Sketch of proof

The proof is very long and technical, but the tools are simple: the
description of the Gram-Schmidt process and several forms of the
concentration of measure phenomenom.



The second question

(One of the forms of) Grothendieck’s inequality says that there
exists an universal constant KG such that for any n × n matrix
A = (ai ,j) ∑

i ,j

ai ,j〈ui , vj〉 ≤ KG sup
∑
i ,j

ai ,jεiσj ,

where εi , σj = ±1 and ui , vj ∈ BHm .

This is equivalent to say that if we consider γ = (〈ui , vj〉)ni ,j=1 as
an element of `n∞ ⊗π `n∞ then ‖γ‖ ≤ KG
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The second question

Question 1: If we choose u1, . . . , un, v1, . . . , vn independently
uniformly randomly in the unit sphere of an m-dimensional Hilbert
space Hm, how likely is it that ‖γ‖ > 1?

Arising from a question in Quantum Information Theory: ”How
many” quantum correlations are not classical?
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The second question

It is not too difficult to see that the dimension m of the Hilbert
space is relevant:

If the ratio
m

n
goes to 0 as n grows to infinity, then the probability

of ‖γ‖ > 1 goes to 1

If the ratio
m

n
goes to infinity, then the probability goes to 0

This leads us to study the case α =
m

n
constant.
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The connections

The trivial one: A normalized gaussian vector
1

(
∑

i g
2
i )

1
2

(g1, . . . , gm) ≈ 1√
m

(g1, . . . , gm) is uniformly distributed

in the sphere of Hm

The non trivial one: A result of Ambainis et alia (essentially) says
that if ũ1, . . . , ũn, ṽ1, . . . , ṽn are normalized m-cuts of Haar
distributed random unitary matrices, then
‖γ̃‖ = ‖(〈ũi , ṽj〉)ni ,j=1‖ > f (α) > 1 with high probability for certain

range of α =
m

n
, where f is related to the Marcenko-Pastur law.



The connections

The trivial one: A normalized gaussian vector
1

(
∑

i g
2
i )

1
2

(g1, . . . , gm) ≈ 1√
m

(g1, . . . , gm) is uniformly distributed

in the sphere of Hm

The non trivial one: A result of Ambainis et alia (essentially) says
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Our second result

Let n and m be two natural numbers and α =
m

n
. Let us consider

2n vectors u1, · · · , un, v1, · · · , vn uniformly distributed on the unit
sphere of Rm and let us define γ = (〈ui , vj〉)ni ,j=1 (the
corresponding quantum correlation matrix). We view γ as an
element of `n∞ ⊗π `n∞.

a) If α ≤ α0 ≈ 0.004 then ‖γ‖ > 1 with probability tending to
one as n tends to infinity.

b) If α > 2, then ‖γ‖ ≤ 1 with probability tending to one as n
tends to infinity.



Sketch of proof

G is a gaussian random matrix.

U and V are the matrices of its left and right singular values.
U, V are orthogonal, Haar distributed and independent of each
other.
The singular values of G are distributed according to the
Marcenko-Pastur law.
We consider the m biggest singular values of G , and the n ×m
matrices U ′,V ′, submatrices of U,V respectively, formed by the
right and left singular vectors corresponding to those biggest m
singular values.
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Sketch of proof

∥∥ n
m
U ′V ′T

∥∥
`n∞⊗π`n∞

≥ 2− ε
1.6652

. (1)

with probability 1− o(1),

where m is the number of singular values of G which are bigger
than (2− ε)

√
n.

For a fixed 0 < ε < 2 the Marcenko-Pastur law states that the

quotient
m

n
converges to the fixed number

1

2π

∫ 4

(2−ε)2

√
4

x
− 1dx .

Now we consider two independent random gaussian matrices X ,Y .
Their Gram-Schmidt orthonormalizations U,V are Haar distributed
and, therefore, they verify Equation (1) with probability 1− o(1).
Let us consider now the n ×m submatrices X ′,Y ′ corresponding
to X ,Y .
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Sketch of proof

With the previous result and Grothendieck’s inequality we get that,
with probability 1− o(1), we have∥∥ 1

m
X ′Y ′T

∥∥
`n∞⊗π`n∞

≥ 2− ε
1.6652

−
(

2
(
ϕ(α)

)
+
(
ϕ(α)

)2)
KG ,

where ϕ(α) ≈

√(
α

2
+
α2

12
+
α3

32
+ · · ·

)
and KG is Grothendieck’s

constant.
Our result follows now easily.
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and

My best wishes to Richard in
his 70th anniversary
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