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This study compares the performance of two estimation algorithms of new 
usage, the Metropolis-Hastings Robins-Monro (MHRM) and the 
Hamiltonian MCMC (HMC), with two consolidated algorithms in the 
psychometric literature, the marginal likelihood via EM algorithm (MML-
EM) and the Markov chain Monte Carlo (MCMC), in the estimation of 
multidimensional item response models of various levels of complexity. 
This paper evaluates the performance of parameter recovery via three 
simulation studies from a Bayesian approach. The first simulation uses a 
very simple unidimensional model to evaluate the effect of diffuse and 
concentrated prior distributions on recovery. The second study compares the 
MHRM algorithm with MML-EM and MCMC in the estimation of an item-
response model with a moderate number of correlated dimensions. The third 
simulation evaluates the performance of the MHRM, HMC, MML-EM and 
MCMC algorithms in the estimation of an item response model in a high-
dimensional latent space. The results showed that MML-EM loses precision 
with high-dimensional models whereas the other three algorithms recover 
the true parameters with similar precision. Apart from this, the main 
differences between algorithms are: 1) estimation time is much shorter for 
MHRM than for the other algorithms, 2) MHRM achieves the best precision 
in all conditions and is less affected by prior distributions, and 3) prior 
distributions for the slopes in the MCMC and HMC algorithms should be 
carefully defined in order to avoid problems of factor orientation. In 
summary, the new algorithms seem to overcome the difficulties of the 
traditional ones by converging faster and producing accurate results.   
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1. Introduction 
Multidimensional item response models apply to the investigation of 

the latent factors underlying psychological tests and questionnaires 
composed of dichotomously scored items, or items with few response 
categories. These models are equivalent to a categorical factor analysis and 
thus are informative about the number and composition of latent factors as 
well as the relations between them (McDonald, 1985).  

The estimation of models with five or more factors is a usual demand 
of exploratory and confirmatory analyses. However, the selection of a 
reliable and fast estimation algorithm is an open problem in the practical 
application of multidimensional item response models. A number of 
alternatives exist, from limited information algorithms based on tetrachoric 
correlations (Christofferson, 1975) and marginal/EM estimation (Bock & 
Aitkin, 1981), to Bayesian MCMC estimation (Gelman, Carlin, Stern & 
Rubin, 1995). Nevertheless, while these algorithms perform well in low 
dimensional models, they can easily run into difficulties in high 
dimensional latent spaces. This problem is often referred to in the literature 
as the curse of dimensionality (Cai, 2010a), because the complexity of the 
integration problem involved in estimation has an exponential growth rate 
in relation to the number of factors.  

Apart from the technical difficulties of integration over the latent 
space, complex models may have weakly identifiable parameters, which are 
those parameters that are identified from a purely algebraic analysis of the 
model structure, but the sample contains little information to estimate them. 
These parameters present difficulties of convergence and estimation of 
standard errors. Even more so, the presence of weakly identifiable 
parameters may transmit uncertainty in the estimation of the other 
parameters and impede the reliable estimation of the whole model. 
Estimation problems originated by weak identification can be alleviated or 
eliminated by imposing Bayesian priors on item parameters. Because high 
dimensional models will be used in this paper, inference will be performed 
in the Bayesian framework. 

There are two broad classes of Bayesian estimation algorithms: 
analytic and simulation. On the one hand, analytic algorithms are based on 
the explicit mathematical derivation of estimation equations, which involve 
a Gauss-Hermite numerical integration procedure and a Newton-Raphson 
algorithm to find the roots of the estimation equations (Schilling & Bock, 
2005). On the other hand, simulation algorithms consist of taking samples 
of parameters from the posterior distribution using a Markov chain Monte 
Carlo algorithm implemented via Gibbs sampling (Gilks, Richardson & 
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Spiegelhalter, 1996). Simulation algorithms avoid the use of derivatives and 
are mathematically simpler at the cost of an increased computational 
burden. There are also some algorithms that are a hybrid of these two 
classes, such as the stochastic EM algorithm (Diebolt & Ip, 1996; Wirth & 
Edwards, 2007). 

The purpose of this study is to gather information about the 
performance of two recent Bayesian estimation algorithms in comparison to 
two algorithms consolidated in the psychometric literature. The recent 
algorithms were introduced to overcome the difficulties of the traditional 
ones, although few studies comparing performance have been published yet. 
There is still little evidence about the supposed benefits of the new methods 
because of their novelty. The four algorithms considered in this paper are: 
1. Marginal likelihood (MML-EM; Bock & Aitkin, 1981), which is based 

on an analytic differentiation of the log-likelihood. The MML-EM 
proceeds iteratively in two steps: in the first step, the algorithm 
computes the distribution of the factors conditional on the item 
responses; in the second step item parameters are estimated while 
keeping fixed the conditional distribution obtained in the first step. The 
computation of the conditional distribution of the factors involves the 
marginal distribution of item responses, which is approximated by a 
number of methods such as static Gauss-Hermite quadrature, adaptive 
Gauss-Hermite or Monte Carlo simulation (Schilling and Bock, 2005).  

2. Bayesian simulations via Markov chain Monte Carlo (MCMC; Gilks et. 
al., 1996).  MCMC algorithms take samples from a target posterior 
distribution. The algorithm creates several Markov chains in parallel 
whose stationary distribution is the posterior distribution of interest. 
Once the chain has converged to the stationary distribution, the samples 
from the chains will behave approximately like samples from the 
posterior distribution.  

