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Simple Summary: In a broad sense, genomic signature refers to characteristics associated to DNA 
sequences. Many studies analyze genotype–phenotype patterns in a group of genes, thus targeting 
genomic signatures associated to a given disease or identifying a gene expression profile. However, 
some studies in comparative genomics and evolutionary biology refer to genomic signature as the 
statistical properties of DNA sequences, such as the distribution of k-words. In these fields of study, 
genomic signatures are species-specific and can be informative about phylogenetic relationships. In 
this review, we identify the main genomic signatures in a large collection of articles by performing 
a bibliometric analysis and then rename each signature according to its conceptual meaning. Among 
the different signatures, we use the term organismal signature to denote the DNA patterns able to 
infer evolutionary relationships and go on to review its formulation and applications in the second 
part of the article. 

Abstract: Organisms are unique physical entities in which information is stored and continuously 
processed. The digital nature of DNA sequences enables the construction of a dynamic information 
reservoir. However, the distinction between the hardware and software components in the infor-
mation flow is crucial to identify the mechanisms generating specific genomic signatures. In this 
work, we perform a bibliometric analysis to identify the different purposes of looking for particular 
patterns in DNA sequences associated with a given phenotype. This study has enabled us to make 
a conceptual breakdown of the genomic signature and differentiate the leading applications. On the 
one hand, it refers to gene expression profiling associated with a biological function, which may be 
shared across taxa. This signature is the focus of study in precision medicine. On the other hand, it 
also refers to characteristic patterns in species-specific DNA sequences. This interpretation plays a 
key role in comparative genomics, identifying evolutionary relationships. Looking at the relevant 
studies in our bibliographic database, we highlight the main factors causing heterogeneities in ge-
nome composition and how they can be quantified. All these findings lead us to reformulate some 
questions relevant to evolutionary biology. 

Keywords: genomic signature; chaos game representation; genome sequence; alignment-free  
methods; evolutionary biology 
 

1. Introduction 
Genomes are the physical entities that best record the history of life. Increasing evi-

dence for the molecular mechanisms by which organisms evolve suggests that infor-
mation plays a crucial role in life sciences. Novel mechanisms in data processing involve 
state transitions in biological systems and may be behind the origin of life and the major 
evolutionary transitions. In most prokaryotes and viruses, genomes are mainly composed 
of coding regions, and the genotype–phenotype mapping is one-to-one. However, most 
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DNA mass is composed of non-coding regions in multicellular and complex organisms. 
These regions are characterized by repetitive sequences that provide structural and regu-
latory functions. Specific patterns related to the information encoded in DNA molecules 
are called Genomic Signature (GS). However, we must break this concept down depend-
ing on its categorical characterization. Here, we perform a conceptual review and differ-
entiate genomic signatures at each level of the information flow. On the one hand, we 
identify a collection of signatures associated with a given phenotype, which we define as 
gene signature, protein signature, mutational signature, immune signature, and molecular signa-
ture. These signatures refer to expression profiles involved in a given biological function 
or metabolic pathway, such as antibiotic resistance or virulence. They focus on local prop-
erties in the genotype–phenotype mapping, crucial for genetic engineering and develop-
ing techniques in precision medicine. On the other hand, we use the term selective signature 
to denote the genotype-registering trait variation in populations that is subject to selective 
pressures. Finally, we use organismal signature to refer to the characterization of hidden 
patterns in DNA sequences, a global measure that identifies the organism involved. The 
organismal signature is at the core of alignment-free methods and is usually applied in 
comparative genomics and evolutionary studies. 

In comparative genomics the organismal signature has established rigorous criteria 
to compare organisms based on molecular evidence. In traditional methods, inferring re-
lationships is not as simple as looking at who resembles whom. Assuming that two similar 
sequences must have a close evolutionary origin can lead us to an incorrect reconstruction 
of the tree of life. The search for solutions to this problem leads us to the concept of ho-
mology, being the basis of the systematic sciences [1–3]. Homology refers to similar traits 
between biological entities due to their evolutionary ancestry [4]. On the other hand, ho-
moplasy refers to similarities between phylogenetically unrelated species. Multiple align-
ment-based methods aim to identify the evolutionary relatedness among sequences ac-
cording to their homology while discriminating homoplasy events. [5–11]. By 1990, these 
methods revolutionized the biology data-processing field [12]. However, most of these 
models have hidden assumptions that should be not overlooked. Among the most critical 
assumptions, we find the collinearity between sequences, i.e., that homologous sequences 
conserve a sequential order of the bases. Moreover, it is commonly assumed that different 
sequences evolve at the same rate, or that different regions in a sequence evolve inde-
pendently from each other. Furthermore, most models are stationary, which implies that 
sequences reach a state of equilibrium with evolutionary time. It is even assumed that all 
sequences evolve under the same model. Some examples are the Jukes–Cantor model, 
where all nucleotide substitutions occur with the same probability [13], or the more real-
istic model of Kimura, referred to as Kimura-2P, in which transitions and transversions 
occur with a different probability [14]. With time, increasingly complex methods started 
to overcome some of these conditions [15–20]—for example, by including gap penalties 
[21], considering a heterogeneous distribution of mutation rates across point locations 
[22–24], assuming the non-stationarity [25], or accounting for heterotachy [26–28]. How-
ever, these complex methods started to approach a NP-hard problem, and new efforts 
were required to find an equilibrium between model complexity and its explanatory 
power. Phylogenetic reconstructions based on retroposons insertions illustrate this situa-
tion, where other complementary methods may be required [29,30]. For example, it may 
occur that not all inserted retroposons are fixed in a population before a speciation event, 
which could result in inaccurate ancestral reconstruction [29]. High-throughput sequenc-
ing and the development of new bioinformatic tools have facilitated the study of these 
repetitive elements. In particular, new phylogenetic methods based on abundances of re-
petitive DNAs have been developed to infer phylogenetic relationships of several plants 
and animals and to construct retroposon-based phylogenies [31–34]. 

Most challenges in comparative genomics were overcome by realizing that closely 
related organisms share similar abundances of word sequences, which motivated Karlin 
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and his colleagues in 1995 to coin the term genomic signature as a measure of word fre-
quencies able to differentiate species and identify evolutionary relationships [35–37]. Spe-
cifically, they found evidence that dinucleotide and tetranucleotide frequencies differen-
tiate well between species. The discovery of characteristic patterns in DNA sequences 
gave rise to the so-called alignment-free methods, which find similarities at the genome 
level without the need for linear alignments or the presence of homologous sequences 
[12]. Here, these DNA patterns are what we call the organismal signature, which is on the 
basis of word frequency-free methods. The potential of the pairwise distance between or-
ganismal signatures was rapidly recognized and started to be largely applied in the liter-
ature [37–39]. Furthermore, in a recent publication the mapping of k-word distribution 
into a single value has been explored as a measure of organismal complexity [40]. Com-
puting distance similarity among two given sequences consists of three basic steps. The 
first step consists of creating a library of k-words (i.e., oligomer sequences of length k) 
occurring along the DNA sequence. For example, the sequence ATTGCAT is composed 
of the following words of length 𝑘 = 2: {𝐴𝑇, 𝑇𝑇, 𝑇𝐺, 𝐺𝐶, 𝐶𝐴}, with AT occurring twice. The 
second step organizes k-word frequencies into an array, where each entry corresponds to 
the number of times each particular word of length k appears in the given sequence. Fi-
nally, the third step computes a metric to quantify the distance between two given word 
frequencies [39]. Thus, similarity is related to a distance metric, where two identical se-
quences would correspond to a distance length of zero. 

