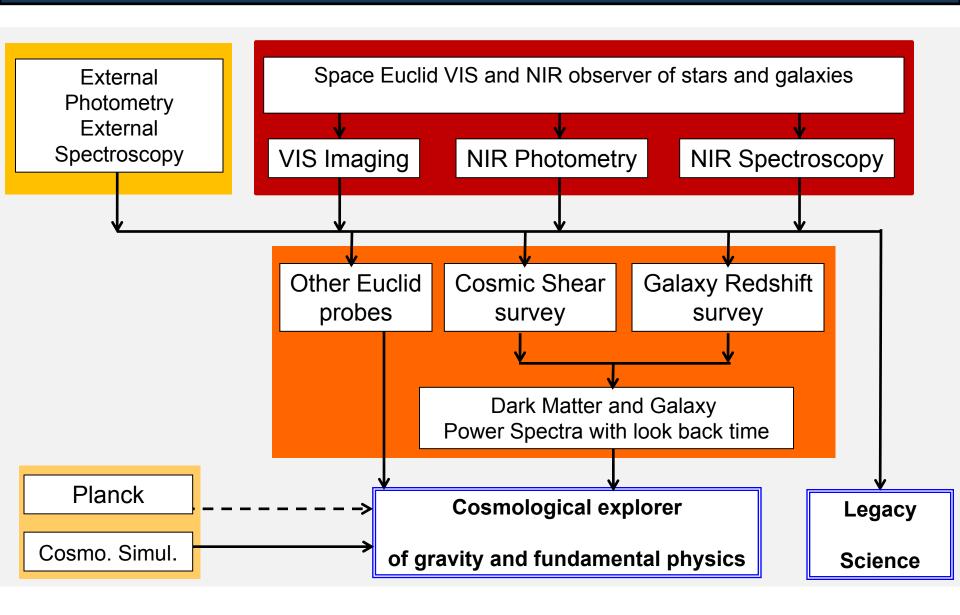


Euclid


Y. Mellier
On behalf of the Euclid Consortium

http://www.euclid-ec.org

- Understand the origin of the Universe's accelerating expansion and
- Probe the properties and nature of dark energy, dark matter, gravity

Distinguish their effects decisively

- Understand the origin of the Universe's accelerating expansion and
- Probe the properties and nature of dark energy, dark matter, gravity
 - from the measurement of the cosmic expansion history and the growth rate of structures.
- Distinguish their effects decisively by:
 - Using at least 2 independent but complementary probes
 - Tracking their observational signatures on the
 - geometry of the universe: Weak Lensing (WL) and Galaxy Clustering (GC)
 - cosmic history of structure formation: WL, Redshift-Space Distortion, clusters of galaxies
 - Controling systematic residuals to an unprecedented level of accuracy.

WL and GC with Euclid: optimal to meet top requirements consortium

Weak lensing (WL):

two-point 3-D cosmic shear over 0<z<2 shapes of galaxies + *photo-z* : shear amplitude, tomography

 \rightarrow distribution of matter (dark+lum.), expansion history, growth factor: $\Psi+\Phi$.

Galaxy clustering (GC):

two-point 3-D positions over 0<z<2

- 3-D distribution of galaxies from imaging + spectro-z
- \rightarrow clustering history of galaxies induced by gravity: Ψ , γ , H(z).

GC and WL:

different data, complementary physical effects with different systematics

CG and WL are P(k,z) explorers:

- → Halos properties/density peaks: gal-gal lensing, clusters, biasing
- \rightarrow both probe properties/features in $P(k,z) \rightarrow$ probe dark matter (neutrino) and inflation (non-Gaussianity)

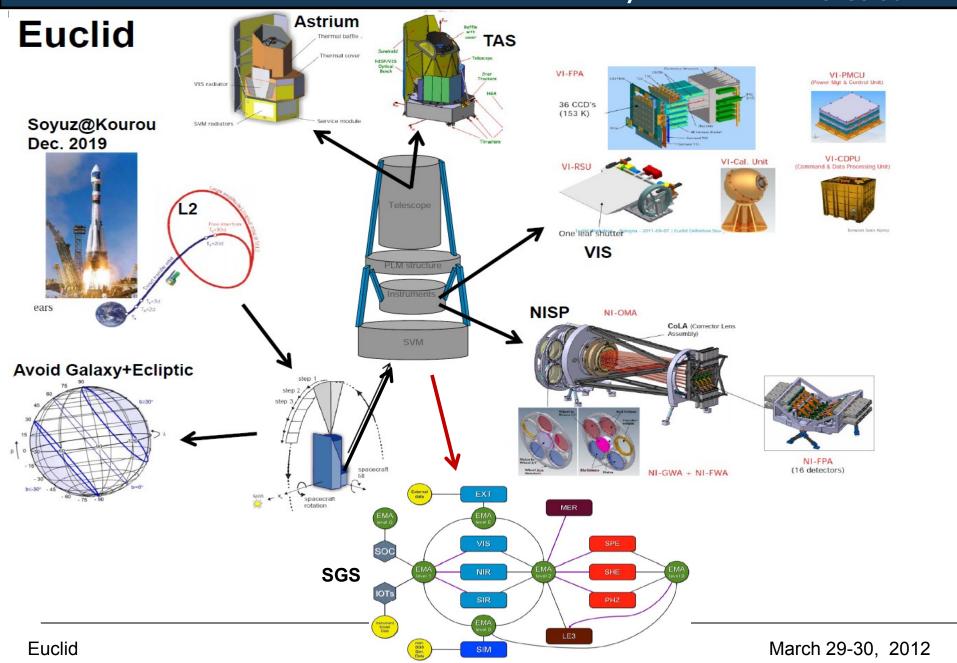
The Euclid Mission: imaging, photometry, spectroscopy