3. Metropolis-Hastings Robbins-Monro (MHRM; Cai, 2010a, 2010b). 
The MHRM is a hybrid algorithm based on marginal likelihood in 
which samples from the conditional distribution of the factors are 
combined via stochastic approximation. It produces maximum-
likelihood and modal or expected a-posteriori point-estimate solutions 
for multidimensional item response models, avoiding the Gauss-
Hermite numerical integration procedure.  

4. Hamiltonian MCMC (HMC; Neal, 2011). The HMC method speeds up 
convergence of MCMC simulations by applying the Hamiltonian 
dynamics (Neal, 2011). However this decrement in the estimation time 
requires, first, to compute the gradient of the log-posterior and, second, 
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to specify the number of steps and the steps’ size to run a Hamiltonian 
system. Hoffman and Gelman (2014) propose the No-U-Turn sampler 
(NUTS) to make the HMC procedure decisions more convenient for the 
user.  

 
The two classical algorithms are MML-EM with Gauss-Hermite 

numerical integration and MCMC via Gibbs-sampling, whereas MHRM 
and HMC are recent evolutions of them aimed at reducing the 
computational burden and speeding up convergence. Apart from the 
analytic versus simulation issue, these algorithms differ in the estimates 
they provide. MML-EM and MHRM maximize the posterior distribution of 
item parameters and provide the modal a-posteriori estimate (MAP). 
However, MCMC and the HMC provide a simulation approximation to the 
full posterior distribution of item parameters, which can be summarized in 
the expected a-posteriori estimate (EAP).  

The model used in this paper applies to dichotomous data. The 
probability that individual j gives a positive response to item i is given by 

Pij =
exp(di + ai1θ j1 +!+ aiDθ jD )
1+ exp(di + ai1θ j1 +!+ aiDθ jD )

,                                        (1) 

where D is the number of factors, θj1, …, θ jD are person parameters, di is 
the item intercept, and ai1, …, aiD are the item slopes. Apart from these 
parameters, the model includes the factor variances, 2

jσ , and covariances, 

jkσ . Not all of these parameters can be estimated simultaneously, and some 
of them have to be fixed to constant values for the others to be identifiable. 
For example, one item slope, aij, has to be fixed to a constant value for the 
factor variance of the corresponding factor, 2

jσ , to be identifiable. The 
model in Equation (1) is equivalent for all practical purposes to a factor 
analysis of dichotomous variables. 

Let X be the matrix of observed responses, MML-EM and MHRM 
provide a point estimate by maximizing the posterior distribution: 

( , , | ) ( , , ) ( | , , , ) ( ) ,f f P f d∝ ∫X Xa d a d a d sσ σ θ θ θ                           (2) 

where 1 1( | , , , ) (1 )j ijx x
ij ij

i j

P P P −= −∏∏X a d s θ is the probability of the 

observed data conditional on all parameters, ( , , )f a d σ is the prior 
distribution and ( )f θ is a multivariate normal density function. The 
purpose of MCMC and HMC is to take samples from ( , , | )f Xa d σ ; these 
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samples can be summarized using central tendency and dispersion measures 
to obtain Bayesian point estimates and associated standard errors. 

In this research, the four algorithms are applied in a Bayesian context 
with prior distributions for all parameters. In this context, the label MML-
EM means that the likelihood function involved in the posterior distribution 
in Equation (2) is a marginal likelihood: ( | , , , ) ( )P f d∫ X a d s θ θ θ . 

The four algorithms were applied to models from low to high 
complexity to test them in a number of conditions of realistic complexity. 
To this end, the paper reports three simulation studies. The first simulation 
study investigates the effect of the prior distributions in a unidimensional 
model. The second simulation study is based on models of an intermediate 
number of factors and many different types of parameters, whereas a model 
with many factors is used in the third simulation study. 

 
2. Simulation study one. Estimation of a unidimensional model 
The first study evaluated the effect of type of prior distribution on the 

parameter recovery of a relatively simple unidimensional item-response 
model. In particular, we fitted the two parameter logistic model (Birnbaum, 
1968), which is equivalent to Equation (1) when D = 1, to a sample test of 
15 items. The model was estimated using two analytic algorithms (MML-
EM and MHRM). 

Table 1 shows the true item parameters of the model. The aj and dj 
parameters were generated at random. The a-parameters (slopes or scale 
parameters) were obtained from a lognormal distribution (with µ = 0 and σ2 
= 0.5, yielding a distribution with an expected value of 1.13 and a variance 
of 0.36). True d-parameters (intercepts) and person parameters (factor 
scores) were obtained from a standard normal distribution. We selected 
these distributions to obtain true parameter values comparable to those 
found in real applications. 

Both MML-EM and MHRM algorithms were implemented using the 
statistical software R (R Core Team, 2015) and version 1.13 of the mirt 
package (Chalmers, 2012). Default estimation options were left for both 
algorithms (31 quadrature points used per dimension, 500 max EM cycles, 
convergence occurred when all parameters were less than |.0001| across 
cycles; 2000 iterations for the MHRM and a burn-in period of 150 
iterations).  