This review is organized into three sections. In the first section, we perform a biblio-
metric analysis from all the literature where the concept of genomic signature acquires a 
specific meaning. We give an overview of the main fields of application and identify a 
proper definition for each case study. The second section reviews the so-called chaos game 
representation, a model for characterizing hidden patterns in genome sequences. We 
highlight the mathematical basis to define a measure of organismal signature. Finally, the 
third section reviews the most important findings in the literature when comparing or-
ganisms based on their organismal signature. 

2. Bibliometric Analysis of the Genomic Signature 
2.1. Methods 

Bibliometric analysis is a method for analyzing the global structure of a research topic 
by looking at the relationships within bibliographic data [41]. In this review we have per-
formed a bibliometric analysis of all articles where genomic signature appears as a focus 
of study, which has enabled us to differentiate its conceptual meaning depending on the 
research field of application. First of all, a bibliographic library was created from the Web 
of Science, one of the largest bibliographic databases. We have run a search for all articles 
where ’genomic signature’ or ‘genome signature’ appears in the topic field, i.e., in the title, 
abstract, ID keywords, or author keywords, obtaining a total of 541 articles that span from 
1994 to 2022 and were published in 280 different journals. Note that we have excluded 
review articles from the search. We have also generated a list with all keywords appearing 
in our bibliography database, corresponding to 2319 Keywords Plus (ID) and 1461 Au-
thor’s Keywords (DE). 

Two different types of bibliometric analysis have been performed: co-word analysis 
[42] and bibliographic coupling [43]. 

In the first analysis, we have explored the structure of co-occurrence among key-
words and identified the main fields of study linked to a genomic signature. We have 
considered the total of 3404 keywords, which decreases to 241 words by imposing a 
threshold of a minimum number of four occurrences. We have created a thesaurus file to 
clean the list of keywords manually. Specifically, we have merged all synonym terms and 
singular/plural relations. We have also clustered words referring to a specific type of can-
cer (i.e., ’breast cancer,’ ‘colorectal cancer,’ ‘gastric cancer,’ ’ovarian cancer,’ and ’prostate 
cancer’ are clustered together and replaced by ’cancer’). We have also merged the words 
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’genomic signature’, ’genome signature,’ ’signatures,’ and ’signature.’ Instead, we keep 
’gene signature’ as a single word because it acquires a specific meaning in the literature. 
We have also merged the terms ’genomes,’ ’genome,’ ‘genetics,’ and ’genomics.’ Not all 
words are biologically meaningful. Those unrelated to a biological concept are not of in-
terest to us. So, we have removed non-relevant words that may be a source of noise in the 
network analysis (e.g., ’American society,’ ’reveals,’ ‘discovery,’ ’insights,’ ’features,’ ’sub-
type,’ and ’subtypes’). However, we do not exclude some words such as ’identification’ 
or ’diversity’ because we consider that they may play a role as key connectors linking 
closely related words. We produced a final list of 170 words from which we have con-
ducted the co-word analysis. Specifically, we have generated a network where keywords 
correspond to nodes and where connections between words are weighted by the number 
of times they appear together as keywords in the literature. We identify the main themes 
where genomic signature is applied by looking at the clusters appearing in the network. 
Visualization of the network and the community detection algorithm are provided by the 
VosViewer software [44]. Here, we have considered only words appearing at least four 
times in the literature, and links are weighted by full counting and normalized by associ-
ation strength. 

The second analysis carried out is bibliographic coupling, a method to identify the 
main research lines where the genomic signature is applied and its evolution. It consists 
of a network where nodes represent articles and where links between two articles are pro-
portional to the number of shared references. Thus, coupling strength is high for articles 
sharing similar bibliography. One advantage of this method is that connections are not 
influenced by the year of publication. Instead, recent publications have the same weight 
as earlier ones, so the network’s topological properties are informative about the evolution 
of a research topic and highlight the different lines of study. We built the network and ran 
the clustering algorithm provided by VosViewer software. In this case we have normal-
ized links according to their association strength with fractional counting. 

2.2. Co-Word Bibliometric Analysis 
We identify the main topics in which genomic signature is applied by looking at the 

words that cluster together in the network. First, a library of words is prepared by manu-
ally cleaning the collection of keywords given in the literature, as described in Section 2.1. 
From our selection criteria, we performed the study with the 170 keywords appearing 
throughout the 541 articles. Table 1 shows a ranking list with the 24 most frequent words, 
together with their frequency (i.e., the number of times each word appears as a Keyword 
in our library) and the total link strength, which corresponds to the number of keywords 
with which a given word of our list appears together. 

Table 1. The first 24 most common Keywords, number of occurrences, and total link strength. 

Keyword Frequency Total Link Strength 
Gene expression 141 570 

Genome signature 125 530 
cancer 106 468 

sequence 81 317 
evolution 72 316 

identification 52 219 
genes 45 194 

genome 45 170 
cells 40 150 

diversity 33 117 
survival 31 135 
mutation 29 106 
bacteria 27 125 
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chaos game representation 26 117 
chemotherapy 26 123 

DNA 26 106 
Escherichia coli 25 123 

prognosis 24 122 
differentiation 22 85 

microarray 22 105 
adaptation 21 90 
selection 21 81 

biomarker 20 90 
phylogenetic analysis 20 94 

We observe some interesting results from this search. First, gene expression appears 
as the most abundant keyword in the literature, suggesting that genomic signature is 
highly linked to gene expression patterns. Looking at the period of published articles, we 
already observe the appearance of studies looking for gene markers around 2011, with 
words related to the field of health appearing throughout the full period of time. Among 
the most abundant words we find ’cancer,’ ’chemotherapy,’ ’prognosis,’ ’differentiation,’ 
’microarray,’ and ’biomarker.’ However, the most abundant keywords appearing in the 
recent years are mostly associated to precision medicine, such as in cancer studies. On the 
other hand, abundant words such as ’diversity,’ ’evolution,’ ’adaptation,’ and ’selection’ 
correspond to the field of evolutionary biology. Finally, the word ’chaos game represen-
tation’, which is a mathematical model to characterize the structure of DNA sequences, 
appears overrepresented in the literature, highlighting its impact in comparative ge-
nomics. 

