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We present a research experiment designed to analyze the ways undergraduate 
mathematics university students solve geometry proof problems. On the one side, we 
aimed to identify the types of formal proofs produced by these students. The results of 
this experiment inform on previous categorizations of deductive proofs. On the other 
side, we aimed to observe the ways these students use dynamic geometry software to 
solve proof problems and to determine whether using the software influenced in some 
way their proofs or their processes of solving the problems. 

INTRODUCTION 
A very active research agenda in Mathematics Education is the one focusing on 
mathematical proof. Some research in it described different styles of proofs produced 
by students (either empirical or deductive) (Balacheff, 1988; Antonini, 2003; Harel & 
Sowder, 1998; Zack, 1997). Other research described the mental processes followed 
by students when they move from producing empirical to deductive proofs or the 
ways students progress from producing less to more elaborated kinds of proofs 
(Arzarello, Micheletti, Olivero, Robutti, & Paola, 1998; Kakihana, Shimizu & 
Nohda, 1996; Raman, 2003). Furthermore, many of these research paid attention to 
the claimed advantages of teaching based on dynamic geometry software (DGS) to 
help students in learning deductive proof (Jones, Gutiérrez, & Mariotti, 2000); The 
results from research are not conclusive in confirming such claim: A majoritary 
conclusion is that DGS environments help students to find the way to solve geometry 
proof problems, but some researchers prevent from possible obstacles in making 
students feel the need of making deductive proofs, due to the power of conviction of 
dragging explorations with DGS (Chazan, 1993, and Healy, 2000). 
Most research in this agenda focused on primary and, mainly, secondary school 
students, with only a few research projects focusing on university students (Blanton, 
Stylianou, & David, 2003, and Weber, 2004, are two of the very few examples), so 
research based on these students is insufficient (Marrades & Gutiérrez, 2000, p. 121). 
A key difference among secondary and mathematics university students is that the 
first ones still have to learn to use deductive reasoning, while the second ones usually 
already have learned to do formal proofs. In this context, an unanswered research 
question is to identify ways the mathematics university students would use DGS to 
produce deductive proofs as solutions of geometry proof problems. The research 
presented in this paper is based on a teaching experiment with undergraduate 
mathematics university students who had showed expertise in writing deductive 
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proofs. The students were asked to solve several geometry proof problems, in a 
paper-and-pencil environment in some cases, and in a Cabri environment in other 
cases. The main objective of our research was to look for differences in the solutions 
of the problems solved in each environment, like producing different types of proofs 
or managing in different ways the difficulties found while solving the problems. 
More specifically, the objectives of the research were: 

• 1. To identify the types of proofs produced to solve geometry proof 
problems in a paper-and-pencil environment and a DGS environment, and to 
look for differences among the types of proofs produced in each 
environment. 

• 2. To explore the influence of a DGS (Cabri) environment, respect to a 
traditional paper-and-pencil environment, in the students’ solutions 
(management of the process of solving, and proofs produced). 

THEORETICAL FRAMEWORK 
The theoretical framework for this research has two components: Classification of 
proofs produced by students, and analysis of students’ use of DGS. 
Bell (1976) asked secondary school students to solve combinatorial proof problems 
so, not surprisingly, the proof types he described are based on the completeness of 
checking specific examples or making deductive arguments for specific sets of cases. 
A category particularly relevant to our study are the complete empirical proofs, 
consisting in checking a conjecture in the whole finite set of possible cases. 
Balacheff (1988), based on experiments where secondary school students had to 
solve several proof problems, mainly paid attention to the different ways the students 
selected the examples used to write proofs. Relevant to our study are Balacheff’s 
categories of naive empiricism, crucial experiment and generic example pragmatic 
(empirical) proofs, and thought experiment conceptual (deductive) proof. 
Harel and Sowder (1998) complemented Balacheff’s categories, since they worked 
with mathematics undergraduate university students, and they obtained detailed data 
for types of deductive proofs. Relevant to our study are the categories of inductive 
and perceptual empirical proof schemes and the categories of transformational and 
axiomatic analytical (deductive) proof schemes. Harel and Sowder coined the term 
proof scheme to refer to “what constitutes ascertaining and persuading” for a person 
(p. 244). To maintain a unique terminology in this paper, in what follows we use the 
term “proof” instead of “proof scheme” to refer to Harel and Sowder’s categories. 
Recently, several researchers have applied the above mentioned sets of categories of 
proofs to their own data, and they have found necessary to introduce some 
modifications for better matching to the data. For instance, Marrades and Gutiérrez, 
(1998, 2000) completed Balacheff’s empirical categories by considering the ways 
students used the examples in their proofs and defining several subcategories. 
Similarly, Ibañes (2001) introduced several pairs of subcategories in Harel and 
Sowder’s (1988) proof schemes to classify some types of proofs that didn’t mach any 
of their categories: Static/dynamic perceptual proofs; Authentic/false, a case/several 



