
BigBOSS

Michael Levi BigBOSS Director Lawrence Berkeley National Laboratory Valencia, March 29, 2012

BigBOSS Overview

Talk Outline:

- **BigBOSS Objectives**
- Collaboration
- Instrument
- Targets
- Science Reach
- Status
- Conclusions

BigBOSS

Dark Energy Task Force (DETF)

Four promising techniques in this 2006 report

- I. Baryon Acoustic Oscillation (BAO) Geometry
 - II. Clusters (CL)

Gravitational growth (non-linear regime)

III. Supernovae (SN)

Geometry

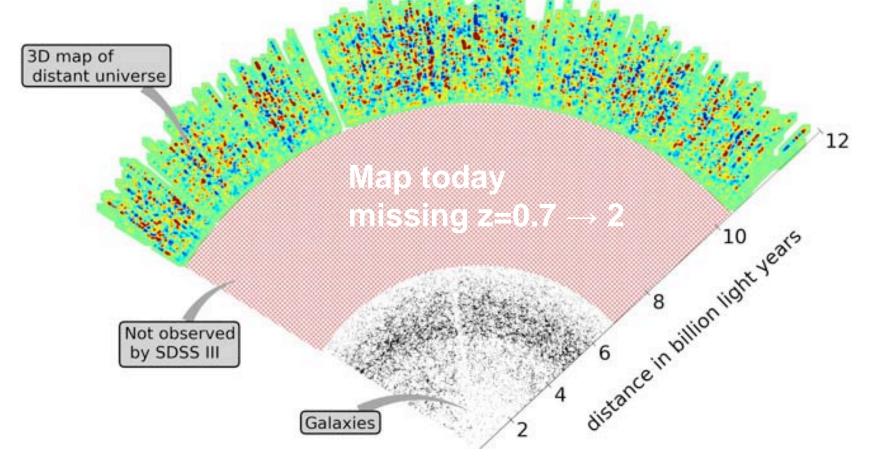
IV. Weak Lensing (WL)

Geometry + gravitational growth (linear regime)

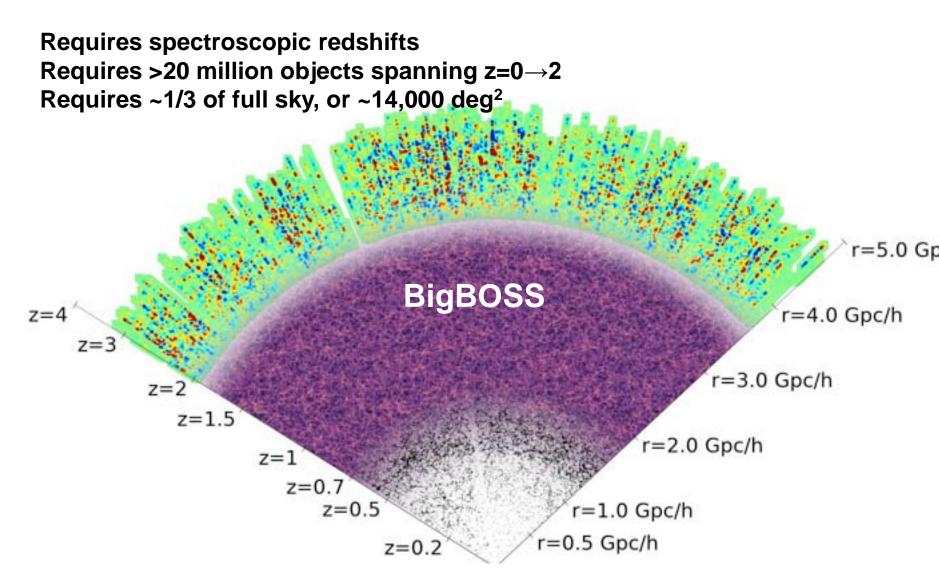
Add 5th technique demonstrated in 2008,2011

V. Redshift-Space Distortions (RSD)
 Gravitational growth (linear + non-linear regime)
 (Guzzo et al 2008, Blake et al 2011)

BigBOSS Scientific Objectives

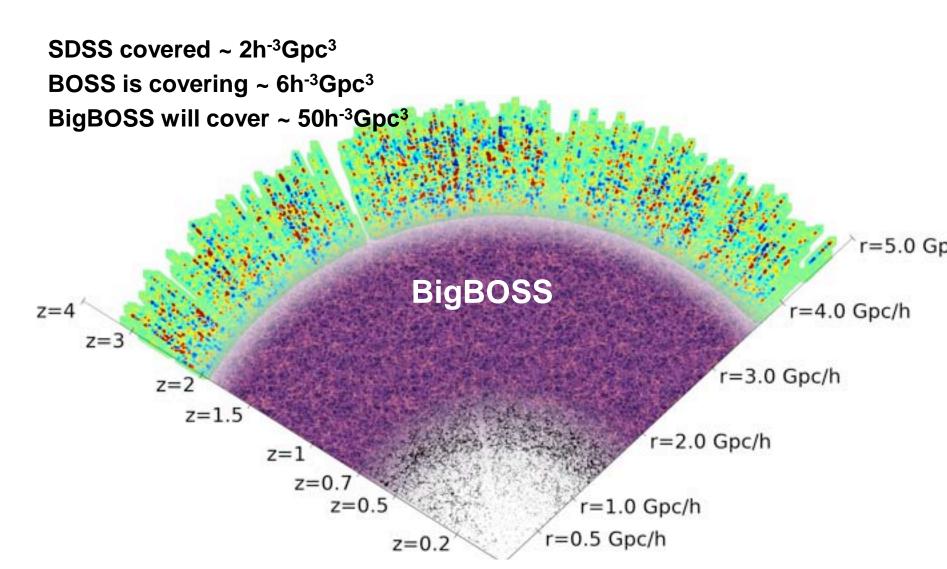

- For BAO, DETF defined progressive survey capabilities:
 - Stage I: knowledge ca. 2006 -- BAO detection by SDSS-I
 - Stage II: running experiments -- SDSS-I + SDSS-II, WiggleZ
 - Stage III: near-term experiments -- 3X better than Stage II: BOSS, HETDEX
 - Stage IV: 10X better than Stage II -- BigBOSS
- BigBOSS is a Stage IV DE Survey
 - Precise measurements of expansion using BAO
 - Precise measurements of growth using RSD
- Probes inflation
 - Primordial power spectrum
 - Non-gaussianities
- Precise probe of contents of Universe
 - Neutrino masses
- Things we haven't even thought of!