SURVEYS						
	Area (deg2)	2)		Description		
Wide Survey	15,000 deg ²	2	Step and stare with 4 dither pointings per step.			
Deep Survey	40	In at least 2 patches of > 10 deg ²				
				s deeper than wide survey		
PAYLOAD						
Telescope		1.2 m Korsch, 3 mirror anastigmat, f=24.5 m				
Instrument	VIS	NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$				
Capability	Visual Imaging	NIR	NIR Imaging Photometry NIR Spectrosco		NIR Spectroscopy	
Wavelength range	550– 900 nm	Y (920- 1146nm),	J (1146-1372 nm)	H (1372- 2000nm)	1100-2000 nm	
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1	
_	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line	
		source	source	source	flux	
	Shapes + Photo-z	z of 2x10 ⁹ galaxies z of 5x10 ⁷ galaxies				
Detector	36 arrays	16 arrays				
Technology	4k×4k CCD	2k×2k NIR sensitive HgCdTe detectors				
Pixel Size	0.1 arcsec	0.3 arcsec 0.3 arcsec				
Spectral resolution					R=250	

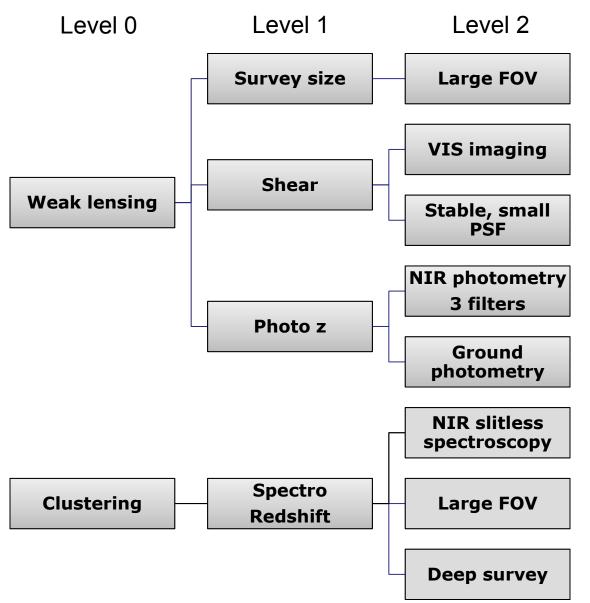
- Distinguish their effects decisively
 - Nature of the apparent acceleration
 - → distinguish effects of a cosmological constant from those of a dynamical dark energy
 - → FoM≥400 from Euclid data alone.
 - Effects of gravity on cosmological scales
 - \rightarrow probe the growth of structure and separately constrain the two relativistic potentials, Ψ , Φ
 - \rightarrow absolute 1 σ precision of 0.02 on the growth index, γ , from Euclid data alone.

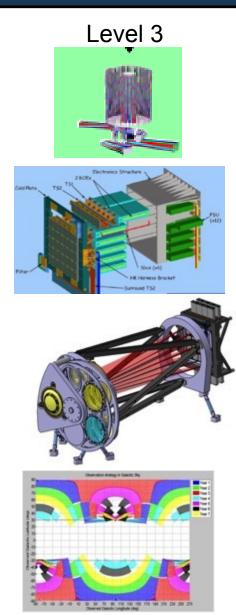
WL +GC – FoM of the Euclid mission

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	m √eV	f _{NL}	w _p	W _a	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400


These numbers have a meaning only if we can control the systematic errors

Euclid Legacy and other surveys


Euclid
Consortium


- A unique NIR facility: VISTA would cover the Euclid-Wide sky in 600 yrs and the Euclid-sky Deep in 70 yrs.
- Billions of stars and galaxies
 - Statistics: = a SDSS @ 1<z<3</p>
 - Rare objects
 - High res. imaging of the extragalactic sky,
 - NIR: cool, obscured and high-z sources
 - Wide:15,000 deg^{2,} YJH_{AB}=24
 - Deep: 40 deg², YJH_{AB}=26
- Synergy: LSST, GAIA, e-ROSITA, Planck
- Targets for JWST, ELT's, ALMA
- e-Euclid: exo-Planets, SN, Galaxy