Rodríguez & Gutiérrez 

 

PME30 — 2006 4 - 435 

cases, and systematic/non systematic inductive empirical proofs; Static/dynamic, 
particular/ general, and complete/incomplete transformational analytic proofs. 
The framework used in our research to classify the proofs produced in the experiment 
(synthesized in Figure 1) is an integration of elements taken from the proviously 
mentioned sets of categories that we considered would be useful to classify our 
students’ outcomes, plus some original subcategories. Due to space limitations, and 
because the cases analyzed in this paper are formal proofs, we only explain here in 
detail the classification of deductive proofs in the theoretical framework. 

Empirical Deductive

Perceptual Inductive Thought 
experiment

Formal

Naive 
empiricism

Crucial 
experiment

Generic 
example

Exhaustive

Pure With inference

Transformative Axiomatic

 
Table 1: Categories of proofs. 

A empirical proof is pure when it only includes empirical verifications, and it is with 
inference when, apart from the empirical verifications, it includes some kind of 
reference to known definition, property, etc. To analyze deductive proofs, we 
consider two aspects of the proofs, the presence (or not) of examples in the proof, and 
the explicit use (or not) of elements of an axiomatic system: We differentiate, first, 
among thought experiments, when students use examples as sources of information 
and hints to write several steps in the proofs (Balacheff, 1988), and formal proofs, 
when students write the proofs without any support from the examples apart from, 
maybe, using a figure to visualize the elements involved in the problem; in this case, 
an example might provide the students with an initial idea of how to solve the 
problem, but then the example is not used any more to write the proof. 

We differentiate two subclasses of deductive proofs: Transformative proofs, when 
they are based on mental operations involving goal oriented operations on objects and 
anticipation of the operations’ results (Harel & Sowder, 1998, p. 258), and axiomatic 
proofs, when the proofs are based on elements of an axiomatic system (p. 273). 

Respect to the use of Cabri by our students, the literature offers several elements that 
are pertinent to this research: The ascending and descending phases (Arzarello et al., 
1998) and the cognitive unity of theorems (Boero, Garuti, Lemut, & Mariotti, 1996) 
may help to explain the relationships among empirical experimentations with Cabri 
and the production of a formal proof. The modalities of dragging (Arzarello, Olivero, 
Paola, & Robutti, 2002) may help to identify the aims of the students when they 
observe or transform a drawing on the screen. 
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THE EXPERIMENT 
The sample was a class group of undergraduate students in their 4th or 5th year at 
the Faculty of Mathematics of the Univ. de les Illes Balears (Spain) studying a 
course on Euclidean Geometry. The 8 students in this class participated in the 
experiment. The students worked in 4 pairs, and they were asked to present only a 
joint answer to each problem. The experiment took place during the ordinary classes 
(October to January); There were two classes per week, about 100 minutes per 
class. The first classes were devoted to remind students’ previous knowledge on 
Euclidean Geometry, to teach them some new concepts necessary for next classes, 
and to teach them to use Cabri II+. The rest of the course was organized as a 
problem solving setting jointly conducted by the teacher of the subject and the first 
author of this paper. 
During the teaching experiment, the students solved 16 geometry proof problems. 
The statements of these problems didn’t include any drawing. First the students 
solved 9 problems in their usual paper-and-pencil environment. Then they solved 7 
problems in the Cabri environment. Each pair of students used a computer. 
During all the experiment, both the teacher and the first author were present in the 
classes. Their role was to state the problems, to help students or answer their 
questions, and to manage the time of the classes. For each problem, there was a time 
for the pairs to work on the solution followed by a time to discuss the solutions 
obtained by the students and to institutionalize the new knowledge. 

METHODOLOGY 
The research was organized as a quasi-experiment, with one of the researchers acting 
as a participant observer. Different sources of data were used: In both environments 
we collected i) Researcher’s field notes; ii) Students’ written solutions; iii) Students’ 
self-protocol – this is an innovative tool where, emulating the “think aloud” 
technique for oral problem solving, students were asked to write, during the process 
of solving each problem, notes commenting their way of solving the problem, the 
ideas discussed either accepted or rejected, their decisions, etc. – Furthermore, in the 
Cabri environment, we collected: iv) The files saved by students with the figures 
constructed; and v) The record of session files. 
To analyze the information gathered, we have put together the written solutions, the 
self-protocols, and the record of session (for the Cabri problems); The other data 
(researcher’s notes and Cabri files) were used when convenient. This gave us a 
detailed picture of the way each pair of students had worked to solve every problem. 