BigBOSS: Stage-IV BAO


BigBOSS designed as Stage IV BAO

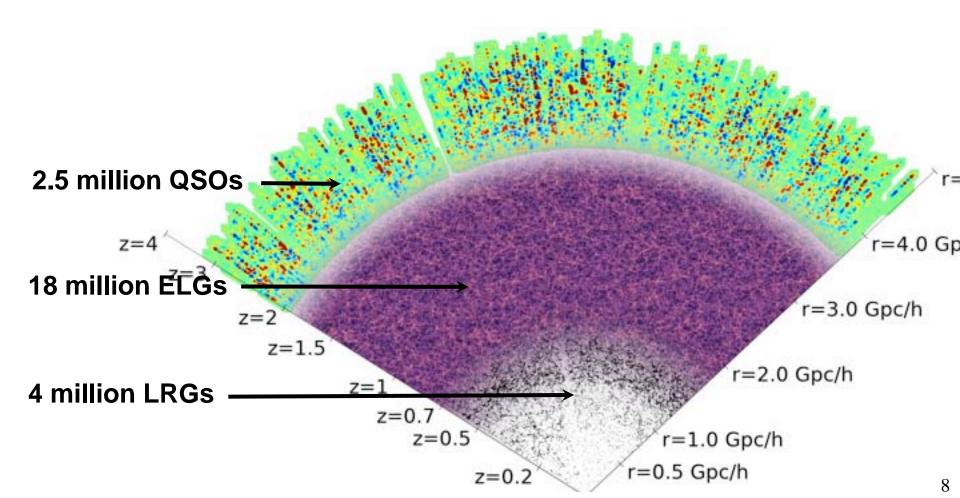
Requires spectroscopic redshifts Requires >20 million objects spanning $z=0\rightarrow 2$ Requires ~1/3 of full sky, or ~14,000 deg²

BigBOSS: Stage-IV BAO



BigBOSS

BigBOSS is BIG!


BigBOSS designed as Stage IV BAO

BigBOSS Science Reach

BigBOSS will enlarge redshift-space maps to 24 million objects 10X larger than SDSS + SDSS-II + BOSS Necessary for Stage IV dark energy from BAO, RSD

BigBOSS Collaboration

US Members:

... and growing!

Brookhaven National Laboratory, Carnegie Mellon University, Fermi National Accelerator Laboratory, Johns Hopkins University, Lawrence Berkeley National Laboratory, National Optical Astronomy Observatory, New York University, The Ohio State University, SLAC National Accelerator Laboratory, University of California, Berkeley, University of Kansas, University of Michigan, University of Pittsburgh, University of Utah, Yale University.

International Institutions:

Ewha Womans University, Korea; French Participation Group (APC, IAP- Paris; CPP, CPT, LAP Marseille; CEA, IRFU – Saclay); Spanish Participation Group (IAA, Granada; IAC, Tenerife; ICC, Barcelona; IFT, Madrid; U. Valencia); Shanghai Astronomical Observatory, UK Participation Group (Durham, Edinburgh, UC London, Portsmouth); University of Science and Technology of China.

Instrument Overview

BigBOSS

A photon's path through the BigBOSS instrument:

- 4m primary class telescope (NOAO)
- 3° corrector optics (LBL, UK)
- Focal plane (Spain)
- 5000 fiber Actuators (China, LBL, Spain)
- Fiber System (LBL, UK)
- Spectrographs (Marseille)
- Dewars/Cryogenics (Saclay)
- Detectors (LBL)
- DAQ (Ohio)
- Computing (NERSC, NYU, Utah)
- Guiding (SLAC)
- Alignment (Yale)
- Calibration (U. Michigan)

BigBOSS Requirements

BigBOSS instrument + survey strategy flows down from requirements

BIGBOSS SCIENTIFIC OBJECTIVE: PERFORM A STAGE IV BAO SPECTROSCOPIC SURVEY

LEVEL 1 Scientific Requirements

- Measure the distance scale error σ_R/R to < 1% for 0.5 < z < 3.0 (in 6 bins with $\Delta \ln(1+z) = 0.2$)
- Measure H(z) to 1.5% up to z=2.5 (in 4 bins at <z> = 0.7, 1.1, 1.5, 2.5)
- Constrain growth, σ₈(z) f(z), with
 <2% relative error
 (Δz = 0.1 bins, k_{max} = 0.2, for 0.5 < z < 1.5)
- Measure galaxy power spectrum to < 1% up to z=1.5 (Δk = 0.02 Mpc/h bins, k_{max} = 0.3)

ADDITIONAL SCIENTIFIC GOALS

- Inflation: constrain spectral index and its running to < 1%
- Measure the sum of neutrino masses Σ m , with σ < 0.020 eV

LEVEL 2 Data Set Requirements

- Survey Area: 14,000 sq deg
- Redshift range:
 - LRGs 0.5 < z < 1.0
 - ELGs 0.5 < z < 1.6
 - Tracer QSOs 0.5 < z < 3.5
 - Ly-α QSOs 2.2 < z < 3.5
- Galaxy dN/dV > 1x10⁻⁴ (h/Mpc)³
- Number of redshifts: 20M
- Redshift accuracy:
 - σ, < 0.001(1+z) rms
 - < 5% catastrophic failures
 - resolve OII doublet for 0.76 < z < 1.6