What	Euclid	Before Euclid
Galaxies at 1 <z<3 estimates<="" good="" mass="" th="" with=""><th>~2x10⁸</th><th>~5x10⁶</th></z<3>	~2x10 ⁸	~5x10 ⁶
Massive galaxies (1 <z<3) spectra<="" th="" w=""><th>~few x 10³</th><th>~few tens</th></z<3)>	~few x 10 ³	~few tens
Hα emitters/metal abundance in z~2-	~4x10 ⁷ /10 ⁴	~10 ⁴ /~10 ² ?
Galaxies in massive clusters at z>1	~2x10 ⁴	~10³?
Type 2 AGN (0.7 <z<2)< th=""><th>~104</th><th><10³</th></z<2)<>	~104	<10 ³
Dwarf galaxies	~10 ⁵	
T _{eff} ~400K Y dwarfs	~few 10 ²	<10
Strongly lensed galaxy-scale lenses	~300,000	~10-100
z > 8 QSOs	~30	None

Requirements for implementation

- The top-level requirements for both GC & WL include
 - large surveys
 - high image quality
 - accessibility to infra-red wavelengths
 - homogeneity of observation, minimum systematics
- Space mission provides all of this
 - low background
 - stability
 - lack of terrestrial atmospheric effects
 - survey speed

Only few example presented in next slides

The observed lensing signal may be biased:

$$\gamma^{obs} = (1+m) \times \gamma^{true} + c$$

→ Biases in the ellipticity correlation function:

$$C_l^{true} \approx [1 + 2\langle m \rangle] \times C_l^{obs} + \langle c \rangle^2$$

The FoM must be dominated by the statistical uncertainty, not the systematic biases:

$$m < 2 \times 10^{-3}$$
: multiplicative bias $\sigma_{sys}^2 \approx \langle c^2 \rangle < 10^{-7}$: additive bias

- → Constraints on the spacecraft and the algorithms used to measure shapes
- → Impact on detectors, filters, optical elements.

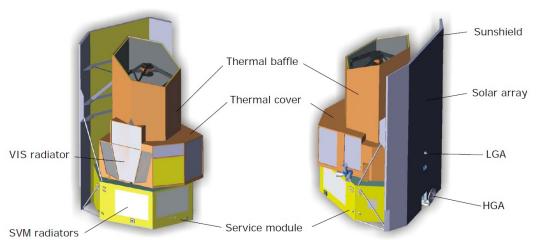
Multiplicative and additive biases scale as (PSF)²: much easier to measure shapes if the **PSF** is small.

- Well understood sample of galaxies (0.7<z<2.0) with accurate redshifts σ_z<0.001(1+z)
- Need:
 - High and controlled <u>redshift measurement success rate</u>:
 - Angular position (density dependence → spectral confusion)
 - Redshift (wavelength dependence → control flux limit)
 - Control catastrophic redshifts (<20% from L1):</p>
 - Accurately know their fraction (error <1%)
 - Accurately know mean in redshift shell (systematic << statistical)
 - — → Control sample of ~2 x 10⁵ redshifts, with purity > 99% at the depth of the Euclid survey → a Deep Field is needed

	Wide survey	Deep survey			
Survey					
size	15000 deg ²	40 deg² N/S			
VIS imaging					
Depth	Mab<24.5	26.5			
PSF size knowledge	σ[R2]/R2<10-3				
Multiplicative bias in shape	σ[μ]<2x10-3				
Additive bias in shape	σ[c]<5x10-4				
Ellipticity RMS	σ[e]<2x10-4				
NIP photometry					
Depth	24 Mab	26 Mab			
NIS spectroscopy					
Flux limit (erg/cm²/s)	3 10-16	5 10-17			
Completness	> 45 %	>99%			
Purity	>80%	>99%			
Confusion	2 rotations	>12 rotations			

WL systematics

- → Knowledge of the PSF size
- → Knowledge of distorsion
- → Stability in time
- → Catastrophic z < 10%
- \rightarrow (<z>)/(1+z)<0.002
- → external data