The version 1.13 of the mirt package only allowed the use of the 
normal and the lognormal prior distributions. However, if no prior was 
selected and lower and upper bounds are set for the parameters in the MML 
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algorithm, the resulting estimate is equivalent to a Bayesian estimate with a 
uniform prior. So we utilize the normal, lognormal and uniform prior to 
estimate the model.  

 
 

Table 1. True parameters values for the first simulation study 

 
 
 
Person parameters followed a standard normal distribution, which is a 

commonplace in the IRT context (Curtis, 2010). Nonetheless, the prior 
distribution for the item parameters varied from scale to intercept 
parameters. For the scale parameters it was not usual to have negative 
estimated values in unidimensional models, and thus the prior distribution 
should be defined in the positive real line only. Not so for the intercept 
parameters, for which only the uniform or the normal distributions could be 
a feasible choice.  

This leaded to three different configurations of priors using the mirt 
package: 

1) Flat little informative distributions:  
~ uniform (0,  5)
~ uniform( 5,  5)

a
d −

                                                  (3) 
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The prior for the slopes had an expected value of 2.5 and a standard 
deviation of 1.44, and the prior for the intercepts had expected value 
of 0, a variance of 2.5 and a standard deviation of 2.88. 
2) Item parameters were assumed to follow a normal distribution, 
being able to take positive and negative values 

~ normal (0,  3)
~ normal (0,  3)

a
d

                                                  (4) 

The standard deviation of the normal (0, 3) was 1.73, rendering a 
relatively flat uninformative distribution. 
3) Slopes were assumed to follow a lognormal distribution, taking 
only positive values, and intercept parameters a normal distribution, 
taking either positive or negative values 

~ lognormal (0,  0.5)
~ normal(0,  3)

a
d

                                          (5) 

The lognormal (0, 0.5) distribution has a median of 1, an expectation 
of 1.13, and a standard deviation of 0.6, which are reasonable values 
for the a prior; we have fixed the median to 1 instead of the 
expectation because the lognormal has a remarkable asymmetry and 
setting the expectation equal to 1 would resulted in a distribution with 
a thick right tail. 
 
Note that the prior distributions in Equation (5) that were used for 

estimation were the same as the prior used to generate item parameters. 
Thus, in this condition the priors are correct, whereas the priors in (3) and 
(4) differed from the generating distributions and might introduce bias in 
estimation. 

The conditions of the simulation study were: estimation algorithm 
(MML-EM vs. MHRM); the prior distributions (Equation (3), (4) or (5)); 
and sample size (500 vs. 1000 simulees). This left a total of 12 simulation 
conditions (two algorithms × three priors × two sample sizes). One hundred 
samples were generated for each condition. Item parameters and true person 
parameters remained constant across replications, and the response matrices 
varied from one replication to another, but not across conditions. The two 
estimation algorithms were applied to the same response matrices to ensure 
that differences in performance were due solely to the estimation algorithm 
and not to sampling error in the response matrices or the values of θ. 
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Parameter recovery was evaluated by the absolute mean bias and the 
root mean squared error (RMSE) between point estimates and the true 
parameter values. Correlations between true and estimated parameters were 
also computed.  The results appear in Tables 2 and 3. 

 
 

Table 2. Parameter recovery statistics for sample size N = 500 

 
 

 
Parameter recovery was similar regardless of the estimation method 

and prior configuration. Even in the small sample conditions, the likelihood 
function dominated the prior and determined the value of the point estimate. 
As expected, the increase in sample size resulted in a more accurate 
estimation of the item parameters, reducing the bias and the dispersion of 
the estimation. Regarding the factor scores, absolute biases, RMSE and 
correlations remained almost equal irrespective of sample size, as the key 
element to increase precision was not the sample size but the test length.  

The most important discrepancy between the conditions was 
estimation time. The MML-EM estimation proved to be faster in the two 
implementations than Bayesian estimation, converging in barely 0.25 
seconds for small samples sizes and 0.30 seconds for large sample sizes. 
When priors were added to the model, time was duplicated in the MML-EM 
algorithm. However, using priors with the MHRM algorithm increased 
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estimation time up to only 12 seconds in the small sample side, and up to 22 
in the large sample size.  
 
 
Table 3. Parameter recovery statistics for sample size N = 1000 

 
 
 

Results show that in simple models there were no real differences 
between the MML-EM estimation implemented by default in the mirt 
packages and MHRM, except for a few seconds of computation time. 
However, MHMR was developed for conditions of high dimensional 
models, and these results leave open the question of what happens when the 
model complexity grows. Is adding more information with the priors 
beneficial for the precision and the convergence of the estimation in such 
models? In the next two studies we explored the answer to this question.  

 
3. Simulation study two. Estimation of a model with a complex 

parameterization 
The purpose of the second study was to evaluate recovery for all kinds 

of structural parameters, intercepts, slopes, factor variances, and factor 
covariances. Recovery of incidental parameters, factor scores, were be 
evaluated as well. Two consolidated estimation algorithms (MML-EM and 
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MCMC) were compared to an algorithm of new usage (MHRM). Bayesian 
estimation allows testing more flexible factor structures, enhancing the 
possibility of estimate parameters that usually are constrained to zero 
(Muthén & Aspharauhov, 2012). Given that in IRT applications dimensions 
tend to be highly correlated (Sinharay, 2010), in this study we explored the 
estimation of a model with five correlated factors and 25 manifest variables. 
The theoretical model is based in the factor structure purposed by Golay, 
Reverte, Rossier, Favez & Lecerf (2013), in which manifest variables are 
allowed to load on different factors.  