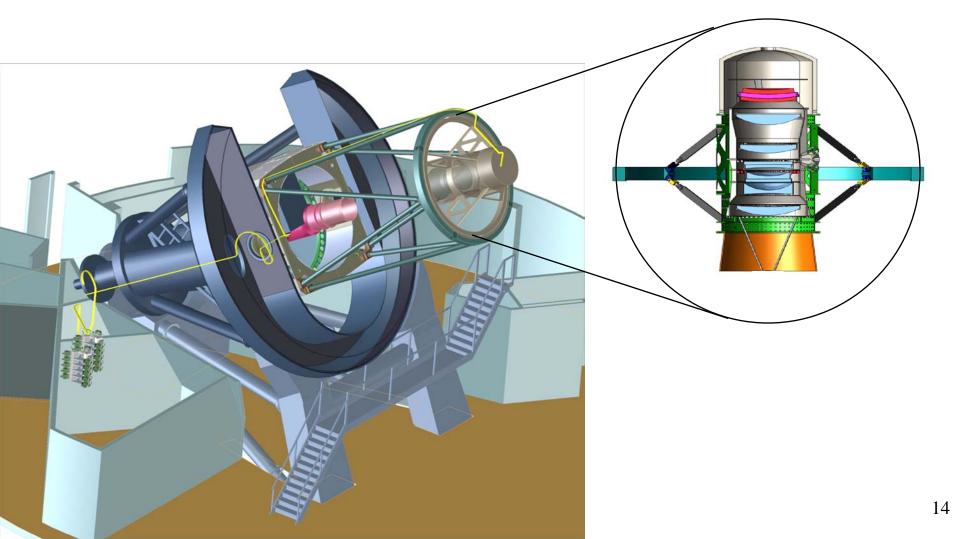
INSTRUMENT REQUIREMENTS

- Operational Constraints
 - < 500 nights
 - Instrument compatible with Mayall telescope
 - Preserve use of f/8 secondary
 - Typical seeing, weather for site used in forecasts
- Field of View: 3 deg diameter
- Number of Fibers: 5000
- Operational overheads: total < 60 s/exposure
- Spectral Range and Resolution
 - 360 nm < λ <660 nm: R > 1500
 - 620 nm < λ <840 nm: R > 3000
 - 800 nm < λ <980 nm: R > 4000
- Optical Throughput vs λ
- Fiber Positioning Error < 0.35 asec (rms, includes actuators, guiding, tracking, target astrometry)

Mayall Telescope

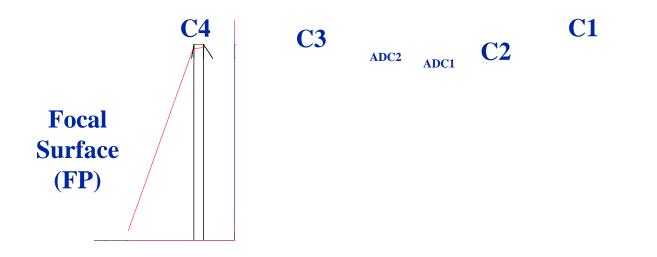
- 3.8m Diameter
- Located at Kitt Peak, AZ
- Operated by NOAO and offered for large scale survey projects
- Compatible with wide-field corrector optics to achieve 3-degree field of view
- Other candidate 4m telescopes
 - Blanco at CTIO (Chile); optical twin, identical to Mayall, potential for southern survey next decade
 - CFHT (Mauna Kea)
 - UKIRT???? (Mauna Kea)
 - Calar Alto
 - no other 4m class telescopes that are available at reasonable sites are compatible with 3 deg field of view

Investigated Siting Options

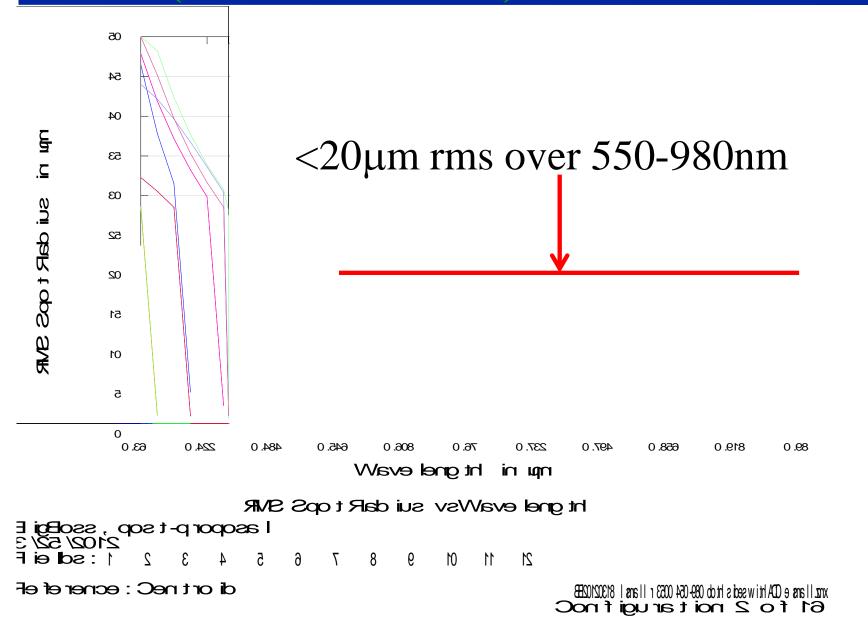


				M1			
		Notes and		Diam.			Suitable for BigBOSS 3-degree
Name	Site	Exclusions	M1 f/#	(m)	f/#	f (m)	corrector?
Vista	Chile	ESO	f/1.0	4.1	1	4.1	no
Starfire	New Mexico	Military	f/1.5	3.5	1.5	5.2	no
SOAR	Chile		f/1.7	4.2	1.7	7.1	no
WIYN	Arizona		f/1.8	3.5	1.8	6.3	no
ARC	New Mexico		f/1.8	3.5	1.8	6.3	no
Discovery							
Channel	Arizona		f/1.9	4.2	1.9	8.0	marginal, with 1.5m C1
Galileo TNG	Spain		f/2.2	3.6	2.2	7.9	marginal
NTT ESO	Chile	ESO	f/2.2	3.5	2.2	7.7	yes
William							
Herschel	Spain		f/2.5	4.2	2.5	10.5	marginal
UKIRT	Mauna Kea	NIR	f/2.5	3.8	2.5	9.5	under study
Victor Blanco	Chile	Twin to Mayall	f/2.8	4	2.8	11.2	yes
Mayall	Arizona	Twin to Blanco	f/2.8	3.8	2.8	10.6	yes
AEOS	Maui, Hawaii	Military	f/3.0	3.7	3	11.1	yes
ESO 3.6m	Chile	ESO Committed	f/3.0	3.6	3	10.8	yes
AAT	Australia	2 arcsec seeing	f/3.2	3.9	3.2	12.6	yes
				F 4	2.2	10.0	
Hale	Palomar		f/3.3	5.1	3.3	16.8	no, massive corrector
	Calar Alto,		6/2 г	2.5	2.5	122	
MPI-CAHA	Spain	2	f/3.5	3.5	3.5	12.3	yes
CFHT	Mauna Kea	Proposed 10m	f/3.8	3.6	3.8	13.7	yes