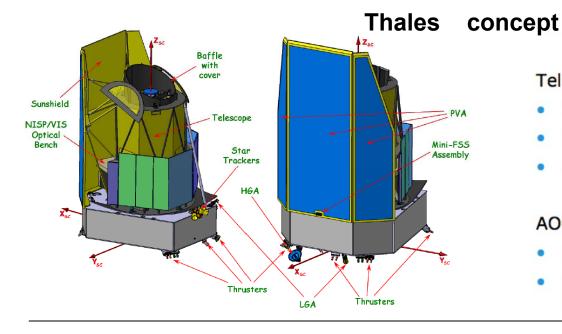

GC systematics

- → Understand selection
- Completness
- Purity

Telescope, optical design

Euclid: telecope concept

Astrium concept

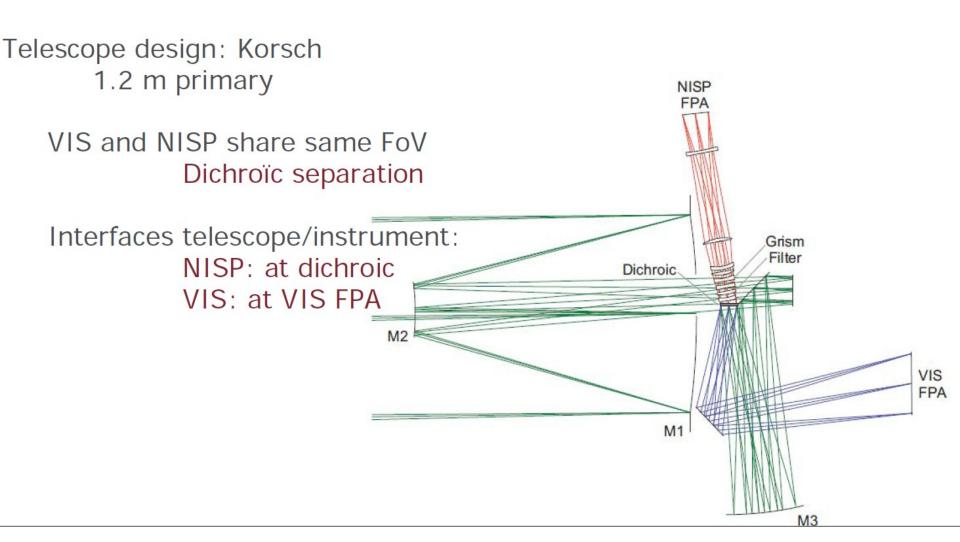


Telescope

- Primary Mirror: SiC
- Cold Telescope (T~150K)
- Passive Thermal Control

AOCS

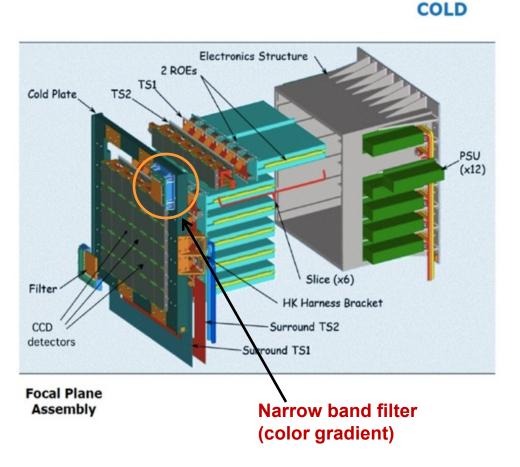
- Fine pointing: Cold Gas + FGS & Gyro
- Slews: Cold Gas + Star Tracker & Gyro

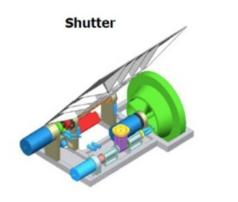


Telescope

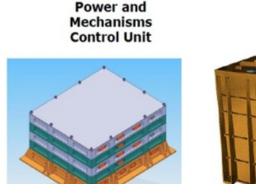
- Primary Mirror: Zerodur
- Cold Telescope (T~240K)
- Active Thermal Control

AOCS


- Fine pointing: Cold Gas + FGS & Gyro
- Slews: Reaction Wheel + Star Tracker & Gyro



VIS instrument

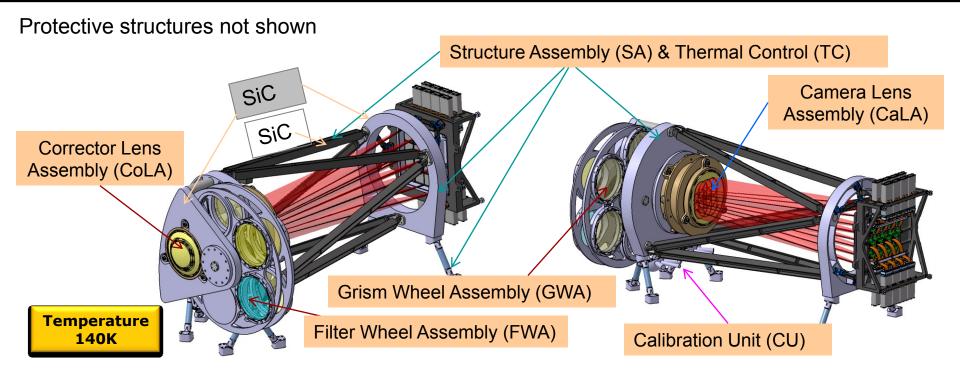

VIS specifications and units

- VIS specification
 - large area imager a 'shape measurement machine'
 - 36 4kx4k CCDs with 12 micron pixels
 - 0.1 arcsec pixels on sky
 - bandpass 550-900 nm narrow band channel
 - limiting magnitude for wide survey of magAB = 24.5 for 10σ (extended)
 - data volume 520Gbit/day

