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We present a teaching experiment based on a case of one mathematically gifted 9-year-old student 
solving geometric pattern problems, as a first step to introduce him to algebra and equations. We 
use the model of cognitive demand to assess student’s outcomes. To get a fine analysis of the 
answers, we present a modification of the original characterization of the levels of cognitive 
demand to adapt them to the context of geometric patterns problems. We have identified and 
analyzed several types of answers typical of the different kinds of questions posed in the problems. 

INTRODUCTION 

Mathematically gifted students (gifted students hereafter) tend to show unusual paths of reasoning 
and ways to solve problems. Authors like Freiman (2006), Greenes (1981), Krutetskii (1976), and 
Miller (1990) suggest a number of characteristics of gifted students. Some of such characteristics 
are the abilities to: identify patterns and relationships among different elements, generalize and 
transfer mathematical ideas or knowledge from a context to another one, and to invert mental 
procedures in mathematical reasoning. These abilities are specially useful in some particular 
contexts, like the one we are dealing with in this paper, the use of geometric patterns problems to 
introduce students to algebraic language and equations. 

The model of the cognitive demand was created to evaluate the intellectual effort required when 
students solve mathematics problems, and to decide on which problems are more adequate to pose 
to different students. In order to assess the power of tasks to help develop students’ mathematical 
thinking, Stein, Grover and Henningsen (1996) analyzed the features of mathematical tasks 
(number of solution strategies, number and kind or representations, etc.), and the cognitive effort 
required from students to solve them, varying from tasks requiring just recall from memory to 
others requiring what could be characterized as doing mathematics. To allow teachers select tasks 
with an appropriate level of challenge for their pupils, Smith and Stein (1998) designed a set of 
criteria that classifies the tasks into those four levels of increasing required cognitive effort (the 
levels of cognitive demand). Up to now, the level of cognitive demand of a problem was decided 
analyzing the statement of the problem, but this method does not recognize that a problem may be 
solved correctly in several ways requiring different levels of cognitive demand. Instead, we assign 
levels of cognitive demand to students’ outcomes to better understand their ways of reasoning and 
decide on the appropriateness of tasks. 

A very fruitful way to introduce basic algebra to students is by solving geometric patterns problems 
(Cai, Knuth, 2011; Rivera, 2013). Literature has reported many teaching experiments based on 
students of different ages, from early Primary to lower Secondary, and different strategies used to 
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solve the different questions asked in the geometric patterns problems. Specifically, Amit, Neria, 
(2008) focused on the generalization strategies used by able students, aged 11-13, in solving 
geometric patterns problems. They identified two approaches to generalization: recursive-local, 
when students’ strategy to solve the next task is based on the task they had solved before, and 
functional-global, when they obtain a general method, usually multiplicative, to calculate any term 
of the pattern. 

The context of geometric patterns problems seems especially useful for mathematically gifted to 
access pre-algebra concepts, but there are only a few publications reporting gifted students’ 
behaviour when solving these problems. Amit, Neria (2008) confirmed that generalization via 
patterns problems is an adequate gateway to develop algebraic skills. Fritzlar, Karpinski-Siebold 
(2012) explored the algebraic abilities of a sample of primary school students, aged 9-10, of varying 
performance levels, which included gifted students, through the identification and generalization of 
patterns. As expected, the more able students got the better results, although none of them were able 
to answer adequately generalization questions (about the nth term). 

A research question is how do gifted students solve geometric patterns problems and progress in 
learning more abstract strategies. Our research aims to contribute to answer this question. We have 
rephrased the levels of cognitive demand to adequate them to analyze students’ outcomes when 
solving geometric patterns problems. The specific objectives of our research presented here are: 

i) To analyze the relationships among the geometric patterns and the cognitive demand required by 
gifted students’ ways of getting general rules, and 

ii) To analyze the relationship among the complexity of the general rules obtained by gifted 
students and the cognitive demand required by their ways to answer the inverse relationship tasks. 

THEORETICAL FRAMEWORK 

Geometric patterns problems typically show a geometrical representation of the first terms of an 
increasing series of natural numbers (see some examples below), and pose students some questions 
about the series. Usual questions are (Amit, Neria, 2008) to calculate the values Vn of immediate, 
near and far terms of the series, to verbalize a general rule valid to calculate any specific term, and 
to write an algebraic expression Vn = f(n) for such rule. Students may also be asked (Rivera, 2013) 
to calculate the inverse relationship, that is, to get the place n of a term given its value Vn (i.e., 
solve the equation f(n) = Vn). 

The model of cognitive demand identifies four levels of complexity of the reasoning used to answer 
mathematical problems (Smith, Stein, 1998, p. 348): 

• Memorization (low level): tasks that ask students to reproduce previously learned facts, 
rules, formulas or definitions. 

