

The Dark Matter - Galaxy Connection: **HOD Estimation from Large Volume Hydrodynamical Simulations**

- J. CASADO GÓMEZ (UAM) R. DOMÍNGUEZ-TENREIRO J. OÑORBE (UCA/Irvine) F. MARTINEZ SERRANO (UMH)
- A. KNEBE (UAM) A. SERNA (UMH)

DARK MATTER - GALAXY CONNECTION

THE

HOD

SYNERGIES WITH LARGE GALAXY
SURVEYS

Some OPEN QUESTIONS IN GALAXY grouping

- Why do galaxies gather the way they do?
- Do satellites trace the underlying DM halo?
 - To what extend?
- HOD: What can we expect from a Galaxy with a certain stellar mass?
 (DM halo?, Satellite galaxies...)

COMPUTER EXPERIMENTS AS A TESTBED TO STUDY

DARK MATTER - GALAXY CONNECTION

INTRODUCING COSMOLOGICAL SIMULATIONS

GALAXY FORMATION IN A COSMOLOGICAL CONTEXT: STEPS

- 1.- Cosmological Model; Spectrum of pert. field
- 2.- Halo Formation & Statistics
- 3.- Gas Physics & Thermodynamics
- 4.- Gas Acumulation & Star Formation

(about **1 kpc** = $3.26 \text{ l.yr} = 0.3 \times 10^2 \text{ m}$)

- 5.- Short Scale Stellar Processes + BH
- 6.- Element formation + Diffusion

INTRINSIC OBJECT

- 7.- Observational Manifestation (light emission)
 - 1, 2, 3: Large Scale, from Fundamental Physics
 - 5, 6, 7: Require Models
 - 4: KEY STEP: models, numerical, observations

WHAT SIMULATIONS DO

FUNDAMENTAL PHYSICS

TRACE GALAXIES AND DM IN DIFFERENT SCALES

Isolated, Groups, Clusters

- Accretion and assembly of galaxies
- Gas cooling and heating
 - coupled evol. Of LSS, galaxies, gas accumulation
 - + MODELS -

Star Formation, BHs, Element Formation

SYNERGY WITH LARGE VOLUME GALAXY SURVEYS

COMPUTING CHALLENGES

SCIENCE OBJECTIVES

statistical properties of galaxies: galaxy groupings, mass and luminosity functions, their dependence on environment and on morphological type, their evolution with redshift

>>> LARGE VOLUMES

Local & young object information: imaging; SEDs; obscured star formation at high z element formation <<<</p>

>>> HIGH RESOLUTION

HUGE DYNAMICAL RANGE

Fair determination of <u>sample statistical properties</u>
 Periodic box size > 80 Mpc side
 (otherwise clustering poorly represented) (Power & Knebe)

Fair determination of individual galaxy properties

Space resolution ≈ 2 − 0.2 kpc; Mass resolution

HUGE DYNAMICAL RANGE > 5 x 10⁵ HUGE NUMBER OF DM+GAS PARTICLES

PARALLEL HYDRO CODES

GADGET (Springer et al. 06)
GASOLINE (Wadsley et al. 04)
Ramses (Teyssier et al. 08)
P-DEVA (Martinez-Serrano 08)

P-DEVA

THE CODE

$AP3M + SPH_{2L} + DDR + Q_{ij}$

OpenM P

- . Kennicutt-Schmidt SF algorithm
- . Stellar Physics subresolution modelling (Chemical feedback)
- . Self-consistent element formation (Qii) & cooling (DDR)

. Conservation Laws >>

careful implementation of the neighbour searching algorithm in SPH

2 loops >> highly CPU time consuming !!

P-DEVA

THE RUNS

EQUILIBRIUM BOX SIZE / RESOLUTION

- 80 Mpc periodic box side >>
 cosmological convergence
- Initial Conditions: WMAP+BAO+SZ+SNEall+ SSDS, running
- 2 x 512³ DM & baryon particles

```
(2.4 \& 12.5 \times 10^7 M_{\odot})
```

- Space resolution: 2 kpc gravity; 1 kpc hydro
- Resampling possible (mass & space resolution increased):

 $3 \times 40 \text{ Mpc}^3$ sub-boxes brought up to z=0

WHY LARGE GALAXY SURVEYS ARE NECESSARY?