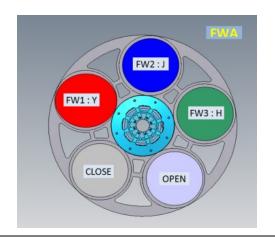
WARM

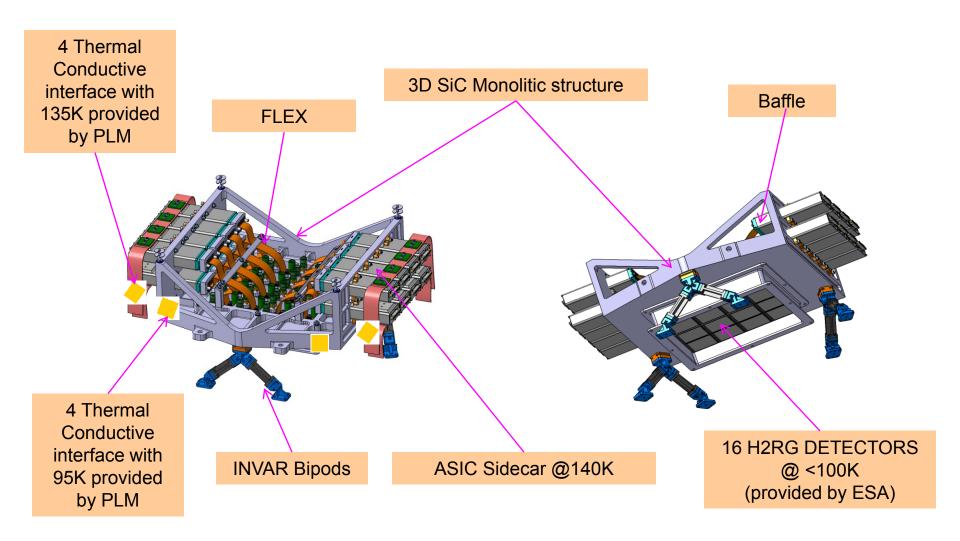
Command and

Data


Processing


Unit


March 29-30, 2012


NISP instrument

- 16 NIR 2kx2k H2RG detectors
- 0.3 arc/pixel
- 4 Grisms (2 blue, 2 red, rootated by 90 deg.); 3 NIR filters: Y, J H
- Telemetry= 180 Gbit/day
- NI-OMA : Opto Mechanical Assembly (Inside PLM ; T<140K)
- NI- DS : Detection System
- NI-WE: Warm Electronics

Design of FPA made with the help of the Berkeley labs

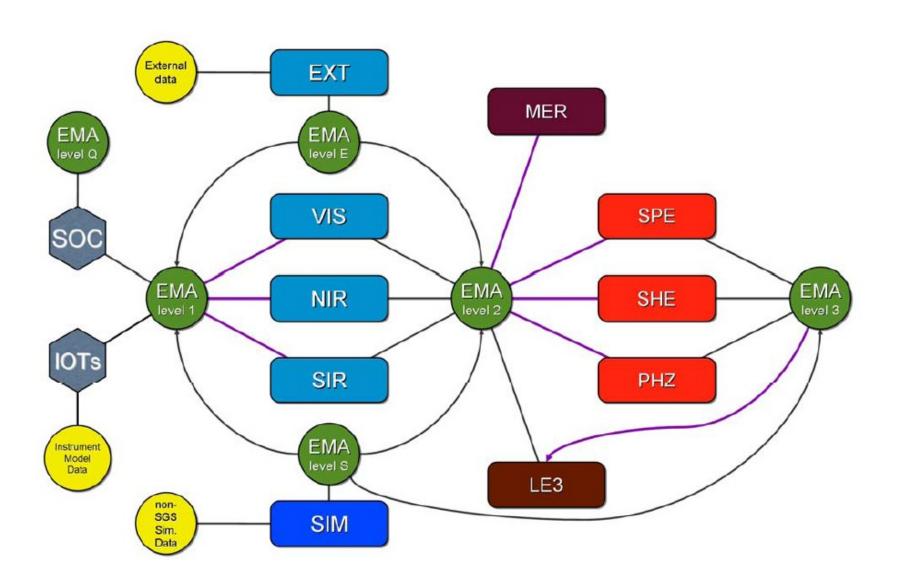
Science Ground Segment and data distribution

- Instrument specific data processing
- Quality-controlled processed data and higher level mission products for the Euclid Legacy Archive
- Simulations: verification of E2E performances and validation of data processing
- External ancillary data

- · Data will be released by ESA after a proprietary period
- The final interpretation and cosmological cosmological analysis is under the responsibility of the science groups

Science Working Groups

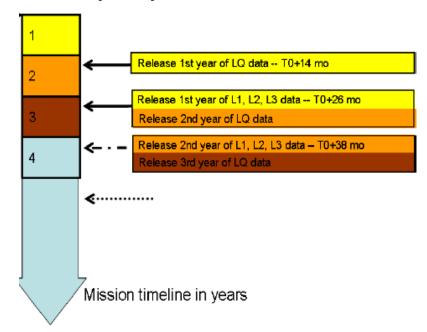
- turning science objectives into requirements placed on the pipeline products and performances
- verifying that the requirements are met (define V&V procedures)
- final science analyses based on data