We now identify the main word clusters according to their co-occurrence, as illus-
trated in Figure 1. We apply the community detection algorithm provided by VosViewer, 
finding a total of five clusters. Here, node sizes are represented according to their frequen-
cies. 

 
Figure 1. Co-word network characterizing the structure of keyword co-occurrences. The five clus-
ters obtained from VosViewer are represented by colors and named as C1, C2, C3, C4, and C5. 

The two first clusters are associated with the health field, with ’gene expression’ and 
’cancer’ appearing among the most abundant Keywords. This result is in agreement with 
the fact that genomic signature has a particular and important meaning in precision med-
icine. On the other hand, Cluster C3 is composed of words associated to the field of mo-
lecular biology. Genomic signature acquires a different interpretation in comparative ge-
nomics and evolutionary biology, with interconnected words composing clusters C4 and 



Biology 2023, 12, 322 6 of 24 
 

 

C5, respectively. ’Frequency’, ’alignment’, ’sequence’, and ’chaos game representation’ are 
some examples of words associated to genomic signature composing the field of compar-
ative genomics, and ’natural selection’, ’adaptation’, and ’diversity’ are related to evolu-
tionary biology. Table 2 summarizes the identification of the four fields of study where 
genomic signature is applied. 

Table 2. Classification of clusters given by VosViewer. 

Scientific Field Cluster Num. Keywords 

Health 
C1 41 
C2 34 

Molecular biology C3 24 
Comparative genomics C4 36 
Evolutionary biology C5 38 

2.3. Bibliographic Coupling 
A bibliographic coupling is carried out from all articles where genomic signature ap-

pears as a Keyword. As explained in Section 2.1, the clustering algorithm and visualiza-
tion of the network has been provided by VosViewer, whose results are illustrated in Fig-
ure 2. We find a total of 12 clusters, which represent the topic fields where the genomic 
signature is applied. 

 
Figure 2. Bibliographic coupling of articles where ‘genomic signature’ appears as a Keyword. A 
total of 12 clusters is obtained from VosViewer, which are represented with colors and named as 
C1, …, C12. 

A global view of the network shows a clear partition into two well-differentiated 
parts. The left-hand side of the network corresponds to applications in the health field, 
whose nodes are overrepresented by cancer studies. In general, genomic signatures in this 
part of the network are not associated to individual traits, but rather it informs about a 
given physical state that occurs under certain conditions (e.g., expression profile, presence 
of specific molecules). Nodes on the right-hand side of the network correspond to studies 
where genomic signature acquires a different meaning. On one hand, it is interpreted as 
a species-specific measure at the level of DNA sequences able to differentiate individuals 
according to their evolutionary history. This concept is more closely linked to a fingerprint 
of individual organisms. On the other hand, it is related to genome markers modulating 
variability in a population. In this case, it refers to DNA patterns in a population. 
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2.3.1. Applications in Medicine 
Looking at the most frequently cited papers within each cluster, we identify the dif-

ferent themes in which the genomic signature is applied. Cluster C1 is composed of 131 
articles focusing on cancer studies. In [45], the authors analyze the genomic signature of 
prostate cells potentially involved in tumor development by identifying the expression 
patterns in a specific type of stem cell compared with the differentiated cells to which they 
give rise. This study has provided a better understanding of the behavior of cancer stem 
cells such as prostate-cell gene expression patterns, which are associated with a poor prog-
nosis for cancer. These findings enable us to assess a patient’s prognosis and apply effec-
tive therapies. In [46], genomic signature refers to the biomarker that characterizes the 
resistance mechanisms of cancer cells to chemotherapy. Key mutations and gene expres-
sion profiles specific to each patient are then sought to establish action criteria adjusted to 
the resistance profile shown by the patient. Furthermore, the expression profiles in mu-
tated genes that frequently appear in cancer are identified as genomic signatures of a po-
tential factor of cancer [47]. Characteristic mutational signatures involved in cancer devel-
opment are extensively analyzed in the literature associated with this cluster. These ge-
nomic signatures refer to expression profiles of a specific collection of genes with related 
activity or are associated to the common mutational pathways in tumors [48,49]. Cluster 
C2, which has 50 articles, combines studies that identify signatures associated with cancer 
origin and development, such as polymorphisms or key mutations. The study of genomic 
instabilities that play a crucial role in the development of human cancer is extensively 
covered in this cluster. Specifically, in [50], a genomic signature is defined to predict the 
instabilities of tumor suppressor genes, whose inactivation is commonly present in carci-
nomas. Meanwhile, [51] focuses on the molecular pathogenesis of active medulloblasto-
mas. In [52], the authors analyze regions where differential gene expression occurs in 
chronic lymphocytic leukemia, and in [53], they focus on identifying a genomic signature 
in patients with colon cancer in stage II based on gene microarrays, which provides a good 
assessment of the patient’s prognosis. 

Pregnancy produces a cascade of hormonal activity in the body and infers important 
changes in the breast. Most of the 30 articles composing cluster C3 focus on developmental 
disturbances in the breast during pregnancy, such as the effect of gene expression altera-
tions [54] or prenatal exposure to certain organic compounds, such as the case of bi-
sphenols [55]. A total of 27 articles about breast cancer gene signatures are collected in 
cluster C4. Most of these studies help to predict whether breast cancer will spread to other 
parts of the body by looking at the activity of a group of genes. Among the most cited 
articles within this group, we find a study identifying a 70-gene profile to establish clinical 
criteria that select patients for adjuvant chemotherapy [56]. Other studies develop a sig-
nature that predicts the response to trastuzumab, a drug widely used in treating breast 
cancer [57], or analyze the benefit of chemotherapy in breast cancer patients [58]. Tran-
script quantification, which identifies gene expression levels, is the theme grouping the 13 
articles in cluster C5 [59,60]. Finally, cluster C6 is composed of eight papers. Although it 
presents a variable theme composition, some articles deal with skin pathologies [61,62]. 

From a global view of the content composing each cluster, we classify the concept of 
genomic signature in terms of their conceptual meaning. We refer to gene signature as the 
collection of genes involved in a specific function. It provides information about the activ-
ity of a specific gene group, which allows us to identify the origins and evolution of viru-
lent strains, detect transmission flows in host–parasite relationships, or search for antibi-
otic resistance genes. Generally, gene signature is linked to a biological function and relies 
on the mechanisms by which genes activate or share properties among individuals. No-
tably, it also provides important information about cancer development. A related signa-
ture is the protein signature, which refers to gene expression profiling. It informs about the 
presence of expressed proteins in a specific location under specific conditions. It primarily 
identifies the treatment response and a patient’s prognosis. Another signature is the mu-
tational signature, which corresponds to key mutations in the DNA that underlie the origin 



Biology 2023, 12, 322 8 of 24 
 

 

of cancer and share similar patterns across individuals. About 20 patterns have been dis-
covered to yield most of the mutations present in common cancers. A fourth signature, 
which we call the immune signature, identifies the immunity response in a given host or-
ganism—studies referring to such a signature focus on identifying bacterial vectors for 
genetic engineering purposes. The immune signature provides information about the an-
tibodies present in a given organism, as those in the human blood. In this case, signatures 
may change over time, which helps track a patient’s current state and make diagnoses. 
Finally, the molecular signature is an alternative term to the so-called biomarker. It tracks 
the presence of a particular molecule in the body and searches for its relatedness to a given 
disease or clinical condition. Analysis of treatment response is one of the main applica-
tions of molecular signatures. 