• Procedures without connections (low-medium level): tasks that ask students to perform an 
algorithm in a routine manner, without connection to mathematical concepts. 

• Procedures with connections (medium-high level): tasks that ask students to perform an 
algorithm presenting some ambiguity about what has to proceed, and having connection to 
mathematical concepts. 



Benedicto, Arbona, Jaime, Gutiérrez 
 

 1 - 3 
 

• Doing mathematics (high level): tasks that required a complex and non-algorithmic 
thinking. 

The calculation of immediate and near terms of a pattern typically require only to continue the 
numeric or geometric structure of the given terms of the pattern, and students do not need to be 
aware of the implicit algebraic relationship among terms, so a low-medium level of cognitive 
demand is sufficient to make such calculations. On the contrary, to correctly calculate far terms or 
verbalize a general rule, students need to be aware of the implicit algebraic structure of the 
sequence, so a medium-high cognitive demand is necessary. To write a correct algebraic expression 
for a geometric pattern, there is not any algorithmic procedure to be applied; students have to 
analyze previous answers and connect relevant data from them, so this task requires from students a 
high level of cognitive demand. Respect to the inverse relationships, as we will se below (Table 1), 
the level of cognitive demand required to solve these tasks may vary depending whether the 
mathematical structure of the pattern is simple, just requiring arithmetic calculations (low-medium 
level), or complex, requiring to write and solve an equation (medium-high level). 

To make such a broad description of the levels of cognitive demand useful to analyze specific 
students’ answers to geometric patterns problems, we have adapted the theoretical characteristics of 
the levels specifically for this kind of problems. We present in Table 1 our characterization of the 
levels of cognitive demand particularized to geometric patterns problems (Benedicto, Jaime, 
Gutiérrez, 2015), that we have used to analyze the student’s outcomes shown below. 

Table 1. Characterization of the cognitive demand of answers to geometric patterns problems. 

Levels 
of C. D. 

Categories Characteristics of the task 
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Resolution 
procedure 

• Cannot be solved using procedures because a procedure does not 
exist or because the time frame in which the task is being completed is 
too short to use a procedure. 

Objective • Involve either reproducing previously learned facts, rules, formulas, 
or definitions or committing facts, rules, formulas or data taken from 
the statement. 

Cognitive 
effort 

• Are not ambiguous. Such tasks involve the exact reproduction of 
previously seen material, and what is to be reproduced is clearly and 
directly stated. 

Implicit content • Have no connection to the concepts or meaning that underlie the 
facts, rules, formulas, or definitions being learned or reproduce. 

Explanations • Does not require explanations. 
Representation 
of solution 

• The statement uses a geometric representation and the resolution will 
be represented by an arithmetic representation. 

 

Resolution 
procedure 

• Is algorithmic. A procedure is evident from the geometric pattern, or 
it is obtained by trial and error. The inverse relationship is based on a 
single arithmetic operation, on a learned sequence of arithmetic opera-
tions, or on checking possible answers by trial and error. 
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Categories Characteristics of the task 
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Objective • Focused on producing correct answers instead of on developing 
mathematical understanding. 

Cognitive 
effort 

• Solving it correctly requires a limited cognitive effort. Little ambi-
guity exists about what has to be done and how to do it. 

Implicit content • Little ambiguity exists about what has to be done and how to do it. 
Explanations • Does not ask for explanations, or the explanations consist only on 

describing the procedure used to solve the task. 
Representation 
of solution 

• May be represented in multiple ways (visual diagrams, manipulative, 
symbols, and problem situations), but usually the easiest is chosen. 
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Resolution 
procedure 

• Previous tasks suggest implicit general procedures closely connected 
to the underlying algebraic structure. The inverse relationship is based 
on solving the equation of the general procedure previously obtained. 

Objective • Directs students’ attention to the use of general procedures aiming to 
deepen their understanding of the underlying algebraic structure.  

Cognitive 
effort 

• Solving it correctly requires some degree of cognitive effort. When 
students use a general procedure, they need to have some understan-
ding of the algebraic structure of the pattern. 

Implicit content •When students use a general procedure, they need to have some 
understanding of the algebraic structure of the pattern. 

Explanations • Use particular examples (specific terms of the pattern) to refer to 
algebraic structures or relationships that underlie the procedures.  

Representation 
of solution 

• The resolution connects several representations, but usually is used 
them which develop an abstract reasoning. 
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Resolution 
procedure 

• Require complex and no algorithmic thinking; a predictable, well-
rehearsed approach or pathway is not explicitly suggested by the task, 
task instructions, or a worked-out example. 

Objective • Require students to explore and understand the nature of mathema-
tical concepts, processes, or relationships. 