Table 4 shows the true item parameter values. For identification 
purposes, the first item in each set of five items loaded on a single 
dimension, and the rest of the items loaded on two different factors. In this 
way, there was a unidimensional item for each factor, and the other items 
were two-dimensional. Scale parameters of the unidimensional items were 
fixed to 1 for the factor variances to be identifiable. True scale parameters 
of the two-dimensional items were randomly generated from a lognormal 
(0, 0.5) distribution and intercepts were generated from a normal (0, 1). 
Factor scores were generated at random from a multivariate normal (0, Σ) 
distribution, where Σ  contains ones in the diagonal and 0.5 as true 
covariance values. These kinds of models are typically applied to measure 
dimensions that share some aspects of the items, like coping strategies 
(Zuckerman & Gagne, 2003). 

The three algorithms, MML-EM, MHRM, and MCMC, were 
implemented using the statistical software R (R Core Team, 2015) by 
means of the version 1.13 of the mirt package for MML-EM and MHRM 
(Chalmers, 2012), and rjags for MCMC by Gibbs-sampling (Plummer, 
2015). Default options were set for the mirt algorithms (7 quadrature points 
used per dimension, 500 max EM cycles, convergence occurred when all 
parameters were less than |.0001| across cycles; 2000 iterations for the 
MHRM and a burn-in period of 150 iterations). The MCMC algorithm uses 
four chains per parameter, a burn-in period of 5000 samples, and 10000 
samples per chain are kept after the burn-in period.    

The three estimation algorithms were implemented using the same 
prior distributions. This imposes some restrictions on the design of the 
simulation because the number of prior distributions implemented in mirt 
was more limited than in rjags. As in the first study, we fitted the models 
twice using different priors: 

• Uninformative priors. The uniform distribution was the prior for the item 
parameters so that Bayesian point estimates were equivalent to maximum 
likelihood estimates; we refer to these priors as uninformative.  
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Table 4. True parameters values for the second simulation study 

 
 
 

• Informative priors. We employed the lognormal and the normal 
distributions for the slopes and the intercepts, respectively. We chose the 
lognormal because there were no substantive differences in the previous 
study compared with the normal as slope prior, and also because it has 
been frequently used in the IRT literature; for example, Patz and Junker 
(1999) used the lognormal to implement the Bayesian MCMC. 

Therefore, the prior distributions for item parameters are: 
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~ uniform (0,  5)
~ uniform ( 5,  5)

or
~ lognormal (0,  0.5)
~ normal (0,  3)

a
d

a
d

−

                                       (6) 

A multivariate normal (0 , Σ) was used for person parameters; and the 
variance-covariance matrix, Σ , follows an inverse Wishart (υ ) distribution, 
which is a common choice for Bayesian estimation because the inverse 
Wishart prior is conjugate to the normal distribution of θ  (Gelman, Carlin, 
Stern & Rubin, 1995). Thus: 

| ~ multivariate  normal (0,  )
~ inverse  wishart ( ,  )

i

υ υI
θ ∑ ∑

∑
                              (7) 

The Wishart parameter, υ , should be equal to or higher than the 
number of dimensions of the model (Gelman et al., 1995). Setting 5υ = , 
the expected value of the inverse Wishart distribution is an identity matrix, 
and the variance-covariance matrix of Σ  has 0.4 on the diagonal and 0.2 
outside the diagonal (Ntzoufras, 2009).  

The mirt package did not admit the inverse Wishart prior or any other 
distribution for Σ, which was equivalent to assuming that the prior for Σ is a 
uniform one. So, this matrix was estimated with no specific prior in mirt. 
Thus, we applied MML-EM and MHRM using mirt with a uniform prior for 
Σ , and MCMC using rjags with the inverse-Wishart prior. The purpose of 
fixing the slopes of the unidimensional items was to estimate all the 
elements of Σ  matrix with the three algorithms. 

Parameter recovery for the three estimation algorithms was studied in 
different conditions. We manipulated: the sample size (500 vs. 1000 
simulees), and the prior distributions for the item parameters (ML 
estimation vs. Bayesian estimation). This rendered a total of twelve 
conditions (three algorithms × two sample sizes × two prior distributions).  

As in the first study, 100 simulated samples were computed for each 
sample size, keeping the same vector of true θ values for all the samples. 
Again, the response matrices varied from one replication to another, but not 
across conditions. The estimation algorithms were applied to the same 
simulated samples of responses so that the differences between estimation 
methods are not contaminated by sampling error. 
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In order to improve the comparability of the solutions given by each 
algorithm, the same procedure was followed to obtain the person parameter 
estimates. Due to the difficulties of computing a MAP estimator for the 
MCMC method, the EAP estimator was employed in the simulation and the 
analytic algorithms. Thus, all parameters were estimated by EAP and their 
recovery was assessed with the absolute mean bias, the RMSE and the 
correlations between point estimates and the true parameter values. The 
results appear in Tables 5 and 6. 