Not only galaxy statistics ...

The dark-matter vs galaxy connection

- decipher important clues about the role DM plays in galaxy formation processes.
- DIRECT PROBES of DM in galaxy haloes at r>50 kpc
- G-G lensing
- Satellite kinematics
- INDIRECT PROBES: HOD

ProtoG location relative to the cosmic-web:

- alignments
- AM acquisition → shapes
- morphology
- kinematics

Yes... galaxy statistics...

Study of the occupation attending:

- Halo mass, host mass, satellite mass...

$$\Phi(M_*|M_h) = \Phi_c(M_*|M_h) + \Phi_s(M_*|M_h)$$

<u>Conditional stellar</u> mass function

Number of galaxies with stellar mass in the interval

$$M_* \pm dM_*/2$$

CENTRAL SATELLITE

Separate contributions from central galaxies and satellites

HOUSE COURSES COURSE

What we really work with:

- $\langle N_{cen}(M_h|char)\rangle$ average number of "char" central galaxies hosted by halos of mass M_h . ("char" can correspond to a mass threshold or a mass bin)
- $lackbrack \left\langle N_{sat} \left(M_h | char \right) \right\rangle$ average number of "char" satellite galaxies hosted by halos of mass M_h.

HOD PROVIDES A WIDE RANGE OF POSSIBILITIES TO CONNECT DM & GALAXY DISTRIBUTIONS

Results from large-volume hydro simulations

What is necessary to perform this work with simulations?

AUTOMATIZATION

Object Finding in LVHS

What do we find?

- "Virtual Galaxies": star + gas,
- With: sizes, masses, dynamics OK
- Embeded in DM haloes
- Orbiting satellites.

No trivial problem: VG & satellite identification

■ FOF - Friends of Friends (Davies et al. [1985])

- Automatic object Finder
- Linking length, b
- Gives the object centers
- HOST Selection criterion $M_* \ge 10^{1.5} M_{\odot}$

Still SATELLITE IDENTIFIER ??

MEASURING STELLAR MASSES & SATELLITE IDENTIFICATION

- Virial masses
- Virial radii (Bryan & Norman)
- 3D integrated mass profiles (IMPs)
 - How does a satellite shows up in a IMP?

JUMP !!!

JUMP DETECTOR ALGORITHM (Casado et al. in prep)

Method based on:

- detection of changes in the IMP function and derivatives.
- optimized to detect satellites and avoid mergers in substructure and projection effects.

0.6

0.8

- Also useful to detect mergers in the central halo object and study the accuracy of the mass estimation and virial radii.
- Fast and cheap way to detect satellites and substructure.

What do we get out of it?

Statistical study:

-Radial distribution of satellites, mass distribution, study of number of merging objects...

A LARGE VARIETY OF STUDIES AVAILABLE

AND, of course

HOD studies

$\langle N_{sat}(M_h/M_{sat,*}) \rangle$ From GALFOBS

$M_{central,*}$ vs M_{halo} From GALFOBS

DO SATELLITES TRACE THE HALO (DARK) MASS DISTRIBUTION?

They probably do !!

HOD

Leauthaud et al. 2011 & 2012

Theoretical Framework (MODEL + BEST FITTING WITH COSMOS SURVEY)

Based on log-normal probability distribution function for the stellarto-halo mass relation (SHMR) \rightarrow 2 parameters for central gal. + 3 for satellites

MODEL

(5 parameters)

Galaxy-galaxy lensing

Galaxy clustering $\omega(\theta)$

Galaxy stellar mass function

BEST FITTING COSMOS SURVEY 0.48<z<0.74

SUMMARY

For DM – Galaxy connection **group statistics** are very important.

Large surveys are required with accurate z determination with accurate mass, velocity & positions.

Observational estimations of HOD are still at their infancy

Combining Results from Large Galaxy Surveys and Simulations will lead to a better understanding of the Dark Matter – Galaxy Connection