2.3.2. Applications in Comparative Genomics and Evolutionary Biology 
Articles located on the right side of the network collect studies in the field of compar-

ative genomics and evolutionary biology. Cluster C7 is the largest cluster, composed of 91 
papers. Taxonomical classification [63] and phylogenetic analyses [64–67] are some prob-
lems addressed in this cluster. Other studies include the identification of intra-genomic 
and inter-genomic variations [37–39,68–74], codon usage biases in bacteria [75], and the 
classification of novel sequences obtained from metagenomic data [76–79]. It also collects 
studies analyzing host–parasite relationships [80–87] and evolutionary origins, such as in 
the case of SARS-CoV-2 and HIV. Finally, some studies are more related to the methodol-
ogy used in comparative genomics, such as the search for species-specific genome patterns 
[88–91] and the development of theoretical measures able to highlight the hidden struc-
ture of genome sequences based on information theory [92,93] and higher-order Markov 
models [94]. 

The increasing interest in the molecular mechanisms driving the evolutionary history 
of species and the effect that adaptive selection has on genotype–phenotype mapping is 
reflected in Cluster C8. Here, genomic signature is strongly linked to the concept of hitch-
hiking, which assumes that selective pressures induce modifications in specific regions of 
the genome. The 82 articles composing this cluster are characterized by relevant studies 
in evolutionary biology, where the signature plays a key role in modulating phenotype 
characteristics in wild and domestic populations [95–97]. This perspective has motivated 
the search for signatures in populations of plants, animals, and humans. Cluster C9 is 
composed of 35 articles with a divergent focus of study. Among the most relevant studies 
we find the search for a genomic signature characterizing microbial communities [98,99], 
gene families associated with a biological function [99–101], horizontal gene transfer 
events contributing to the appearance of virulent strains [102,103], or the search for anti-
biotic resistance genes [103,104]. Cluster C10 comprises 24 articles focusing on the taxo-
nomical classification of microbial communities [105,106], vibrio species [107], and path-
ogens of interest. Furthermore, this cluster captures several studies analyzing the origins 
and evolutionary history of SARS-CoV-2 [108,109]. Cluster C11 is composed of 13 articles, 
including studies about the evolution of diverse bacterial pathogens, host susceptibility 
[110–113], and signatures of influenza infections by pandemic viruses [114–117]. Finally, 
Cluster C12 is composed of eight articles, most related to the search for genomic islands, 
i.e., DNA fragments inserted into a genome through horizontal gene transfer [118–122]. 

Taking into account the primary goal of studies located in this network region, we 
can differentiate two types of genomic signatures relevant to evolutionary biology. We 
will use selection signature to denote such genomic regions capturing trait variability 
within a population. Finally, the organismal signature is proposed as any theoretical meas-
ure applied over DNA sequences to identify the phylogenetic relationship among biolog-
ical entities. The frequency of oligonucleotides was initially proposed as an organismal 
signature [123], which has motivated the development of the so-called alignment-free 
methods in evolutionary analyses. In the following sections we focus on the organismal 
signature and explore its capacities and limitations. 
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3. Revealing Patterns in Genome Sequences 
The discovery of specific patterns along DNA sequences was a starting point to quan-

tify the organismal signature. It was in 1990 when Jeffrey applied the Chaos Game Repre-
sentation (CGR) to DNA sequences and found evidence of hidden species-specific struc-
tures [123]. It was the first time in history that genome sequences were mapped into a 
visual representation, highlighting their local and global properties. In this section, we 
introduce the mathematical foundations of the method, which are adapted from [124]. 

3.1. Iterated Function Systems 
An affine transformation in the two-dimensional space consists of a transformation w : ℝଶ ⟶ ℝଶ of the form: 𝑤(𝑥ଵ, 𝑥ଶ) ⟶ (𝑎𝑥ଵ + 𝑏𝑥ଶ + 𝑐, 𝑑𝑥ଵ + 𝑒𝑥ଶ + 𝑓), (1) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ ℝ are constant parameters. A more compact notation can be written 
with matrices: 𝑤(𝑥ଵ, 𝑥ଶ) = ቀ𝑎 𝑏𝑐 𝑑ቁ ቀ𝑥ଵxଶቁ + ቀ𝑒f ቁ = 𝐴𝑥 + 𝑡, (2) 

Where 𝐴 ∈ ℝଶ×ଶ specifies the linear transformation and 𝑡 ∈ ℝଶ×ଵ the translation. We are 
interested in one type of affine transformation, called contractive. In particular, the trans-
formation 𝑤 on the metric space (ℝଶ, 𝑑), where 𝑑 denotes de Euclidean distance, is a 
contraction mapping if 𝑑൫𝑤(𝑥), 𝑤(𝑦)൯ ≤ 𝑠 ⋅ 𝑑(𝑥, 𝑦)   ∀𝑥 ∈ ℝଶ, (3) 

for some constant 0 ≤ 𝑠 ≤ 1. In the following, we will consider the particular case of 𝑠 =1/2. 

A (hyperbolic) iterated function system (IFS) is a finite set of contraction mappings {𝑤௜}ଵஸ௜ஸ௠ defined on a complete metric space. We will focus on IFSs defined on the Eu-
clidean plane with 𝑠 = 0.5, as in the example shown in Table 3. In this case, all contraction 
mappings reduce at half the initial compact set and displace it according to their respec-
tive translations. 