Cognitive 
effort 

• Require considerable cognitive effort and may involve some level of 
anxiety for the student because of the un-predictable nature of the 
solution process required. Demand self-monitoring or self-regulation 
of one's own cognitive processes. 

Implicit content • Require students to access relevant knowledge and experiences and 
make appropriate use of them in working through the task. 

Explanations • Explanations are the proof of the general term of the geometric 
pattern. 

Representation 
of solution 

• The resolution is represented by an algebraic representation. 
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THE RESEARCH 

We present results from a case study research based on data from a gifted student who solved 
several geometric patterns problems. Cai, Knuth (2011) described learning trajectories of students 
solving geometric patterns problems, but we found that our student solved correctly the problems 
from the very beginning, and he used consistently the same solving strategies along the experiment. 
The analysis we present here answers the above mentioned specific objectives. 

Methodology 

The subject for this study was Juan, a gifted student aged 9 that had finished grade 4 when the 
experiment began. He participated in 10 individual interviews, conducted by the second author. 
Sessions were conducted by means of Skype, and were video-recorded. Through these sessions, the 
student solved 19 geometric patterns problems, all including the same tasks: immediate, near and 
far generalizations, and two inverse relationship tasks. Next, we show one of the 19 geometric 
patterns problems as an example of the tasks posed: 

Marc and his friend want to make an urbanization with sticks. They draw it as follows: 

 
a) How many sticks will they need to draw 6 houses? How do you know it? 

b) How many sticks will they need to draw 11 houses? How do you know it? 

c) Would you know any way to calculate how many sticks will they need to draw 44 houses? How do 
you know it? 

d) If there are 51 sticks, how many houses will they draw? 

e) If there are 98 sticks, how many houses will they draw? 

In each of this tasks, Juan had ever to explain his answers. His explanations for the direct tasks were 
to verbalize the general rule and for the inverse tasks were to verbalize the inversion of the general 
rule or his trial and error calculation. Below, we analyze the diverse Juan’s strategies, which 
correspond to different levels of cognitive demand. 

Analysis of the cognitive demand of student’s answers 

Although all the problems could be solved with strategies of medium-high level of cognitive 
demand, when the difficulty of a problem increased, Juan needed to use strategies of low-medium 
level to solve it. Also, as he still had not learned algebra, he could only solve the inverse 
relationships by using strategies of low-medium level of cognitive demand. We show below the 
different types of strategies used by Juan, with examples: 

1) Decomposition of the pattern. Most geometric patterns show ways to split the figure, making it 
easy to find a general procedure to calculate the terms in 
the series. Juan explained his way to calculate the 
number of chairs around the tables: 

J: For one table, I added the numbers [of chairs] above 
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and below, 1 and 2, are 1x3=3. For two tables, 3 above and 3 below, 2x3=6 and 3+3=6. 
And we have to add those two [the chairs on the sides]. For three tables, 5+4=9 and 
3x3=9. 

Juan was in the medium-high level of cognitive demand, since his general procedure (3xnumber of 
tables+2), derived from the geometric pattern, is related to the algebraic structure of the pattern. The 
figures given can be easily split, so they implicitly suggest general procedures having close 
connections to the underlying algebraic structure. This allowed Juan understand the algebraic 
structure  of the pattern and find the general functional relationship.  

2) Counting from a drawing. In some problems, Juan counted the total number of objects in each 
term, to get a general arithmetic procedure from those numbers. For example, in the task of the 
pools,	 he	 said	 that	 the	pool	 5	 had	22	 tiles	 around	 it	 because	he	
looked	at	the	examples	and: 

J: I discovered that it is 4 times the size [position] of the pool plus 2. ... 
The first size has 6, and 4x1+2=6. The second has 10, 
and 4x2+2=10. And the third has 14, and 4x3+2=14. 

Juan either was not able to find an adequate decomposition of the geometric pattern or he, directly, 
got the numeric values of the given terms and looked, by trial and error, for a way to relate it to the 
position of the term. The strategy of resolution chosen is algorithmic, typical of a low-medium level 
of cognitive demand, since it consisted on counting the number of elements of each terms and 
looking for and arithmetic relationship between them. The objective of this solution was focused on 
producing a correct result. Despite of the procedure used by Juan, consisting on finding a general 
formula, he might not be aware of the underlying algebraic structure, since he only described the 
procedure used to solve the task but he did not explain a reason of it. 

In another problem, asking for the number of sticks to make a series of laces, Juan explained the 
way he had proceeded to get a formula to calculate the number of sticks: 

J: I think this is okay. I made a way. A triangle, I multiply it by two and I 
add one. A triangle, 1x2+1=3. Two triangles, 2x2=4 and 
4+1=5. Three triangles, 3x2=6 plus… 3x2=6 and 6+1=7. 
And six [triangles]… 6x2=12 and 12+1=13. 

