

Large Scale Structure with Pan-STARRS

Shaun Cole, Institute for Computational Cosmology, Durham University.

Collaborators: Daniel Farrow, Nigel Metcalfe, Peder Norberg, Peter Draper

Outline

The Pan-STARRS telescope and surveys Survey Status Photometry and Zeropoints Clustering in SAS2 Photometric redshifts Galaxy Clusters Conclusions

Durham

JOHNS HOPKINS

Pan-STARRS

(Panoramic Survey Telescope and Rapid Response System)

1.8m mirror on Haleakala, Maui

- Optics delivers a 3° field of view
- PSF sampling is 0.26"

• 60 CCDs

• Each CCD is composed of 64 cells, each of 600x600 pixels (=>1.4 Gpixels)

• Each cell can be read out separately in 7 sec with 6e read noise

PS1 Mission

Table 2: The PS1 Mission Concept Surveys and time distribution.

PS1 Surveys	Filters	Percent time
3π Steradian Survey	g,r,i,z,y	56
Calibration Fields	g,r,i,z,y	2
Medium Deep Survey	g,r,i,z,y	25
Solar System "Sweet Spot" Survey	r	5
Stellar Transit Survey -"PanPlanets"	i	4
Microlensing in M31 "Pandromeda" Survey	g,r,i,z,y	2
Principal Investigator Discretionary Time		6

data flow: 50Tbytes/month

4

U

The Medium Deep Survey

10 GPC1 footprints distributed uniformly across the sky (optimized SNIa studies)

Filter	Bandpass (nm)	m1 AB mag	μ AB mag/asec ²	exp time sec	5σ point source in 4 nts	5σ point source in 1 yr	5σ point source in 3 yrs
g	405-550	24.90	21.90	3×240	24.76	26.68	27.27
T	552-689	25.15	20.85	3×240	24.43	26.34	26.93
i	691-815	25.00	20.15	6×240	25.43	27.34	27.93
z	815-915	24.63	19.26	6×240	23.76	25.67	26.26
y	967-1024	23.03	17.98	6 imes 240	22.32	24.23	24.82

SC

3π sky coverage to Jan1, 2012

3π sky coverage to Jan 1, 2012

Observing Metrics: 13 May 2010 to 1 Jan 2012

Key Projects

- 1. Populations of objects in the Inner Solar System
- 2. Populations of objects in the Outer Solar System
- 3. Low-Mass Stars, Brown Dwarfs, and Young Stellar Objects
 - 4. Search for Exo-Planets by dedicated Stellar Transit Survey
 - 5. Structure of the Milky Way and the Local Group
 - 6. A Dedicated Deep Survey of M31
 - 7. Massive stars and supernova progenitors
 - 8. Cosmology Investigations with Variables and Explosive Transients
 - 9. Galaxy Properties
 - 10. Active Galactic Nuclei and High Redshift Quasars
 - 11. Cosmological Lensing
 - 12. Large Scale Structure

Ubercalibration

1.2 Residuals of photometric model

By using a rigid photometric model (one a,k per night) we assume the site, camera, etc. are stable over the course of a night. How good is this assumption?

o For each star in each exposure, compute

$$\Delta\,=\,m-\overline{m}$$

o Compute the mean and standard deviation of these for each exposure:

μ_{Δ} and σ_{Δ}

o Now look at maps and histograms of these.

Ubercalibration

Comparison to SDSS

The Small Area Survey MkII

(SAS2)

64 sq deg, mimicking final 3π icoverage

Taken in median conditions over two nights

Overlaps with SDSS DR8 (full) and stripe 82 (partial)

SAS2 Counts/Depth

Star galaxy separation

Kron-PSF magnitude

r<18 no masking

Daniel Farrow

Source catalogue

Source catalogue

3 April, 2012

P#22 Bts

Star galaxy separation

Kron-PSF magnitude

r<18 no masking

Daniel Farrow

Star galaxy separation

Kron-PSF magnitude

r<18, Bright stars masked

Daniel Farrow

Examples of remaining false positives (noise around bright galaxies)

Star galaxy separation

19<r<20, Bright stars masked

Star galaxy separation

Kron-PSF magnitude

21<r<22, Bright stars masked

Counts of galaxies and false positives relative to stripe 82

Solid – matched galaxy counts Solid – unmatched objects Dashed – close blends removed Dashed – unmatched when blends removed Solid – matched after additional cuts in "star-galaxy classification plane" Solid – unmatched after cuts in "star-galaxy classification plane" 3 April, 2012

Galaxy and star counts from SAS2

or.

lude

The angular 2-pt correlation function from SAS2

Pushing to the limit

Detection Efficiency

3 April, 201

Photometric redshifts (the third dimension)

Semi-empirical SEDs derived from broad-band fluxes of galaxies with spectroscopic z by fitting them with SEDs of Bruzual&Charlot, Maraston and spectra from FDF, Kinney&Calzetti, Manucci

=> used as templates to determine PhotoZ

Stellar SEDs also fitted to check if the objects are really galaxies

Greisel, Seitz, Bender Snigula, Saglia, (MPE)

Photometric redshift tests

Saglia et al

3 April, 2012

Clusters in Pan-STARRS: expectations and goals Medium Deep Surveys (MDS; 10 ~8deg²/field): • Cluster detections to z ~ 1.2 ~10³ distant clusters / galaxy groups 3π Survey (~27,000deg²): • Cluster detections to z ~ 0.6 ~10⁵ clusters / galaxy groups • Volume & depth of data needs a finder that: Is automated Is robust, complete, efficient Can use complimentary data (eg Spitzer IRAC)

PFOF Algorithm (Liu et al. 2008)

Use the information of photometric redshift and its probability distribution function
Applicable to find medium-size groups/clusters as well

<u>A neighbour is a "Friend", if</u> (1) The projected separation is less than xy_{link}

(2) Probability of line-of-sight separation less than z_{link} , is greater than a threshold P(z) P_{th}

$$P(|z_1 - z_2| < z_{link}) \equiv \int_0^\infty dz G_1(z) \int_{z - z_{link}}^{z + z_{link}} dz' G_2(z')$$

3 April, 2012

Overdense Red-sequence Cluster Algorithm (ORCA) Projected galaxy overdensity

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

1. Cluster red sequence

Photometric selection filters: exhaustive search in CM space

 \odot

00

 \bigcirc

 \bigcirc

Redder selection filters track 4000Å break to higher redshifts

Voronoi mesh: unbiased density field estimator

Identify high-density cells, connect them with Friends-of-**Friends**

Murphy, Bower, Geach

Cluster detected in PS1 MDS / SDSS

 Cluster detected @ z=0.208 by maxBCG algorithm (Koester+ 2007) and found by ORCA in SDSS DR7 & Pan-STARRS photometry

Concluding Remarks

The 2 main Pan-STARRS1 surveys are well underway and are both of interest for studies of large scale structure, but analysis is at an early stage.

We are developing clean galaxy catalogues in both MDS and the 3π survey.

Colour and photometric data are being used to build large galaxy cluster catalogues in both MDS and the 3π survey

One particular strength of the 3π survey will be the ISW split by photometric redshift.