Let (ℍ(ℝଶ), ℎ(𝑑)) denote the space of nonempty compact subsets of ℝଶ, with the 
Hausdorff metric. Then, by Theorem 7.1 of [124], the transformation 𝑊: ℍ(ℝଶ) → ℍ(ℝଶ)  
defined by 

𝑊(𝑋) = ራ 𝑤௜(𝑋)   ∀𝑋 ∈ ℍ(ℝଶ)௠
௜ୀଵ  (4)

is a contraction mapping on the complete metric space (ℍ(ℝଶ), ℎ(𝑑)). Starting from an 
initial compact set 𝑋଴, we can iteratively apply the transformation 𝑊 as follows: 𝑋ଵ = 𝑊(𝑋଴) 𝑋ଶ = 𝑊ଶ(𝑋଴) = 𝑊(𝑋ଵ) … 𝑋௡ାଵ = 𝑊௡ାଵ(𝑋଴) = 𝑊(𝑋௡) 

(5) 

The transformation 𝑊 has a unique fixed point, called the attractor of the IFS, and is 
given by 𝑋∗ = lim௡→ஶ 𝑊௡(𝑋). The fixed point fulfills 𝑋∗ = 𝑊(𝑋∗). So, if we iterate the system 
from a random initial point, it will approach the attractor in a finite number of time steps 
from which it will never escape. As an example, Figure 3 shows the iterative application 
of the contraction mappings of the IFS described in Table 3 starting from an initial square 
box. If we continue applying 𝑊 for a sufficiently large number of iterations, the Sierpin-
ski triangle appears progressively. 
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Table 3. IFS composed by the contraction mappings 𝑤ଵ, 𝑤ଶ and 𝑤ଷ. 𝒘 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 𝑤ଵ 1/2 0 0 1/2 0 0 𝑤ଶ 1/2 0 0 1/2 1/2 0 𝑤ଷ 1/2 0 0 1/2 1/4 1/2 

The so-called chaos game refers to a method of creating fractals. We are interested in 
the random iteration algorithm [124], which assigns a probability distribution to the con-
traction mappings of the IFS. Thus, we create a sequence of points {𝑋଴, 𝑋ଵ, … , 𝑋௡} by iter-
ating the map 𝑋௡ାଵ = 𝑤௜(𝑋௡) from an initial point 𝑋଴, where 𝑤௜ is a member of the IFS 
randomly selected according to the probability 𝑝௜. The algorithm is a method of generat-
ing the attractor of any IFS, which has attracted many researchers due to its capacity to 
generate complex structures such as fractals. However, not all IFSs generate a fractal-like 
structure, such as the Sierpinski triangle. The system of Table 4 is composed of four con-
traction mappings, which map the initial box square 𝑋଴ into each of the four sub-quad-
rants, i.e., 𝑊(𝑋଴) = 𝑋଴ . Furthermore, the system has a uniform distribution assigned, so 
all contraction mappings 𝑤௜ have the same probability of application. As a consequence, 
the random iteration algorithm generates a sequence of points that are homogeneously 
distributed and no pattern appears. 

 
Figure 3. Iterative application of the contraction mappings of the system represented in Table 3 
starting from an initial square box. 

Table 4. IFS composed through four contraction mappings with associated probabilities p. 𝒘 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 𝒑 𝑤ଵ 1/2 0 0 1/2 0 0 1/4 𝑤ଶ 1/2 0 0 1/2 0 1/2 1/4 𝑤ଷ 1/2 0 0 1/2 1/2 1/2 1/4 𝑤ସ 1/2 0 0 1/2 1/2 0 1/4 

The random iteration algorithm of the system of Table 4 can also be computed fol-
lowing this simple algorithm: 
• 1. Take the four vertices (0, 0), (0, 1), (1, 0), and (1, 1) defining the unit square box. 
• 2. Start from an initial random point in the unit square. 
• 3. Select one vertex randomly, and compute the halfway point between the previous 

point and the vertex. 
• 4. Repeat step 3 as many times as you want. 

What happens if we now unbalance the assigned probabilities? In such a case, we 
would force the mapping machine to deviate from a pure, uniform random process. Even 
if we use a poor pseudorandom number generator in the mapping run, some heterogene-
ities will start to appear. Heterogeneities in point distribution arise from regularities in 
the iteration algorithm, which has led to the application of iterated function systems over 
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sequences. Let us call the mapping sequence the consecutive sequence of contraction map-
pings in its order of application. Then, any regularity present in the sequence will be re-
flected in a visual pattern of the point trajectory. Now we have an algorithm able to cap-
ture the underlying patterns in a sequence. In particular, the graphical representation of 
sequences using iterated function systems was termed by Jeffrey, who applied it over 
DNA sequences, as the Chaos Game Representation (CGR) [123]. 

3.2. Underlying Patterns in DNA Sequences 
The CGR assigns each nucleotide base to a contraction mapping 𝑤௜ of the IFS given 

in Table 4. However, now, instead of having probabilities associated to the mapping run, 
the rules are determined by the genome sequence. Thus, starting from a random initial 
point 𝑋଴ in the unit square, the CGR iterates the map 𝑋௡ାଵ = 𝑤௜(𝑋௡) following the se-
quential order of the bases as they appear along a DNA sequence. We can also assign the 
four nucleotides to the corners of the unit square, 𝐴 = (0,0), 𝐶 = (0,1), 𝐺 = (1,1), and 𝑇 =(1,0) (Figure 4a). For RNA sequences, base 𝑇 is replaced by 𝑈. The algorithm generates 
a new point halfway between the previous point and the corner associated with the next 
DNA base appearing in the sequence. There is a one-to-one relationship between se-
quences and point trajectories [125]. More specifically, if we divide the unit square into 
non-overlapping sub-quadrants of size 1 ⁄ 𝑘 × 1 ⁄ 𝑘 , then each subsequence of length 𝑘 
corresponds to a unique sub-quadrant. For example, Figure 4b shows the corresponding 
sub-quadrants associated to the sequences of size 𝑘 = 2. 

 
Figure 4. Visual representation of the Chaos Game Representation. (a) Sub-quadrants associated to 
the sequences of size 𝑘 = 1 and (b) 𝑘 = 2. (c) CGR of a random sequence. (d) Fractal-like structure 
of empty regions corresponding to the absence of the word “CG”. 

From this mathematical characterization, the CGR of a pure random sequence gen-
erates a uniform picture of dots, as illustrated in Figure 4c. On the other hand, regularities 
in the sequence generate a heterogeneous distribution of points with self-similarity prop-
erties. For example, Figure 4d shows the empty regions that replicate in smaller copies in 
the absence of the dinucleotide “CG” in a sequence (up to resolution 𝑘 = 4). So, the dis-
tribution of points highlights k-word abundancies and provides helpful information about 
the underlying structure of a sequence. 

A quantized version of CGR is given by the frequency chaos game representation 
(FCGRk), which provides a 2௞ × 2௞ matrix containing the frequency of all k-words in a 
DNA sequence [125–127]. Thus, heterogeneities in point distributions can be quantified 
by coarse-graining the unit square into 2௞ × 2௞ regular boxes and computing the points’ 
density in each box. The FCGRk displays an image in which each pixel is associated with 
a specific word of size k, and the intensity of the color map corresponds to word frequen-
cies. Thus, the darker the pixel, the higher the word frequency. As an illustration, Figure 
5 shows the FCGR of genomic DNA sequences from H. sapiens, E. coli, S. cerevisiae, A. 
thailana, P. falciparum, and P. furiosus for 𝑘 = 8. 
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Figure 5. The 28 × 28 FCGR images of genomic DNA sequences from H. sapiens, E. coli, S. cerevisiae, 
A. thailana, P. falciparum, and P. furiosus. The color map corresponds to word abundancies, i.e., the 
number of times each word of size 𝑘 = 8 appears in DNA sequences. 