 
 

Table 5. Parameter recovery statistics for the uninformative priors 

 
 
 
The main result from tables 5 and 6 was the impact of the prior on the 

estimation precision. In particular, using informative priors for the item 
parameters improved the accuracy of the estimation of the slopes and the 
person parameters among the three methods, especially when the sample 
size was small. The differences between informative and uninformative 
priors in absolute bias and RMSE were lower in the large sample condition, 
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but recovery was still better for the informative prior. Something similar 
happened with the recovery of the intercepts; there were almost no 
differences between priors with the large sample size. However, when the 
sample size was small the RMSE remained lower in the informative prior 
conditions, although the absolute bias was similar for both types of priors.   

 
 

Table 6. Parameter recovery statistics for the informative priors 

 
 
 

Contrary to item parameters, the variance-covariance matrix was 
estimated with better precision (i.e. lower absolute bias and RMSE) with 
uninformative priors when the sample size was small for the MCMC and 
MHRM algorithms. These discrepancies disappeared when the sample size 
was increased. This did not occur with the MML-EM algorithm, whose 
estimation was far worse with uninformative priors. The correlations 
between true and estimated parameters followed a similar pattern; 
correlations tended to be higher when the lognormal and the normal 
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distributions are utilized as priors for the item parameters. Thus, the 
estimates were in general better with informative priors; but this is achieved 
at the cost of forcing a-parameters to be positive.     

In general, the MCMC and MHRM algorithms rendered similar 
results, whereas MML-EM provided less precise estimates. The MCMC and 
MHRM solutions showed smaller bias, lower RMSE and higher 
correlations between the true and estimated parameters than the MML-EM 
algorithm for both types of priors. One exception was the recovery of the 
intercept parameters, where the MML-EM performed as well as the other 
two algorithms.  

The greater discrepancy among the algorithms occurred in the 
recovery of the person parameters. The bias and the RMSE of the analytic 
algorithms seemed remarkably high in comparison with MCMC estimates. 
Interestingly, these differences appear with both sample sizes, and resulted 
even more pronounced in MML-EM conditions.  

Looking closer at the MCMC and the MHRM results, the MCMC 
solution offered a slightly less biased estimation than the one reached with 
the MHRM algorithm. Although the point estimate of the MHRM solution 
for the slopes was less biased than the point estimate of the MCMC, the 
dispersion of the MCMC estimates was lower, yielding lower RMSE values 
for these parameters in the small sample size conditions. Nonetheless, these 
differences softened up in the larger sample size, obtaining similar absolute 
biases, RMSE and correlations for the item parameters and the matrix Σ .     

Another important concern for practical applications is estimation 
time, which compromises the number and the structure of the models than 
can be applied to a real data sample for the purposes of judging their 
relative merit. As expected, estimation time had a direct relation with the 
computational load of the algorithm (see Tables 5 and 6). The MHRM was 
the fastest algorithm, converging on average in 32-58 seconds when using 
informative priors, and converging in 33-52 seconds with uninformative 
priors. The MML-EM was very much affected by the type of prior, with the 
informative prior it converges in about one and a half minute, whereas 
estimation lasted about fifteen minutes on average with uninformative 
priors. Finally, MCMC took between 26 minutes and around two hours, 
which was not surprising given that this method is computationally more 
intensive. In general, more time was needed as the sample size increased, 
although the effect was more prominent as the computational burden of the 
algorithm increases. 

To sum up, using informative priors was beneficial for the three 
estimation algorithms. Besides this, the MHRM method –an improvement 
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of MML-EM designed to overcome those situations where computational 
complexity of the Gauss-Hermite numerical integration procedure involved 
in MML-EM is cumbersome– achieved its objective of reducing 
computational time while providing precise estimates.  

These results were not conclusive because a model with five factors 
can still be handled by a numerical integration procedure, but it was unclear 
if it can be applied to models with a higher number of dimensions that are 
frequently found in practical applications. The supposed benefits of the new 
methods have not yet been extensively tested in high dimensional models. 
A third simulation study was carried out to obtain more information 
regarding high dimensional models where numerical quadrature integration 
methods could be unfeasible. 

 
4. Simulation study three. Estimation of a highly dimensional 

model 
The aim of the third simulation study was to evaluate the performance 

of four Bayesian estimation algorithms with a complex model of high 
dimensionality. The parameterization of the model was simpler than in the 
second simulation study, in the sense that no factor variances or covariances 
were estimated, but the number of factors was higher. The simulation was 
based on the hierarchical factor model described by Yung, Thissen, and 
McLeod (1999) to use a realistic factorial structure. We have chosen this 
model to increase the ecological validity of the simulation study because it 
was based on the bi-factor model, which has a long tradition in 
psychometrics, and has proven to be a reliable alternative to the classical 
second-order models in health and behavioral sciences (Chen, West & 
Sousa, 2006; Patrick, Hicks, Nichol, & Krueger, 2007; Reise, 2012).  

In this study, the model included 18 variables and 10 factors. Each 
variable measured three factors: one general factor that was shared by all 
variables and two group factors. However, we have not used the same 
values for the slopes as Yung et al. True parameter values for the present 
study appear in Table 7; as can be seen, intercept parameters were fixed to 
0, and scale parameters were set to 1. The reason was that we wanted to 
evaluate the impact of the factor structure on the recovery of parameters. As 
all true parameters were fixed to the same value, differences in recovery 
between parameters will not be attributed to their true value but to factor 
structure and sampling error. 