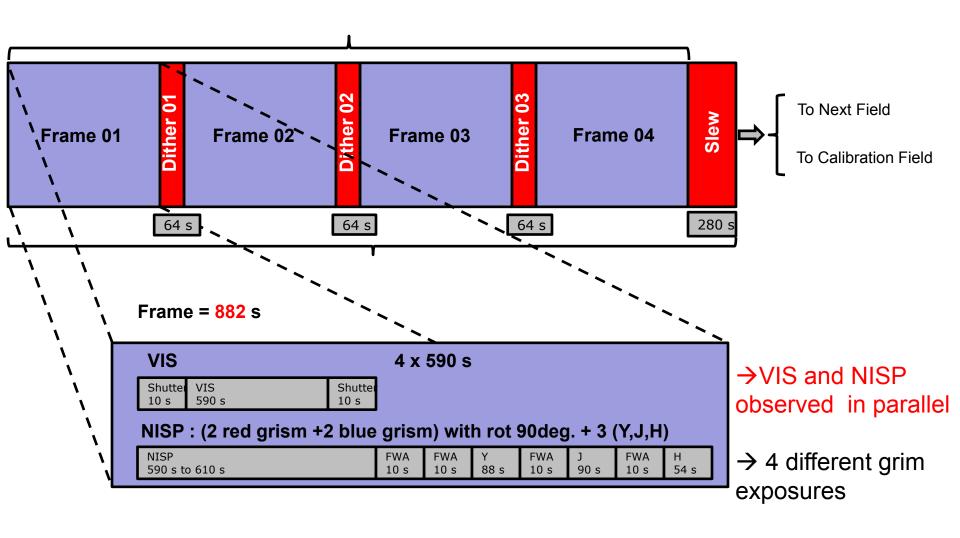

Organisation Units

 providing the algorithmic definition of the processing to be implemented by the SDCs and validate the implementation

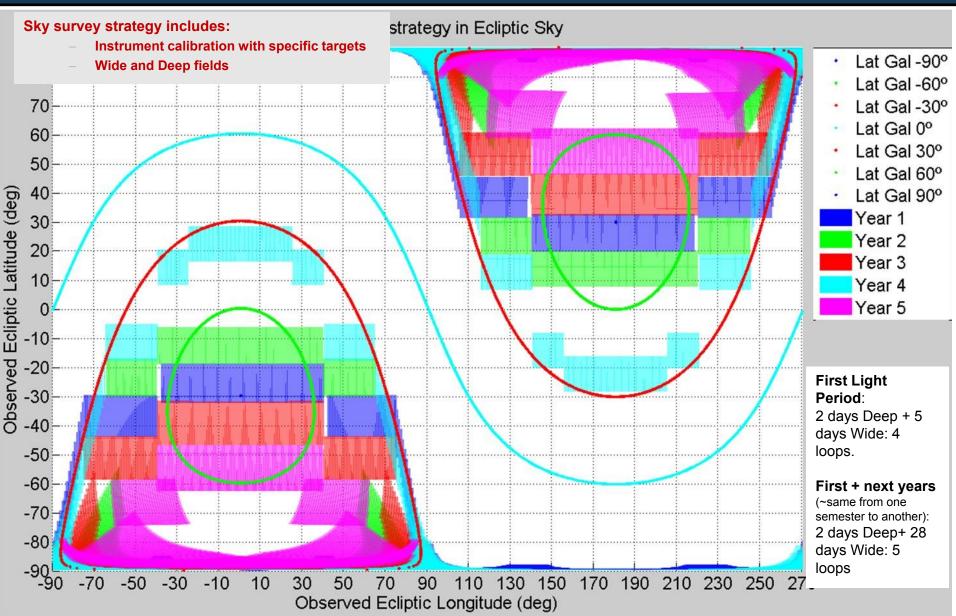
Science Data Centres

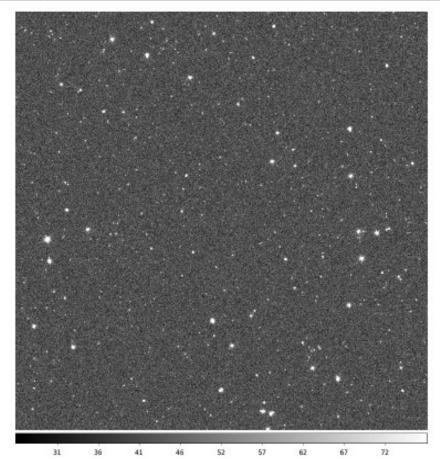
- implementing the data processing pipelines as specified by OUs procuring local h/w and s/w resources
- different activities: SDC-DEV (development
- i.e. transforming algorithms into robust code) SDC-PROD (integration on local infrastructure, production runs of pipeline)