The repetitive occurrence of a given word gives rise to a high density of points in the 
corresponding sub-quadrant. Dinucleotide abundancies of AT and GC are displayed as 
horizontal lines, as in the case of S. cerevisae, A. thaliana, and P. falciparum. On the other 
hand, translations and transversions place points along the diagonals, as we can observe 
in H. sapiens, A. thailana, P. falciparum, and P. furiosus. Self-similar patterns also occur, as 
in the case of the double-scoop in H. sapiens, illustrated as a fractal pattern of empty re-
gions corresponding to an absence of the CG dinucleotides. Fractality, instead of appear-
ing due to the non-randomness of sequences, is a direct consequence of the conserved 
statistical properties of k-words when increasing its size k. The presence of a given word 
implies that at least one word of larger size contains it. Thus, word frequencies constrain 
the distribution at larger word sizes. It also implies that the presence of regular patterns 
in DNA sequences appears as a fractal-like structure. In this case the fractal structure is 
associated to the absence of “CG”, such that no point can fall inside the regions associated 
to mapping sequences that contain the “CG” word. 

Although the CGR is an important starting point, it only provides a qualitative pic-
ture of the underlying patterns. We need additional tools to find a measure able to quan-
tify the observed patterns. For example, one could be interested in looking at the resolu-
tion that maximizes the variability of word frequencies, which intuitively corresponds to 
the length scale of words that would optimize the information encoded, but other quanti-
ties may be of general interest, such as the presence or absence of specific words. 

4. Genomic Signature in Evolutionary Biology 
Evidence of species-specific patterns in DNA sequences started in the early 1960s, 

when a biochemical experiment showed that relative dinucleotide abundance is a stable 
property of DNA sequences [128]. However, owing to the scarce data available in the fol-
lowing 30 years, it was not until 1990 that significant conclusions started to be drawn. The 
comparison of DNA sequences supported the hypothesis that word frequencies follow an 
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evolutionary history, which led Karlin et al. to conclude the existence of an organismal 
signature [35]. 

Based on the increasing empirical evidence, dinucleotide relative frequencies were 
initially proposed as a proper signature describing the inter- and intra-genomic variations, 
which is mathematically defined as follows:  𝑓(𝑋𝑌)𝑓(𝑋)𝑓(𝑌) (6) 

where 𝑋 and 𝑌 denote nucleotide bases and 𝑓 the frequency. Similarities between DNA 
sequences are commonly quantified by computing a distance metric over word frequen-
cies. The initially proposed Euclidean metric is defined as follows: 𝛿(𝐴, 𝐵) = 1𝑛 ෍|𝑓஺(𝑋𝑌) − 𝑓஻(𝑋𝑌)|  (7)

where 𝐴 and 𝐵 denote the sequences under comparison and 𝑛 = 16 corresponds to the 
total number of words of size 𝑘 = 2. Other metrics have also been used for this purpose, 
such as the Pearson correlation distance [129], the DSSIM [130], the Manhattan distance 
[131], or the approximated information distance [39]. From this characterization, the suc-
cession of nucleotides along a sequence follows a zero-order Markov chain, i.e., the prob-
ability of finding a given nucleotide does not depend on its neighbor composition. Thus, 
the probability of finding a word is the product of the probabilities of its constituent let-
ters. 

A generalization of k-word frequency distribution to any length enables us to address 
the problem in a more realistic framework. As we noticed before, each DNA sequence 
may be characterized by a length scale given by the word size at which the variability of 
word frequencies is maximized. However, there are some unsolved questions. Can we 
classify biological entities depending on such a characteristic length? Does it depend on 
the genome size? Regarding this last question, there is some evidence that this is not the 
case. For example, genome duplication mechanisms increase genome size while maintain-
ing relative word frequencies as invariable. In order to find an optimal word size charac-
terizing word frequency, we can establish some criteria based on statistical laws. In ran-
dom sequences, the entropy of word frequencies is maximized for word sizes 𝑘 =logସ(|𝑠|), with |𝑠| denoting the whole sequence size [132]. It means that we expect to find 
each word of size k only once along the sequence. For example, if we have a genome com-
posed of 1 million bases, from a uniform distribution, we expect to find a frequency of one 
for each word of size 𝑘 = 10. As a consequence, this word size is an upper bound from 
which deviations from a uniform distribution would be observed with some significance. 
Furthermore, as more statistical significance is desired, lower word sizes would be re-
quired. A common approach when comparing different sequences is to fix a word size 
according to some prior. Because empirical evidence suggests that closely related se-
quences will share similar word frequencies, the deeper the taxonomic relationship is, the 
larger the word sizes will be required to be in order to differentiate their DNA sequences. 
So, the word size is usually fixed at values smaller than k but kept sufficiently large de-
pending on the taxonomic level under study. It also may happen that a study searches for 
unique sequences. For example, if we search for a specific sequence in a genome of 1 Mb, 
one may argue that a word size of 𝑘 = 13 would be very convenient in order to keep an 
error percentage less than 2%. However, in most cases, the word size is usually fixed ar-
bitrarily, highlighting the lack of a formal theory to compare sequences. 

4.1. What Is Causing the Organismal Signature? 
When looking at the distribution of word frequencies, the usual situation is that most 

of the words never appear along the DNA sequence, some appearing only once (mainly 
corresponding to genes) and a few being overrepresented (primarily associated with 
structural functions). For example, a case study in A. fulgidus using a word size of 𝑘 = 8 
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shows that a few words are very abundant, while about 300 words appear once at the 
most [37]. Which factors are modulating the non-randomness in genome sequence? 

Different studies provide evidence of robust intra-genomic variability. They suggest 
that these patterns are driven by two main mechanisms: selective pressures subject to en-
vironmental conditions and specific processes associated with the genetic machinery, 
such as DNA replication and repair-based mechanisms. A case study in prokaryotes 
shows that oligonucleotide usage variability, AT content, phylum, and oxygen require-
ment are the main factors contributing to long-term intra-genomic patterns [70]. A direct 
consequence is that higher biases in nucleotide usage generate a more robust signature. 
GC content’s variability in microbes has also been associated with replication activity 
[133,134]. A study shows that genomes rich in GC content are more homogeneous than 
AT-rich genomes [76]. However, genomic signatures in prokaryotes based on dinucleo-
tide abundances do not correlate to environmental conditions, such as habitat resources, 
osmolarity, and chemical conditions [72]. On the other hand, codon signatures show that 
codon usage is independent of GC content, gene size, and transcriptional and translational 
constraints but, rather, is related to the replication and repair process [135]. Thus, similar-
ities in genome composition are partly explained because closely related organisms share 
similar proofreading mechanisms. They can modulate the variability of dinucleotide 
abundances (i.e., GC content) or amelioration in bacteria. 