New 3⁰ FOV Corrector



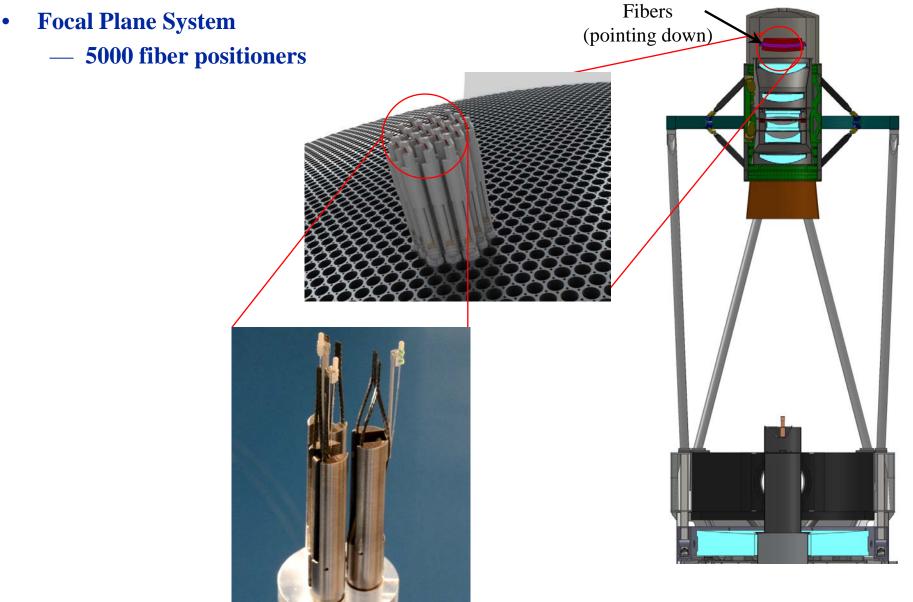
- New optical concept with ADC
 - Corrector ingests light at F/2.8, outputs at F/4.5


Corrector Design

- Six lens groups
- Four fused silica lens elements
 - Two elements have aspheres on one surface each
- Two ADC prisms (LLF1/N-BK7)
- Convex focal surface, Ø890mm outer diameter

BigBOSS

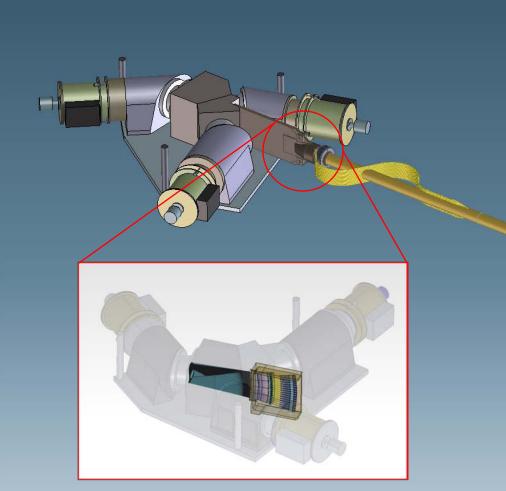
Corrector Optical Performance (Geometric Blur)



16

BigBOSS

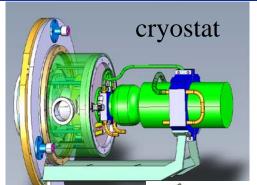
Focal Plane System



Fiber System

- 120 micron core fibers
- 40m fiber run from positioners to spectrograph room

Spectrograph

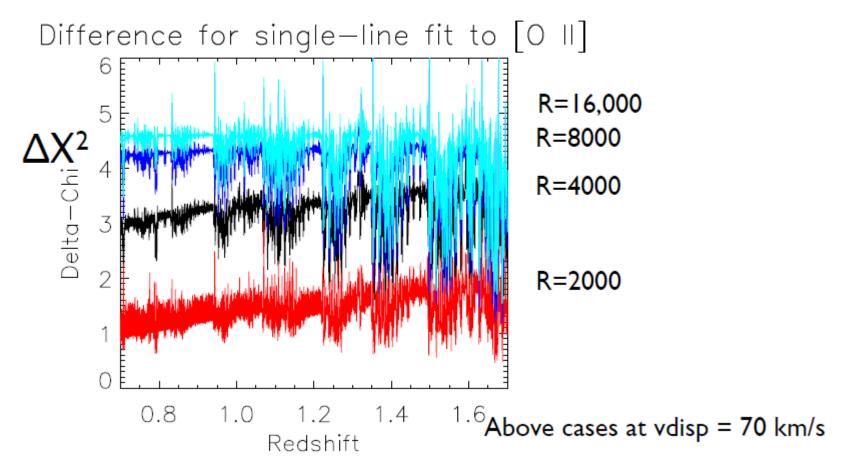

Xn

- 10 spectrographs, 500 fibers each
- 3-arms 360nm 980nm
- Linear pulse-tube cooler