Four algorithms were compared: MML-EM, MHRM, MCMC, and 
HMC (Neal, 2011). By MCMC, we refer to the traditional MCMC based on 
Gibb-sampling, although HMC was also an MCMC algorithm that 
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substitutes Hamiltonian dynamics for Gibbs-sampling. HMC was 
implemented using the R package rstan (Stan Development Team, 2014a, 
2014b). The HMC algorithm was applied in this simulation example 
because it is a recent improvement of MCMC aimed at increasing 
computational speed and efficiency, which are demanding requisites for a 
model of high complexity. The typically long estimation time and waste of 
computational resources associated with Gibbs-sampling-based-MCMC 
might render this estimation method unfeasible as model complexity grows. 
We have used the same chain length and burn-in period values for the 
MHRM and MCMC as in the previous studies.  
 
 
Table 7. True parameter values for the second simulation study 

 
 
 

The MML-EM algorithm was implemented using the bfactor function 
in the mirt package. This function is applicable when the factorial structure 
contains both general factors shared by all items and specific factors shared 
by group of items, as in this example. The advantage of the bfactor function 
was that it introduced simplifications in the numerical integration procedure 
involved in MML-EM and demanded fewer computational resources than 
the traditional Gauss-Hermite integration procedure. In particular, the 
bfactor function reduces the integration over the 10 factors of the model to 
integration over five dimensions (four dimensions in the second-tier plus 
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one specific factor). Minor changes were performed to the mirt default 
options in this third study (7 quadrature points used per dimension, 500 max 
EM cycles, convergence occurred when all parameters were less than 
|.0001| across cycles). The number of quadrature points were increased to 
10 because in pilot runs we observed that estimation was imprecise using 
the lower number of points that bfactor sets by default. 

The four algorithms were applied in two conditions, with high 
informative and with low informative prior distributions. The high 
informative prior distributions were: 

~ lognormal (0,  0.5)
~ normal (0,  3)

a
d

                                         (8) 

As before, the lognormal distribution for a had a median of 1, an 
expectation of 1.13, and a standard deviation of 0.6. The normal prior for 
the d parameter was a relatively flat uninformative distribution. The low 
informative prior distributions were: 

~ uniform (0,  5)
~ uniform ( 5,  5)

a
d −

                                         (9) 

Note that the prior distributions in (8) and (9) were not high and low 
informative in a general sense, but in comparison with one another. The 
prior for θ was standard normal in all conditions. 

The four algorithms were examined with sample sizes of 500 and 
1000 simulees, resulting in 16 conditions (four algorithms × two samples 
sizes × two set of prior distributions). Once again, 100 simulated samples 
were computed for each sample size, keeping the item and person 
parameters constant across replications, and varying only the response 
matrices. The four estimation algorithms were applied to each of the 
simulated samples.  

Recovery of parameters was analyzed by computing the root mean 
squared error (RMSE) between Bayesian point estimates and the true 
parameter values. Correlations between true and estimated parameters were 
computed for θ (the correlation for a and d would be 0, as all true 
parameters take the same value). 

Tables 8 and 9 contain the correlations and RMSE of the factor 
scores. The recovery of person parameters was a little bit worse with MML 
than with the other three methods, mainly with the uniform prior. The most 
prominent effect was that recovery of factor scores was better as the number 
of items per factor increased. In this manner, the correlations between the 
true and the estimated factor scores for the general factor, measured by 18 
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items, were higher than for the other factor, measured by six or three items. 
The RMSE values followed this same tendency, presenting lower values for 
the general factor than for the other ones.  

 
 

Table 8. Correlations between true and estimated theta 
 

 
 
Table 10 summarizes recovery of intercept parameters and estimation 

time. The estimation algorithm and the prior distribution had little effect on 
the accuracy of the recovery of the intercepts. The precision of the estimates 
of the intercept parameters increased when the sample size was 
incremented, although recovery seemed adequate even for the N = 500 
condition.  

With respect to estimation time, simulation algorithms were clearly 
slower than the analytic ones. MCMC was by far the slowest algorithm, 
followed by HMC. These are expected results since MCMC is 
computationally intensive. The results for MML were quite interesting 
because it had remarkable differences between the runs with high and low 
informative prior distributions. This was due to difficulties of convergence 
for MML in the conditions with uniform priors. MHRM had the best results 
from all fronts; it was the fastest algorithm and was not affected by sample 
size and the type of prior distributions. 
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Table 9. Root mean square error of theta 

 
 
 

Results for the scale parameters appear in tables 11 and 12. The 
sample size and the number of items per dimension affected the recovery of 
the slopes. In general, the RMSE presented lower values as the sample size 
and the number of items per dimension increased. The effect of the type of 
prior distribution depended on the estimation method. 