4.2. Dinucleotide Biases 
Single nucleotides are not equally distributed along the genome, i.e., we do not find 

25% of each base in each genome. In turn, nucleotide usage has a bias, which modulates 
the organismal signature. Relevant findings from comparisons of base abundances are 
related to AT and GC contents, where the proportion of guanine and cytosine along DNA 
sequences is referred to as the GC content. Similarities in CG depletion are observed in 
some eubacteria, archaebacteria, and eukaryotes. Some bacteria and archaea share an un-
derrepresentation of CTAG. However, the abundance of words varies from one species to 
another [136,137]. In humans, GC content is about 40%, whereas in Plasmodium falciparum, 
GC content is about 20% (it is an AT-rich genome). Specifically, it has been found that 
DNA sequences rich in GC content show a more homogeneous genomic signature if com-
pared to AT-rich genomes, in part due to a mutational bias in AT-rich genomes [137]. The 
energetic cost of having a GC-rich composition is higher than AT-rich dinucleotides, but 
it provides more stability to genomes [138]. The stability provided by a high GC content 
is due to the molecular interactions throughout the base stacking of adjacent bases. How-
ever, it is not clear what the specific advantages of GC-rich genomes are, nor what inter-
species differences exist. For example, although it confers high stability to DNA mole-
cules, in some bacteria with high GC content, autolysis has been found to occur easily. 
Furthermore, because sequences with abundant GC content confer higher thermostability, 
it was previously assumed that this bias is a consequence of an adaptation to thermal 
conditions. However, this hypothesis is no longer supported by empirical evidence. In 
turn, variations in GC content in more complex organisms show a mosaic pattern, shaping 
the so-called isochores. These regions are compositional domains of more than 300 kb with 
a homogeneous presence in GC content and are the main factor causing intra-genome 
variability [133,139,140]. The formation of these compositional domains is linked to mul-
tiple biological variables, such as gene density, replication rates, timing, and recombina-
tion [134]. However, their presence can vary in organisms of the same species. Despite the 
isochores, the overall distribution of dinucleotides is homogeneous throughout the ge-
nome when comparing pieces of 50 kbp. However, while dinucleotide abundancies 
among coding and noncoding regions do not show significant variation, it has been found 
that tetranucleotides differentiate these two regions. Dinucleotide and tetranucleotide bi-
ases in prokaryotes are analyzed in [74]. Moreover, stop codons are biased towards AT 
content, so the presence of genes may influence these biases. 
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Studies analyzing dinucleotide biases in the different kingdoms of life show that pro-
karyotes have an underrepresentation of dinucleotides. Most eukaryotes have an un-
derrepresentation of AT-content, while some organisms such as insects, worms, and most 
fungi have typical CG values. On the other hand, GC content is overrepresented in many 
bacterial genomes [72]. Di- and tetranucleotide abundances effectively discriminate DNA 
sequences from different phyla [35]. A study comparing species from different domains 
of life reveals that the highest variability of dinucleotides among eukaryotes, bacteria, and 
archaea correspond to the AT-rich content, i.e., A + T is the main factor describing the 
variations among genome sequences [37]. However, while nucleotide concentration char-
acterizes species, it does not differentiate organisms at high taxonomic levels. For exam-
ple, mammalian species have independently undergone an increase in GC content, mainly 
due to the structure of genes and GC-biased gene conversion. 

4.3. Taxonomic Inference from Word-Based Metrics 
Genome composition remains robust throughout the whole genome, suggesting that 

genome-wide comparisons do not provide more information than using only small pieces 
of the DNA chain. Many studies have found evidence that intragenomic distances are 
smaller if compared to genomes from different species [37,39]. In microbial genomes, 
word frequencies have been shown to be similar when considering smaller fragments 
thereof, measuring about 10–50 kbp [74]. In bacterial genomes, intragenomic patterns are 
also found to vary less than intergenomic comparisons. 

Word-based methods are at the core of the alignment-free methods and are receiving 
increasing attention in the scientific community [141]. A variety of case studies perform 
comparisons of word frequencies between organisms [64,69,142]. Comparisons of se-
quences representing all kingdoms of life are given in [39]. In this study, authors select 
sequences within a given chromosome of H. sapiens (animalia), S. cerevisiae (fungi), A. 
thailana (plantae), P. falciparum (protista), E. coli (bacteria), and P. furiosus (archaea), and 
they compute pairwise distances between genomic sequences using words of size k = 9. 
The method can classify all genomic sequences correctly, even at lower taxonomic levels. 
In this last case, comparisons are performed among H. sapiens (class Mammalia, order 
Primates) and Mus musculus (class Mammalia, order Rodentia). However, the authors 
highlight that the application of a metric should depend on the type of study and the 
taxonomic level of interest. Intragenomic patterns also display higher similarities than ge-
nomes from different species, supporting the existence of a species-specific organismal 
signature. Furthermore, the interrelationship among a large dataset of 3.176 mitochon-
drial genomes is analyzed in [38]. A Molecular Distance Map using DSSIM distance of 
words of length 𝑘 = 9 organizes the different taxonomic categories into non-overlapping 
clusters, with few exceptions. The study is applied to mtDNA sequences within Verte-
brata, the superkingdom Protista, and the classes Amphibia, Insecta, and Mammalia. All 
genomic distances successfully classify the different sequences into their taxonomic cate-
gories. It is interesting to recall that a few sequences overlap within two different clusters 
but generally correspond to sequences whose classifications are still ambiguous. For ex-
ample, within the subphyla of jawed vertebrates, they observe two fish species with prim-
itive pairs of lungs, Polypterus ornatipinnis and Polypterus senegalus, converging in the clus-
ter of amphibians. Finally, the compositional characteristics of metagenomic data also al-
low taxonomic labels to be assigned to individual genome sequences, classify unknown 
organisms, and assess microbial community profiling [65,77]. Multiple unsupervised clus-
tering and metagenomic binning methods are also developed to find meaningful semantic 
clusters [143–146]. 

One important aspect in comparative analyses based on k-word frequencies is the 
presence of repetitive sequences, which has recently been discussed in the literature. 
These elements occur in multiple copies throughout the genome in higher plants and ver-
tebrates and cover up to 65% of human genome. As a consequence, they contribute largely 
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to the organismal signature. Different studies point out that the presence of repetitive el-
ements contribute to the phyogenetic signal [32,147–149]. In [147], authors use an align-
ment-free method based on k-words of distinct genomic regions to infer the phylogenetic 
tree of Symbiodiniaceae. While different genomic regions, such as genic and non-genic 
regions, exhibit distinct phylogenetic signals, the results indicate that whole-genome data 
are the best choice for phylogenetic reconstructions. In concordance with this statement, 
reconstructions using specific regions may be useful to investigate different selective pres-
sures during evolution [148]. 