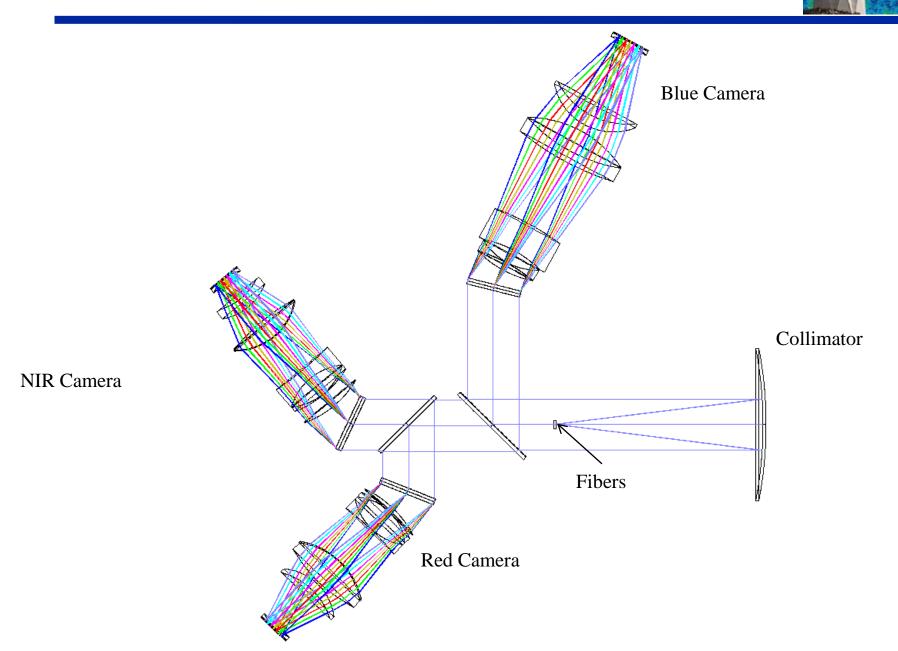
R~4000

- BOSS heritage LBNL CCDs
- Similar in design to SDSS (Smee, etal)

One spectrograph

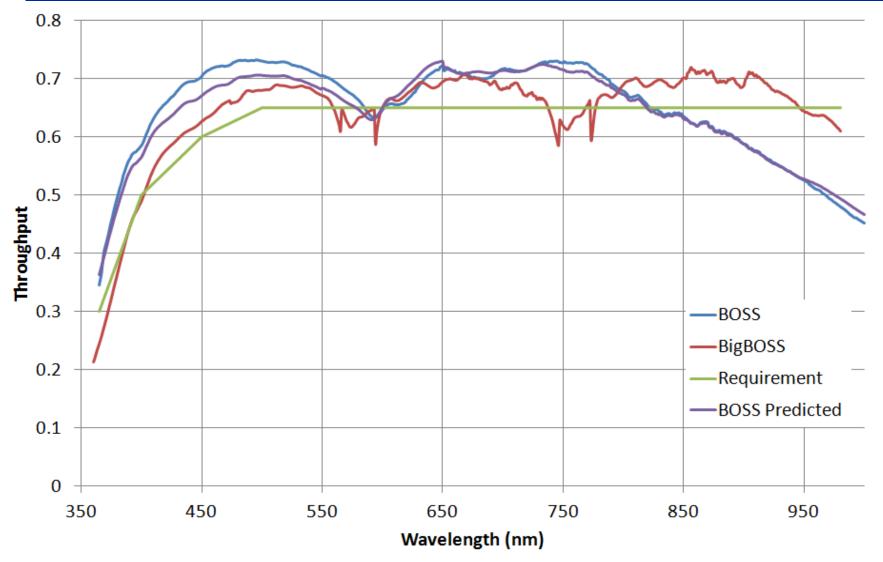


High-Resolution Requirement

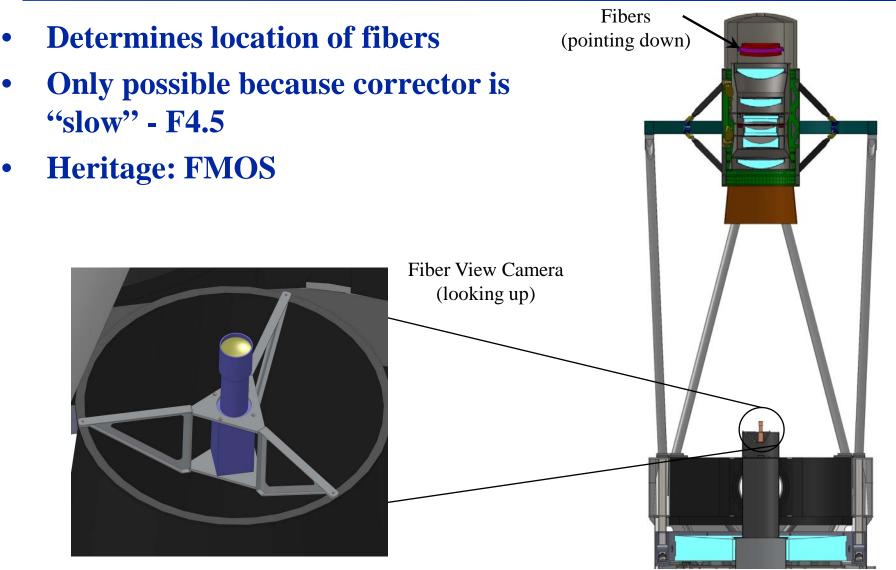


Single-line vs. [O II] discrimination

Catastrophic redshift errors avoided at R>4000 At R=2000, [O II] doublet at 7-sigma is degenerate with a single-line


BigBOSS Spectrograph Concept

BigBOSS


Throughput Comparison

Fiber View Camera

BigBOSS tracers of dark energy

Four target categories:		
1. Luminous Red Galaxies (LRGs)	z = 0.5 ightarrow 1	2 ex
2. Emission Line Galaxies (ELGs)	$z=0.5\rightarrow1.6$	1 ex
3. Tracer QSOs	$z=0.5\rightarrow 3.5$	1 ex
4. Lyman-alpha QSOs	z > 2.2	5 ex

2 exposures 1 exposure 1 exposure 5 exposures

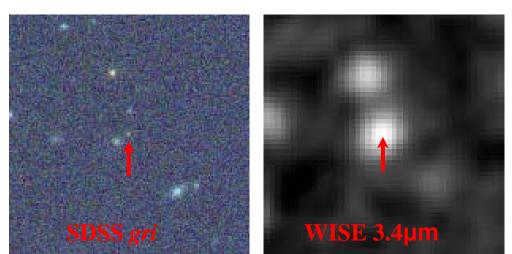
Targeting sources:

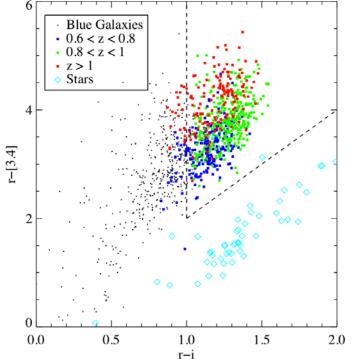
- SDSS imaging (complete over 11,000 deg²)
- WISE satellite (complete over full-sky) -PTF-1 and PTF-2 (running over 14,000 deg²) -PanSTARRS

Opportunity to augment with proposal-based sources:

i.e., from CTIO DECam, CFHT Megacam, KPNO Mosaic, Subaru HSC

1. Luminous Red Galaxies (LRGs)


LRG tracers at 0.5 < z < 1.0


The most massive galaxies in the Universe Excellent tracers of dark matter halos Well-studied in N-body simulations

BigBOSS targets:

4 million LRGs to z=1

Selected at 3.4 micron from WISE satellite + SDSS/PTF-1 imaging WISE data complete!

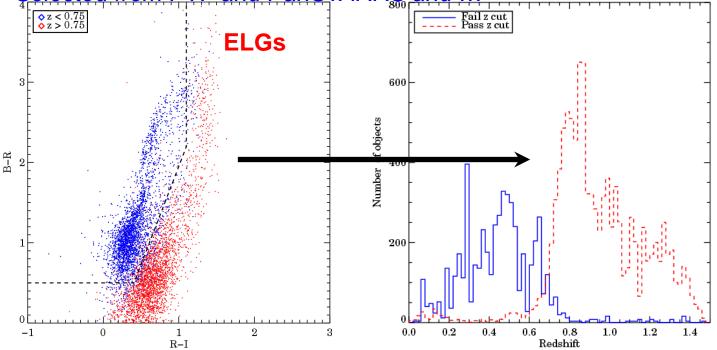
25

2. Emission Line Galaxies (ELGs)

ELGs tracers at 0.5 < z < 1.6

Epoch of star formation peaks in these galaxies at z~1 Easy to select from optical colors

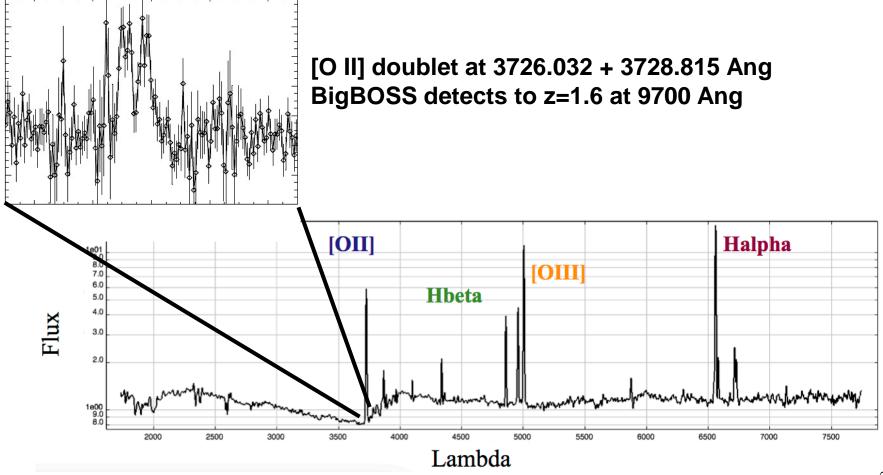
Test data:


40,000 ELGs from DEEP2, VVDS over 4 deg2 total

Well-studied population to greater depth than BigBOSS

BigBOSS targets:

18 million ELGs in BigBOSS survey



2. Emission Line Galaxies (ELGs)

ELGs unique signature of [O II] doublet, detectable from z=0 to z=1.7 Well-studied as the ~5% brightest galaxies in the DEEP2 survey ELGs drive BigBOSS wavelength coverage, throughput, & resolution

3. QSOs as tracers

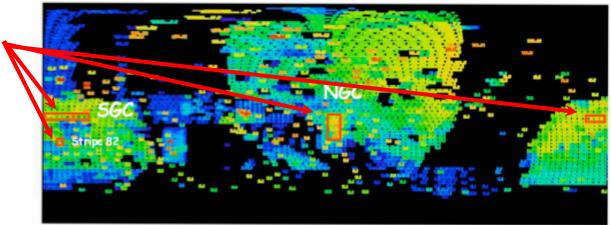
QSO tracers at 0.5 < z < 3.5

The brightest objects at z > 2

+ QSO Lyman-alpha forest at 2.2 < z < 3.5

Test data:

SDSS imaging to g=22, spectra for 200,000

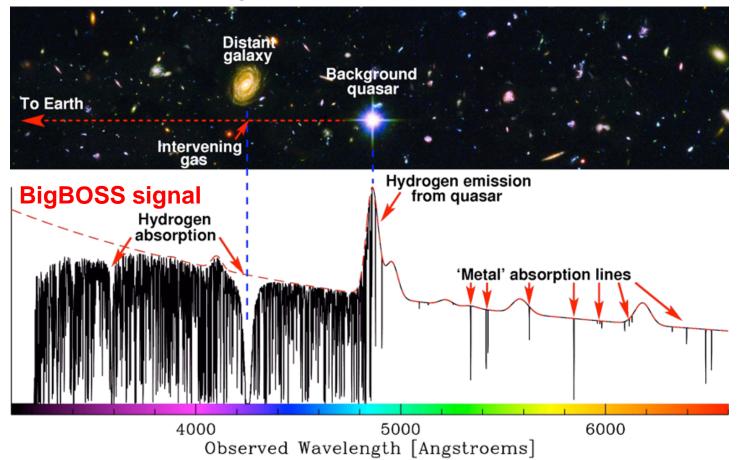

PTF-1 imaging to g=23.5, spectra in test fields from BOSS, MMT BigBOSS targets:

2.5 million QSOs from PTF-1 and PTF-2

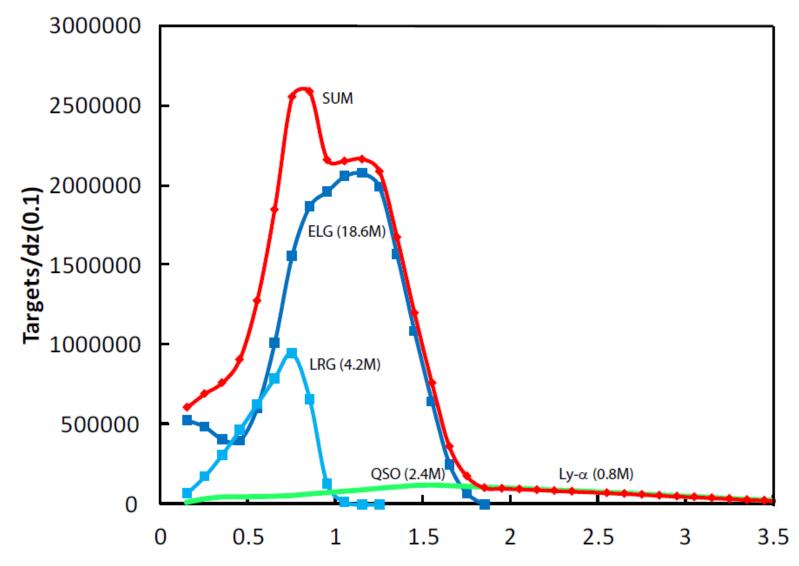
Every QSO to r < 23.5

Simplify target selection -- select QSOs at all redshifts from variability

PTF test fields

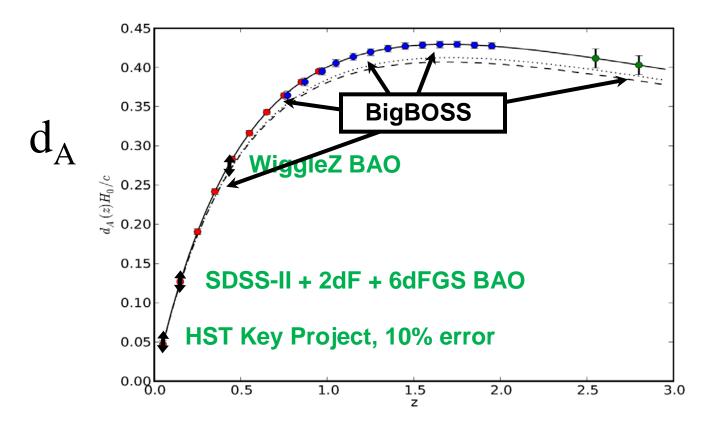


4. Lyman-alpha forest from QSOs

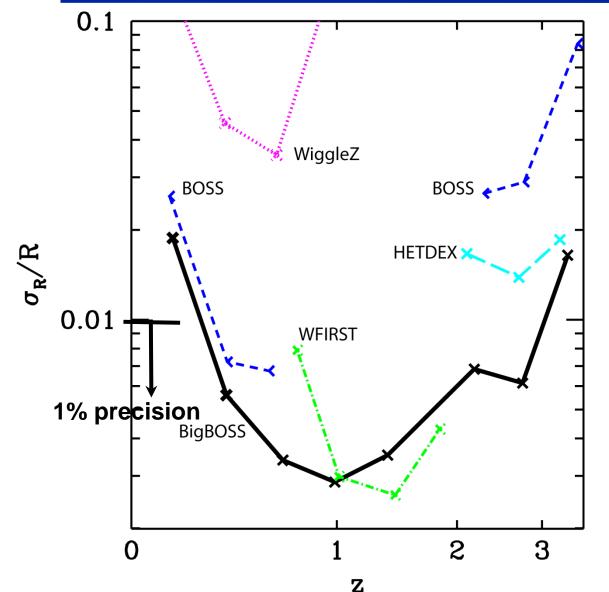

QSOs at z < 2.2 will be observed once \rightarrow "tracer QSOs" QSOs at z > 2.2 will be observed 5X for high S/N for "Lyman-alpha forest"

Map of hydrogen gas along line-of-sight skewers BOSS validating their use as 3-D maps for BAO

BigBOSS tracers

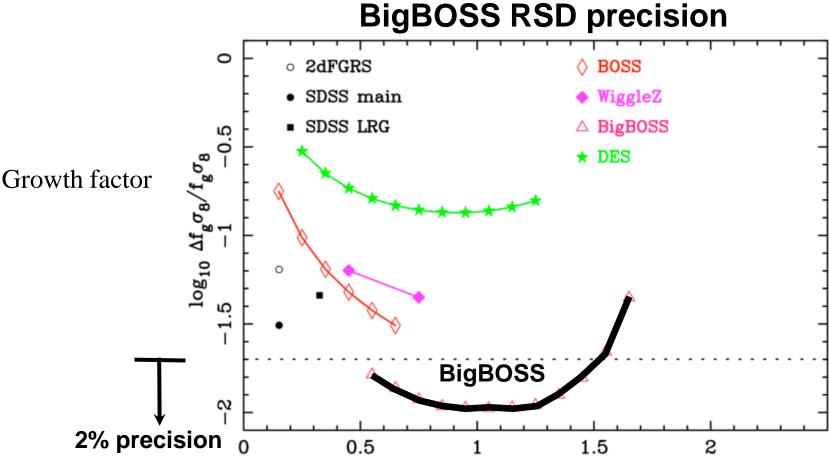

BigBOSS science reach: BAO

Dark energy from Stage IV BAO


—Geometric probe with 0.3-1% precision from z=0.5 -> 3

BigBOSS BAO "Hubble diagram"