The most relevant effect on slopes was the poor performance of MML 
in the condition with uniform prior and 500 simulees. As indicated before, 
we have observed in pilot runs that performance of MML was poor using 
the default number of quadrature points of the bfactor function (7 points per 
dimension for integration over five dimensions). Because of this, we 
increased this number to 10 quadrature points per dimension. However, 
recovery for MML still did not compare with the other methods, and 
convergence was slow. In the conditions with 1000 simulees, parameter 
recovery for the MML was not as good as for the other methods, but the 
difference was smaller than with 500 simulees. 
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Table 10. Recovery of intercept parameters (RMSE) and elapsed time 
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Table 11. Recovery of scale parameters (RMSE) with lognormal prior 
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Table 11 (continued). Recovery of scale parameters (RMSE) with 
lognormal prior 

 
 
 
 

To sum up, MHRM, MCMC and HMC recovered factor scores and 
item parameters with similar precision, whereas MML was clearly inferior. 
MCMC and HMC were slower than MML and MHRM but this is an 
expected result from the definition of these algorithms. Simulation 
algorithms proved to be as precise as the analytic ones. Estimation by 
simulation seemed to be unnecessary if the purpose is just to obtain a point 
estimate (possibly supplemented with standard error) because of the longer 
estimation time. However, simulations have the advantage of providing a 
whole sample of parameter estimates and not just a point estimate, and these 
samples can be used as other quantities such as diagnostic statistics for 
posterior predictive assessment of model fit. 
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Table 12. Recovery of scale parameters (RMSE) with uniform prior 
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Table 12 (continued). Recovery of scale parameters (RMSE) with 
uniform prior  

 
 

 
5. The problem of factor orientation 
The problem of factor orientation in multidimensional item response 

theory and factor analysis is that fit remains unchanged when both the scale 
parameters and the factor scores are multiplied by -1. This property has 
important implications for Bayesian MCMC estimation because several 
chains of parameters run in parallel, and the different chains may be 
oriented in different directions. Even more so, one single chain may change 
its orientation along the MCMC simulations. If the chains have different 
orientations, MCMC will not converge to the posterior distribution 
irrespective of the chain’s length. 

We have run 1000 iterations of the MCMC algorithm using the Stan 
software with four chains in the model for the third simulation study. The 
prior distribution for the scale parameters was uniform (-5, 5). Figure 1 
shows the trace plot and the density plot of a21. Two of the chains 
converged to a positive estimate for a21, whereas the factor was oriented in 
the opposite direction for the other two chains, and the estimate of a21 was 
negative. In fact, the problem was more serious than the figure suggests. If 
some chains are oriented in one direction and the others in the opposite, this 
could be detected a-posteriori and all chains rescaled in the same direction. 
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However, it is harder to detect the problem and recode the results when 
factor orientation changes within the same chain, so that there are parts of 
the chains in which the factor is oriented one way and other parts in which 
orientation is reversed.  

 

 
Figure 1. Trace plot and kernel density estimate of the realized values 
of the scale parameter a21. The true parameter value is 1.  The sign of 
the parameter is reversed across chains depending on the factor 
orientation. 
 
 

As these problems will not be corrected by increasing the length of 
the chains, they have to be resolved a-priori by imposing appropriate 
constraints on parameters before running the chains. Apparently, a simple 
way to ensure that all chains have the same orientation is to set one slope to 
1 (say a11 = 1) so that the fixed scale parameter sets the orientation of the 
factor; then, the factor variance should be set free for the total number of 
estimated parameters to remain unaltered. In theory, this should be enough 
to fix factor orientation, but we have found in practice that this constraint is 
too mild, and extensive computation time and chain lengths are necessary to 
avoid factor orientation problems with this method. 
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The solution we propose is to use a prior distribution that imposes that 
scale parameters take positive values; for example, the log-normal one for 
our example, or a less informative one, such as a uniform distribution in the 
positive real line. It can be argued that this is not a realistic assumption for 
practical applications in which the sign of scale parameters cannot be 
determined beforehand. In that case, MCMC can be run in two stages. The 
first step would be to run a pilot estimation with a single chain and, from 
the output, determine a set of scale parameters that clearly converge toward 
positive or negative values. The second step would be to run the definitive 
MCMC simulation with several chains using ad-hoc prior distributions that 
match the results of the pilot run. The scale parameters that converged to 
values away from zero in the first simulation would have prior distributions 
defined in the positive or negative real line for the second run. The scale 
parameters that converged to values close to zero in the first run would have 
prior distributions defined in the (complete) real line for the second run. 

 
6. Conclusions 
The purpose of this paper was to gather information about the 

performance of new estimation methods (MHRM and HMC) in comparison 
with the most habitual algorithms (MML-EM and MCMC) under latent 
structures of different complexity. The results showed that the four 
estimation methods perform similarly in recovering the parameters of 
models up to five factors, whereas MML-EM had problems recovering 
models with more dimensions.  

As expected, less biased and more accurate estimates were found as 
the sample size and the number of items that measure each dimension 
increase. Recovery of intercept parameters was precise even in the 
conditions with 500 simulees. However, estimation of scale parameters is 
more demanding and is also influenced by the number of items per factors, 
since scale parameters on a poorly defined factor can hardly be estimated 
with precision. The same pattern of results was found for the estimation of 
factor scores.  