Euclid/SGS flow and Organisation Units


Data products and releases

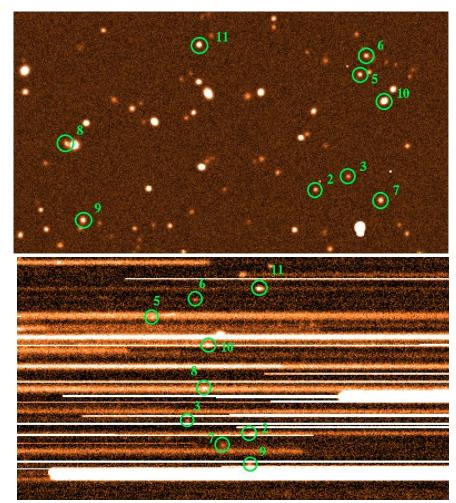
- Level 1 (unpacked, edited telemetry),
- Transients: release TBD, likely immediately (basic position, photometry)
- Level Q (Quick-release data): TBD
- Level 2 (instrumental signatures removed, calibrated data),
- Level 3 (science-ready data).
- Level E (external data)
- Level S (simulations)


- First release Level Q data release:
 14 months after the start of the survey (TBC)
- First complete data release with products from all level:12 months later (i.e. 26 months after the start of the survey)
- Then yearly releases


Performances

Euclid survey feasible in 6 years

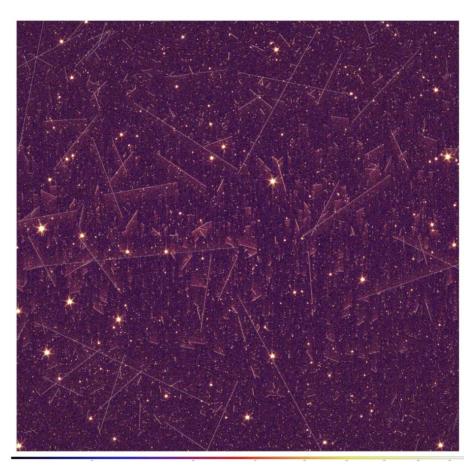
Performance: NISP images



H band frame, 2040x2040 pixels

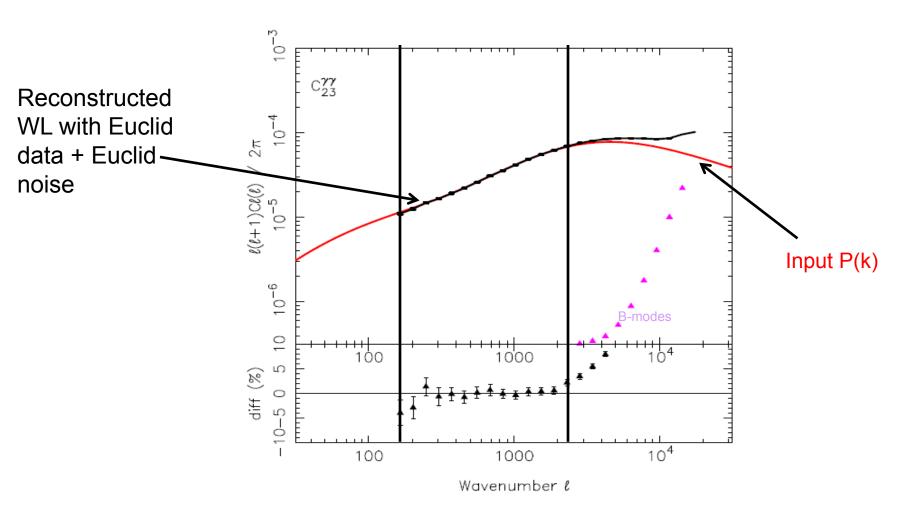
Skylens: source image oversampled with

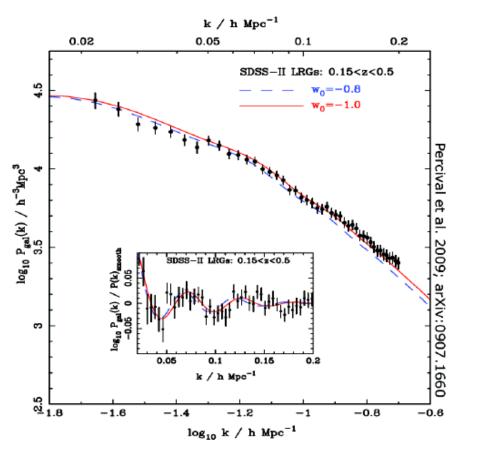
6x6 sub-pixels


imagem: optical and detector effects

- 1 deg2 of the sky simulated and propagated through end-2-end Euclid spectroscopic simulation
- Shows can meet the required n(z), completeness and purity