Researcher: Ok. How did you get this formula? 

J: I first thought that each time was different, but finally I got it by trial. 

R: Did you divide the triangles in some way or did it just come up with you?  

J: I tried, ok? I first tried to get how many sticks [are necessary to make each lace] by counting, but I 
said it would be boring, too long. Then I thought in making a formula and I tried some 
ones. Finally I got this one. 

This trial and error arithmetic strategy focused on getting a correct answer, but it did not develop 
mathematical understanding, since it hid the understanding of the algebraic structure under the 
pattern. So this solution required a low-medium level of cognitive demand. Although Juan tried to 
use a decomposition of the geometric pattern to obtain a relationship, he was obstinated in getting a 
correct solution and did not pay enough attention to understanding the underlying algebraic 
structure, and he followed an algorithmic strategy with a limited cognitive effort.  
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Strategies to calculate inverse relationships are conditioned by students’ (lack of) awareness of 
algebra and their (in)ability to solve equations. Juan had not had any previous contact with algebra. 
He showed three types of strategies to calculate inverse relationships:  

3) Correct inversion of the order of operations. When the general procedure found for the direct 
tasks was the types y = ax or y = x±a, Juan applied correctly the inverse arithmetic operation to get 
the position of the term. For example, a problem asked for the number of triangles under each row 
of cards. Juan explained his direct operations: 

J: If there are 5 cards, at the bottom we have always 
to add a triangle. Below there is 
always one [triangle] more. 

Next, for the inverse relationship question, Juan had 
to calculate the number of cards on the top when there were 23 triangles below: 

R: What if we do it the other way around? How many cards are there on 23 triangles? 

J: 22. 

R: Very good. What have you done now? 

J: Subtract one. 

Applying the rule of inverse arithmetic operations is not just a matter of memory, although it is 
algorithmic and requires a very limited cognitive effort, since he only need to apply a basic 
arithmetic operation. This strategy has a low-medium level of cognitive demand. The aim is to get a 
correct solution and the explanation was only a description of the procedure used to solve the task. 

4) Wrong inversion of the order of operations. When the general procedure found for the direct 
tasks was the type y = ax±b, Juan knew that he had to use the inverse operations, but he was not 
aware of the relevance of the order of calculations. For instance, in the task of the laces (see the 
pattern above), the direct operations made by Juan were Vn = 2n + 1: 

J: The number of sticks to make a lace is 2 times the position plus 1. 

Juan was first asked to calculate the position of a lace made with 20 sticks: 
J: I believe it is a number between 9 and 10. I did 20 divided by 2 minus 1. 

After this wrong answer, the researcher guided Juan to consider the order of calculations in his 
procedure. Next, Juan had to calculate the position of a lace made with 31 sticks: 

J: It is 14 and a half. ... No, it’s wrong, it is 15. ... I subtract 1 to 31 and get 30, and 30 divided by 2 is 
15. 

Juan decided the order of inversion of calculations in an in consistent way, not connected to the 
algebraic structure of the pattern. This solution required a low-medium level of cognitive demand, 
since the student did not understand the algebraic structure of the pattern, which induced him to use 
an incorrect procedure. He tried to give a correct answer, but he did not pay attention to the general 
procedure and made limited cognitive effort to give a solution. 

5) Trial and error direct calculations. When the general procedure found for the direct tasks was 
the types y = ax+b(x±c)±d, or the quadratic types y = x2 or y = (x±a)(x±b), Juan was blocked 
because he was unable to invert such complex procedures (he still had not studied equations nor 
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square roots) and he resorted to trial and error, checking different values for n until the correct value 
was found. For instance, the task of the walls asked about the number of bricks necessary to build a 
wall. The direct operations made by Juan were Vn = (n+1)·2 + n:  

J: The number of bricks in a wall is the position-plus-1 
times 2, plus the position. 

Then, he had to calculate the position of a wall made 
with 38 bricks: 

J: I did 38 divided by 2 minus 2. But it does not work. ... I believe it is 13. ... I checked the numbers 
[positions] ... No, sorry, it is 12. Because 12+1=13; 13x2=26; 26+12=38. 

Trial and error is an algorithmic process that does not connect to the algebraic structure of the 
pattern, and it is only aimed to get the correct answer. Therefore, this type of strategy needs a low-
medium level of cognitive demand. As for the previous example, Juan did not understand the 
algebraic structure and he made limited cognitive effort to get this (incorrect) answer. 

These results are part of the research project Analysis of Learning Processes by Primary and Middle 
School Mathematically Gifted Students in Contexts of Rich Mathematical Activities (EDU2012-
37259), funded by the Ministry of Economy and Competitivity of the Spanish Government. 
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