The four estimation methods can be classified in two groups, 
simulation (MCMC and HMC) and analytic (MMLE-EM and MHRM). 
Simulation methods provide samples from the posterior distribution of item 
parameters, and analytic methods provide a point estimate. Moreover, HMC 
and MHRM can be seen as recent improvements over the more traditional 
methods, MCMC and MMLE-EM, on which they are based. 
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Besides the precision of the estimation, estimation time was a crucial 
criterion when choosing one estimation algorithm in practical applications, 
as a large number of different models are typically estimated and compared. 
In this respect, MHRM was by far the fastest estimation method, and within 
the simulation methods, HMC was clearly better than MCMC. Regarding 
the simulation methods, both MCMC and HMC algorithms yielded almost 
identical solutions, working as well as the analytic methods in models of 
different complexity and providing more accurate estimates of the item 
parameters in complex models. However, HMC converged faster than 
MCMC, and even faster than the EM algorithm in the small sample 
conditions. HMC substantively reduced estimation time, taking from 1-2 
hours to 20-50 minutes, depending on the sample size. Thus, the newer 
methods, MHRM and HCM, constitute clear improvements over the 
traditional ones. These results are congruent with those obtained by Han 
and Paek (2014), who did not find significant differences between MML-
EM, MHRM, and MCMC –among other methods and software– in 
conditions of low and medium model complexity.  

This paper has also researched the effect of the prior distributions on 
recovery. There were negligible differences in recovery between low and 
high informative prior distribution when using HMC, small differences 
when using MCMC and HMC and large differences when using MML-EM 
in combination with small samples. It should be taken into account that 
many current studies with real data use smaller samples sizes than the 
conditions with 500 simulees in this study. Hence, it is expected that the 
differences between conditions will be more prominent in real applications. 
Thus flat priors can be used in real applications to represent high 
uncertainty about parameter values as long as one of the other estimation 
methods is used instead of MML-EM. 

One important problem regarding Bayesian simulation methods is the 
factor orientation problem, which may impede convergence of the MCMC 
chains and render biased parameter estimates. This problem was addressed 
in this paper by using prior distributions defined only in the positive real 
line. Prior distributions that allow positive and negative values for scale 
parameters –such as the normal distribution– can entail convergence 
problems between different chains, resulting in a bimodal posterior 
distribution, with the two peaks representing the positive and negative 
orientations of the factor. The mean of the bimodal posterior, which is the 
simulated EAP estimate, will be close to zero, failing to recover the true 
value of the scale parameter.  The simulations show that this problem can 
be solved by using a prior distribution defined only in the positive real line. 
However, this solution assumes that the sign of the scale parameter is 
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known beforehand, which is an unrealistic condition for practical 
applications. The sign of the scale parameters can be determined in real data 
analysis by conducting a pilot run for the estimation algorithm, although 
this is clearly a topic for further research. 

Recent methods supersede the traditional ones regarding estimation 
time and accuracy. Results showed that simulation methods posed no real 
advantage for obtaining a point estimate. However, it is important to take 
into account that the purpose of the MCMC and HMC techniques was to 
obtain an approximation to the posterior distributions of the parameters, not 
only to obtain a point-wise estimator like the analytic methods. The utility 
of Bayesian simulation methods could be achieved in connection with more 
complex models (hierarchical factor structures, random item parameters, 
etc.), to compute posterior variances and probability intervals, or for the 
broader purpose of simulating the distribution of goodness-of-fit statistics, 
which are not always computable without simulations. On balance, MHRM 
seems the best alternative for the purposes of point estimation and to 
overcome the curse of dimensionality implicit in multidimensional item 
response and categorical factorial models. 

RESUMEN 
Estimación Bayesiana de modelos multidimensionales de respuesta al 
ítem. Una comparación de algoritmos analíticos y de simulación. El 
presente estudio compara el rendimiento de dos algoritmos de estimación de 
reciente implementación, Metropolis-Hastings Robins-Monro (MHRM) y 
Hamiltonian MCMC (HMC), con dos algoritmos consolidados en la 
literatura psicométrica, máxima verosimilitud marginal a través del 
algoritmo EM  (MML-EM) y las cadenas de Markov de Monte Carlo 
(MCMC), en la estimación de modelos multidimensionales de respuesta al 
ítem de diferente complejidad. Para evaluar la recuperación de parámetros se 
plantearon tres estudios de simulación desde un acercamiento Bayesiano. El 
primer estudio utiliza un modelo unidimensional sencillo para evaluar el 
efecto de distribuciones previas informativas y no informativas. El segundo 
estudio compara el algoritmo MHRM con MML-EM y MCMC en la 
estimación de un modelo de respuesta al ítem con un número moderado de 
dimensiones correlacionadas. El tercer estudio evalúa el desempeño de los 
algoritmos MHRM, HMC, MML-EM y MCMC en la estimación de un 
modelo de respuesta al ítem de alta dimensionalidad. Los resultados ponen 
de manifiesto que MML-EM pierde precisión con modelos de alta 
dimensionalidad mientras que los otros tres algoritmos recuperan los 
parámetros verdaderos con una precisión similar. Además, las principales 
diferencias encontradas entre los algoritmos fueron: 1) MHRM tarda mucho 
menos en estimar el modelo que el resto de algoritmos; 2) MHRM se 
muestra más preciso y menos afectado por las distribuciones previas en sus 
estimaciones; y 3) las distribuciones previas para los parámetros a en los 
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algoritmos MCMC y HMC deben definirse con cuidado para evitar 
problemas de orientación de los factores. En resumen, los nuevos algoritmos 
parecen superar las dificultades de los tradicionales, convergiendo más 
rápido y obteniendo resultados similares.    
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