DATA AND ANALYSIS OF RESULTS 
We are presenting here, as representatives of the 16 problems solved by the 4 pairs of 
students, abridged versions of a pair of students’ self-protocols and solutions to the 
paper-and-pencil problem 7 and the Cabri problem 13. Note that these students 
consistently use the verb “see” to mean “prove”. 
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Problem 7. 
Let H be the orthocenter of triangle ABC. Let A’ be the intersection of height AH 
and side BC. Let A’’ be the intersection of height AH and the circle circumscribed to 
ABC, with centre O. Let r be the straight line parallel to BC through O. Prove that H 
is the image of A by the product of symmetries with axes r and BC, respectively. 
1. We begin to draw Figure 1. 
2. We see that r ⊥ AA’’ because r is parallel to BC 

which is ⊥ AA’’ (the height). 
3. We want to see [prove] that HA’ = A’A’’. 
The students draw point M’ as intersection of r and 
AA’’. 
5. We also have to see that AM’ = M’A’’. 
6. To see it [conjecture 5] we draw Figure 2. We can see 

that B1M1 and M1A1 are congruent because [in 
triangles B1OM1 and A1OM1] two sides and the angle 
opposite to the longest side are congruent. 

7. Therefore AM’ = M’A’’ perpendicular to r. 
8. Now let’s see that HA’ = A’A’’ in Figure 1. 
10. A’B is a side common to both triangles [A’BA’’ and 

A’BH] and ∠HA’B = ∠A’’A’B = 90°. 
 Now we have to find another equal [congruent pair 

of] angle[s] to prove that the triangles are congruent 
and that HA’ = A’A’’. 

The students drew another figure similar to Figure 1, 
and they labelled as B’ the intersection of height BH 
and side AC. 
11. We see that ∆B’HA ≈ ∆ACA’ because both have a right angle and a common angle. 
 Also ∆CA’A ≈ ∆CB’B because both have a right angle and ∠HA’B = ∠A’’A’B the 

common angle [ C]. 
  CBB’ =  CΑA’’ = α. Now,  A’’BC =  CAA’’ = α because both angles contain the arch 

CA’’. 
12. Then, ∆A’A’’B = ∆A’HB because they have two equal angles and an equal side. ⇒ 

A’A’’ = HA’. 
The students have produced a correct transformative though experiment proof, since 
several drawings have guided them to write the proof in different key moments. 
Problem 13. 
Let ABC be a triangle. Let r and s be two non-parallel straight lines. For each side of 
ABC, draw a parallelogram having its sides parallel to r and s and having the given 
side of the triangle as a diagonal. Prove that the other diagonals of the three 
parallelograms are concurrent. 
The students draw Figure 3 and drag the vertices of the triangle to check the truth of 
the statement. They also use the command member? to verify that the three diagonals 

 
Figure 1. 

 
Figure 2. 
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meet at a single point. Now they try to prove the conjecture ad absurdum: 
2. We draw another straight line. Let’s suppose that this line is the diagonal and it 

intersects the two other diagonals in different points A, B. [Figure 4] 
5. Let M1 be the midpoint of the diagonals of parallelogram PQRS. Then it is the midpoint 

of side PR of the given triangle [ABC]. 
7. John suggests to change to the dual, three concurrent straight lines are three points of 

the same straight line in the dual. But we don’t follow this way. 

                     

Figure 3.                                                                 Figure 4. 
8. We made a drawing on paper trying to do it wrongly 

to see the problem [Figure 5]. 
10. John suggests that we can see that the area of triangle 

ABE is zero, but it seems difficult, and we don’t 
follow this way. 

The students used the Trace in Cabri to see that point 
E moves along the diagonal when they dragged vertex 
R. 
12. We are looking at A and B, but we don’t see any 

property characterizing them. 
15. We look for similarities. (we don’t pursue) 
16. We should see that the diagonals are known cevians of 

some triangle. 

A cevian of a triangle is a segment from a vertex to any point of the opposite side. 
17. We create the parallel to a side through the opposite vertex [they do it for the three 

vertices of ABC] We check on the drawing that the diagonals don’t have any 
relationship to these lines. [they delete the parallels] 

18. We try a triangle whose vertices are intersections of the diagonals with the sides of ABC. 
19. We check if they [the diagonals] are bisectors [they measure several angles], but they 

aren’t. 

The students remind the Ceva’s theorem, they write the theorem’s statement, and 
look for a way to prove it, but they don’t know how to do it. Finally, they make 
another unsuccessful trial on the Cabri figure, and they stop working. 

 
Figure 5. 
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As a summary, the students made a sequence of transformative thought experiment 
trials, since they have permanently handled figures looking for valid conjectures, that 
they were not able to prove. 