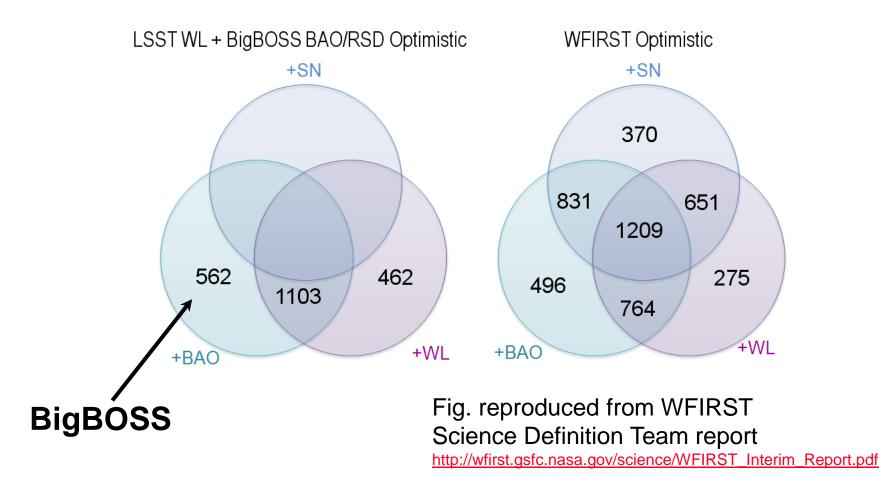
BigBOSS Science Reach: Distance constraints


- Distance scale factor
- BigBOSS has < 1% distance errors over the widest redshift range
- Probe the expansion history over the widest redshift range

BigBOSS RSD predictions

Dark energy from Stage IV RSD

—Gravitational growth with 2% precision from z=0.5 -> 1.5

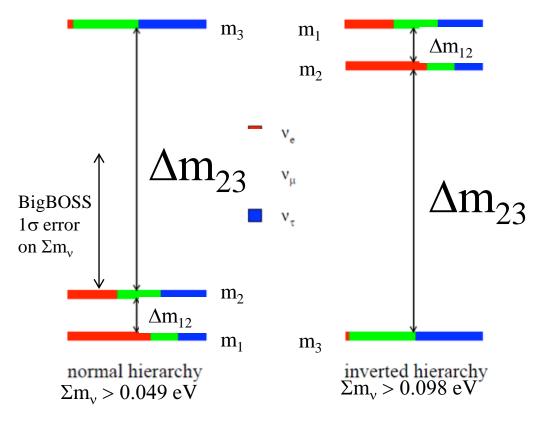


BigBOSS Stage IV science reach

BigBOSS Figure-of-Merit achieves Stage IV

Independently verified by WFIRST Science Definition Team calculations of DETF figures of merit

Broad-band power spectrum offers strong potential for dark energy measurements beyond those from BAO only (fits include all P(k) information, including RSD)


	FoM
BigBOSS BAO	125
+BAO III	132
+SN III	163
BigBOSS P(k), $k_{max} = 0.15 hMpc^{-1}$	430
+BAO III	437
+SN III	466
BigBOSS P(k), $k_{max} = 0.30 hMpc^{-1}$	661
+BAO III	667
+SN III	691

Neutrino mass measurements

Cosmological and inflation parameters and sum of neutrino masses <0.024 eV. Terrestrial experiments measure Δm^2 of neutrino masses *Sensitivity is 0.024 eV Measured from power spectrum of galaxy map*

Terrestrial $\Delta m_{23} = 0.049$ eV (PDG 2011, mostly Kamland)

BigBOSS History

- BigBOSS proposed in 2009
 - Reviewed in 2009 by HEPAP/PASAG
 - "legitimate possibility of achieving a significant fraction of the BAO science goals for JDEM'
 - "Substantial immediate support for BigBOSS R&D is recommended"
 - "(NSF/NOAO) are essential partners in the BigBOSS project and planning."
 - Reviewed by Astro2010 (decadal survey)
 - Study of dark energy one of the three science themes
 - October 2010 response to NOAO Large Science Programs
 - "Schmidt committee" non-advocate review by NOAO, milestones
 - Proposal accepted by NOAO for 500 nights on Mayall Telescope
 - Proposal to DOE in 2011 followed by successful review.
- **BigBOSS** is in a funded **R&D** phase.
 - We have requested from DOE a 2014 "construction start" (that's when the preliminary design review happens, final design starts along with early procurements.
 - On sky by end of 2017.

Simplified Schedule

FY 2	FY 2011 FY 2012			FY 2013				FY 2014				FY 2015			FY 2016			FY 2017			FY 2018 F								
			DO /iew			CD-	0		CD-	1	_	/ CC	 D-2/3a 			 D-3b			St	art o	f Inst	allati	on				7	rt of miss	ioning
•	pre	e-Co	nce	pt		С	once	ept	Pr	el D	es	Fir	hal D	es		F	abrio	catic	n		A	sser	nbly	and	d Tes	st	Ор	erat	ons, d
		F١	(12	and	FY13	3 R	&D A	Activ	ity															~					
																										- C	ritica	al Pa	ath
WB	S 3.	2 Co	rre	ctor		Ρ	rel D	Desig	ŋn	Fir	nal	Pro	cure			Gri	nd 8	k Po	lish	-		Ali	gn						
WB	S 3.	 4 Fo 	cal	Plan	е	F	Prel.	Des		Fir	nal D	es		Pre-	Proc	k k	M	ass	Proc	luctio	on	As	sm						
WB	S 3.	6 Fik	ber			Т	est &	<mark>& Ev</mark>	alua	te	Fi	nal [Desi	gn	F	abri	catio	on	Ac	c. Te	est		•						
WB	S 3.	7 Sp	ect			Des	sign	<mark>& E</mark> l	<mark>M F</mark> a	ab&T	est		1		Indu	stry	Con	trac	t			Fin	l al T	est					
WB	S 3.	8 De	tect	tors		De	taile	d Sp	ecifi	catio	ons		Fa	abric	ate	& Cł	hara	cteri	ze										

Conclusion

BigBOSS

r=4.0 Gp

r=3.0 Gpc/h

r=2.0 Gpc/h

Dark Energy science following DETF recommendations

BOSS will complete BAO+RSD stage III in 2014

- -1.5 million galaxies + 160,000 QSOs
- —~1% measure of expansion at z=0.3, 0.5, 2% measure at z=2.5

BigBOSS designed as BAO+RSD stage IV

- —22 million galaxies + 2.5 million QSOs
- —BAO: Geometry, 1% precision from z=0.5 →1.6 and z=2→3
- -RSD: Gravitational growth, 2% precision @ 5 redshifts

7 = 1

- -Neutrino masses at 0.024 eV

BigBOSS is a stage IV experiment to commence this decade

z=0.2

r=0.5 Gpc/h