4.4. Examples of Case Studies 
4.4.1. Horizontal Gene Transfer 

Alignment-free methods based on word frequencies also provide important infor-
mation about horizontal gene transfer events. In [71,84], horizontal gene transfer in bacte-
ria is analyzed by looking at biases in dinucleotide composition. Remarkably, this study 
compares heterogeneities in genome sequences based on GC composition and finds 
anomalies in essential genes. On the other hand, plasmids are generally transferred later-
ally among bacterial cells and use the host machinery to replicate and obtain new copies. 
Dinucleotide abundances have resulted in minimal distances between plasmid sequences 
and their hosts in prokaryotes [72]. 

4.4.2. Phage–Host Relations 
The wide diversity of phages in nature is extraordinary, these being the most abun-

dant organisms on Earth. The absence of homology in phages and increasing evidence 
about their mosaic structure have limited the characterization of phages for a long time. 
They have mainly been classified in terms of their nature and morphology (e.g., charac-
teristics of their viral capsid). However, the assumption that related phages share common 
traits is no longer supported. Phenotype traits are not enough to explain the lifestyle of 
phages or to determine the phage cycle (i.e., if it is lytic or temperate). To solve this prob-
lem, studying phage–host relationships may open new insights. In [80], authors use the 
organismal signature to obtain phage–host relationships and determine if they are lytic or 
temperate. The comparison is performed by looking at the Euclidean distance of genomic 
signatures between each phage and the infected host. For the study, they use phages be-
longing to the Caudoviridae family and compare them to the four infected bacteria. The 
first result shows that phages and hosts have a broad spectrum in base composition. Spe-
cifically, they find that E. coli has a GC content of 50.8%, P. aeruginosa 66.6%, S. aureus 
32.8%, and M. smegmatis 67.4%. Organismal signatures are computed using tetranucleo-
tide frequencies. However, standardization is performed due to the large difference in 
nucleotide base composition. It is important to recall that distances here do not correspond 
to distances between phages, but their closeness is associated with a similar distance to 
their host. The Euclidean distance between bacteriophages and their hosts reveals an em-
pirical threshold separating temperate vs. lytic phages. Temperate phages can integrate 
their genomes into the host, resulting in a shorter distance to the host if compared to lytic 
phages, which are located on the other side of the threshold. Summarizing, the represen-
tation of these distances in a one-dimensional space effectively separates phages with dif-
ferent lifestyles. However, families overlap within this distance-to-host dimension. The 
genome length, which has a non-homogeneous distribution among phages, is used as a 
second dimension, resulting in phage family clustering. 

4.4.3. Phylogenetics and SARS-CoV-2 
More recent studies analyze the origin and possible recombination of SARS-CoV-2. 

In [150], a possible recombination of SARS-CoV-2 with Pangolin and Bat coronavirus is 
analyzed by looking at the Frequency Chaos Game Signal (FCGS), a method to detect hid-
den periodic signals in k-word frequencies. They find that SARS-CoV-2 is more closely 
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related to Bat, with 96% of genome identity. However, intra-genomic variations show that 
Pangolin has the highest nucleotide identity in the S gene sequence, which suggests a pos-
sible evolutionary origin from Bat and Pangolin strains. A more sophisticated method is 
used in [109]. The focus of this study is to identify the origin of SARS-CoV-2 from a ma-
chine learning algorithm able to classify unknown sequences at each taxonomic level. The 
training dataset is based on the organismal signature of about 5000 unique viral se-
quences, including Bat Betacoronavirus. As they notice, moving down into the taxonomic 
levels implies that sequences are much more similar, so they justify that 𝑘 = 7-word sizes 
are large enough to compare closely related sequences. This approach has supported the 
hypothesis that the sub-genus Sarbecovirs and Betacoronavirus originated in Bat. 

5. Discussion 
First, we have performed a bibliometric analysis of the role of genomic signatures in 

biology. We have collected all articles where genomic signature appears as a Keyword 
and performed both a co-word analysis and a bibliographic coupling. By looking at the 
articles that cluster together in the bibliographic coupling, we identified the different 
fields of application and broke down the conceptual meaning of the genomic signature. 
We have used the term gene signature to denote the collection of genes involved in a spe-
cific biological function, protein signature for gene expression profiling, mutational signature 
for key mutations yielding a specific biological state, immune signature for the immune 
response within a host, and molecular signature for a biomarker. On the other hand, we 
have used selection signature to refer to the genomic regions registering the trait variability 
in a population and organismal signature for any measure able to identify phylogenetic 
relationships. 

In the second part of the article, we have reviewed the formulation and applications 
of the organismal signature. We have looked at the mathematical foundations of the so-
called Chaos Game Representation (CGR) and its applicability to genome sequences. It 
was in 1990 when Jeffrey showed a visual representation of the underlying patterns of 
DNA sequences, highlighting large biases in word frequencies. Furthermore, the compar-
ison of CGR’s pictures among different species has provided new insights into the search 
for a species-specific measure. Specifically, distance metrics comparing word frequencies 
show low intra-genomic variability if compared to DNA sequences of distantly related 
species. Furthermore, increasing empirical evidence supports the hypothesis that word 
frequencies represent a conserved property in evolution, such distances among genome 
sequences are in concordance with evolutionary relationships. These results have placed 
word statistics at the core of the alignment-free methods in comparative analysis. 

In recent decades the organismal signature has been applied to different problems of 
evolutionary biology. It has successfully classified species spanning all kingdoms of life, 
even at high taxonomic levels. For the first time, it has been possible to classify unknown 
sequences from metagenomic data and identify horizontal gene transfer events efficiently. 
Furthermore, it has contributed to a better understanding of phage–host relationships. For 
example, the distances of phages to their hosts have revealed phage lifestyle, i.e., whether 
they are lytic or temperate. Finally, the phylogenetic origins of certain sequences of inter-
est have been determined, such as the case of SARS-CoV-2 and HIV. 

Despite the advantage of the word-based alignment-free methods, the development 
of a rigorous formulation describing a quantitative measure of organismal signature is 
still lacking. We have formulated the hypothesis that the characteristic length scale of 
DNA sequences may be given by the value of k that maximizes the variability of k-word 
abundances. However, further studies should be conducted to find a mathematical solu-
tion to this problem and identify an optimal k-word length in alignment-free methods. 
Furthermore, there are still open questions. In case such a characteristic length exists, how 
does it relate to the genome size? Could it be informative about the genome complexity? 
How does it determine the optimal length for comparing different sequences? Moreover, 
it may be important to explore its limitations. For example, k-word frequencies do not take 
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into account the relatedness among neighbor words, or the presence of long-range corre-
lations throughout the genome sequences. It may also happen that sequences are charac-
terized by different length scales according to their structural and functional fates. In such 
a case, a partition into compositional domains may better describe the informational prop-
erties encoded in genomes. 
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