CONCLUSIONS 
The comparison of the answers to the two problems by this pair of students lets us get 
some conclusions related to different aspects of the experiment: 
- Classifying the proofs according to the categories mentioned in the Theoretical 
Framework section gives little information about high level mathematics university 
students’ behaviour, since all the proofs produced by them were deductive, and most 
proofs will be transformative thought experiments, since the geometry problems are 
prone to induce such kind of proofs. Therefore, other directions of analysis are 
necessary to have a deeper picture of the students. 
- The relationship among drawings (either in paper or DGS) and the production of 
proofs, that is the role of the figures/examples when the students are writing a proof, 
is quite subtle, and has to be observed carefully: 

- In a thought experiment proof, the examples guide the students’ steps to write the 
proof. This has been evident in the protocols of the two problems analyzed here. 
- In a formal proof, the steps in the proof guide the drawing of examples. Their role 
is not to suggest ideas to the students, but to help the reader understand the proof. 
- In any deductive proof, an example may be the a source of ideas for students but, 
in a formal proof, the example is, at most, the source of the initial idea, and the 
subsequent process of writing the proof doesn’t rest on the example any more. 

- The DGS helps students to empirically identify and check conjectures (by dragging) 
but, when students are reasoning deductively, some times the DGS doesn’t help them 
to find the way to a deductive proof. In these cases, using DGS doesn’t mean any 
advantage over the traditional paper-and-pencil environment. 
- The self-protocol has proved to be a useful methodological tool to get information 
on students’ activity, since it has let us to track their actions, both successful and 
unsuccessful, and decisions. 
References 
Antonini, S. (2003). Non-examples and proof by contradiction. In N. A. Pateman, B. J. 

Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th PME International Conference 
(Vol. 2, pp. 49-56). 

Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., & Paola, D. (1998). A model for 
analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead 
(Eds.), Proceedings of the 22nd PME International Conference (Vol. 2, pp. 24-31). 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging 
practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66-72. 

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. 
Pimm (Ed.), Mathematics, teachers and children (pp. 216-235). London: Hodder & St. 



Rodríguez & Gutiérrez 

 

4 - 440 PME30 — 2006 

Bell, A. W. (1976). A study of pupil's proof-explanations in mathematical situations. 
Educational Studies in Mathematics, 7(1), 23-40. 

Blanton, M., Stylianou, D. A., & David, M. (2003). The nature of scaffolding in 
undergraduate students’ transition to mathematical proof. In N. A. Pateman, B. J. 
Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th PME International Conference 
(Vol. 2, pp. 113-120). 

Boero, P., Garuti, R., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional 
school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. 
Puig & A. Gutiérrez (Eds.), Proceedings of the 20th PME International Conference (Vol. 
2, pp. 113-120). 

Chazan, D. (1993). High school geometry students’ justification for their views of empirical 
evidence and mathematical proof. Educational Studies in Mathematics, 24(4), 359-387. 

Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. 
In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics 
education (Vol. III, pp. 234-283). Providence, USA: American Mathematical Society. 

Healy, L. (2000). Identifying and explaining geometrical relationships: Students interactions 
with robust and soft Cabri constructions. In T. Nakahara & M. Koyama (Eds.), 
Proceedings of the 24th PME International Conference (Vol. 1, pp. 103-117). 

Ibáñes, M. (2001). Aspectos cognitivos del aprendizaje de la demostración matemática en 
alumnos de primer curso de bachillerato. PhD dissertation. Valladolid, Spain: 
Universidad de Valladolid. 

Jones, K., Gutiérrez, A., & Mariotti, M. A. (Eds.) (2000). Proof in dynamic geometry 
environments. Educational Studies in Mathematics, 44(1/2). 

Kakihana, K., Shimizu, K., & Nohda, N. (1996). From measurement to conjecture and proof 
in geometry problems. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th PME 
International Conference (Vol. 3, pp. 161-168). 

Marrades, R., & Gutiérrez, A. (1998). Organizing the learning in a Cabri environment for a 
journey into the world of proofs. In A. Olivier & K. Newstead (Eds.), Proceedings of the 
22th PME International Conference (Vol. 4, p. 276). 

Marrades, R., & Gutiérrez, A. (2000). Proofs produced by secondary school students 
learning geometry in a dynamic computer environment. Educational Studies in 
Mathematics, 44(1/2), 87-125. 

Raman, M. (2003). Key ideas: What are they and how can they help us understand how 
people view proof? Educational Studies in Mathematics, 52(3), 319-325. 

Weber, K. (2004). A framework for describing the processes that undergraduates use to 
construct proofs. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th PME 
International Conference (Vol. 4, pp. 425-432). 

Zack, V. (1997). “You have to prove as wrong”: Proof at the elementary school level. In E. 
Pehkonen (Ed.), Proceedings of the 21st PME International Conference (Vol. 4, pp. 291-
298). 