All performances have been verified at image simulation level

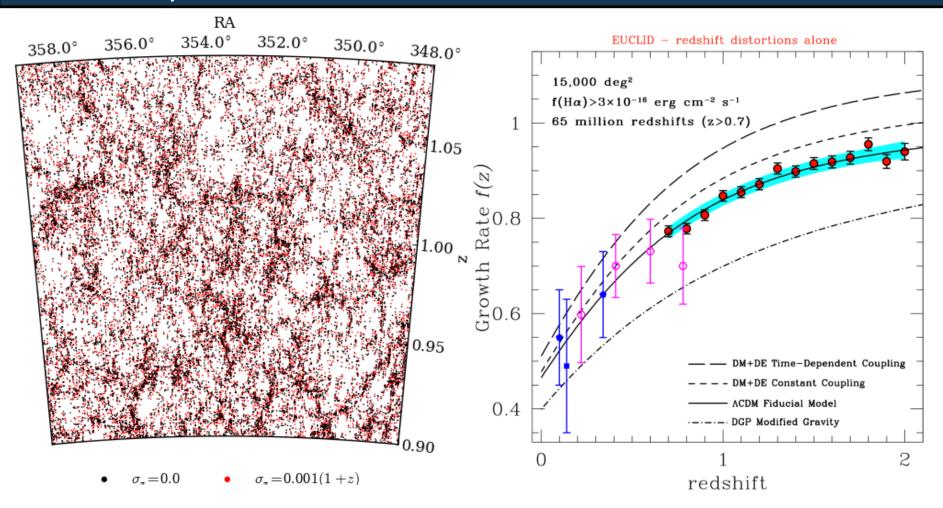

A 4kx4k view of the Euclid sky


VIS image

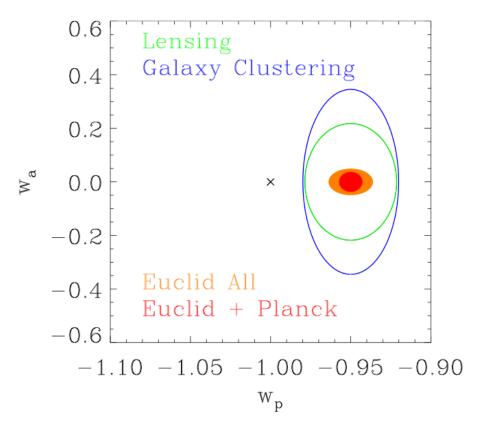
VIS+Y+J+K of a simulated cluster

Euclid WL predicted performances

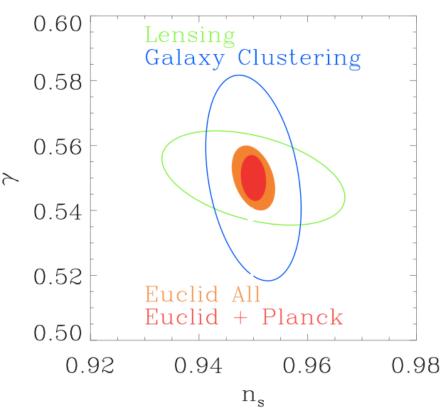
Tomographic WL shear cross-power spectrum for 0.5 < z < 1.0 and 1.0 < z < 1.5 bins. Percentage difference [expected – measured] power spectrum: recovered to 1%.



 $k / h Mpc^{-1}$ 0.02 0.05 0.2 Euclid slitless: 0.9<z<1.1 $\log_{10} \, P_{gal}(k) \, / \, \, h^{-3} Mpc^3$ Distance-redshift relation moves P(k Euclid slitless: 0.9<z<1.1 OS10 P_{gal}(k) / P(k)_s -0.05 0 0.05 0.05 0.1 0.15 2.5 k / h Mpc-1 -1.8-1.6-1.4-1.2-0.8 -0.6 $\log_{10} k / h \text{ Mpc}^{-1}$


SDSS-II LRG galaxies

- Euclid

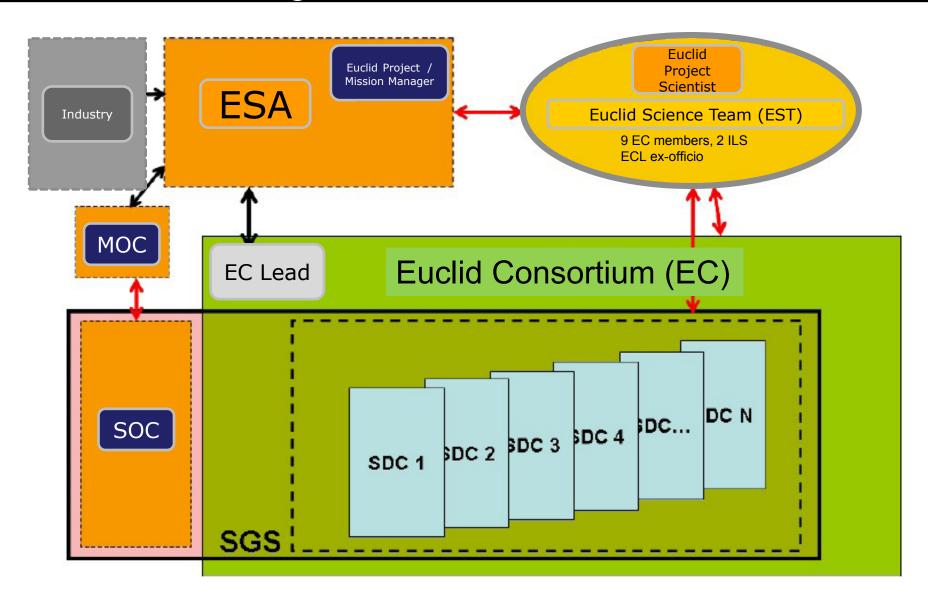

Percentage difference [expected – measured] power spectrum: recovered to 1%.

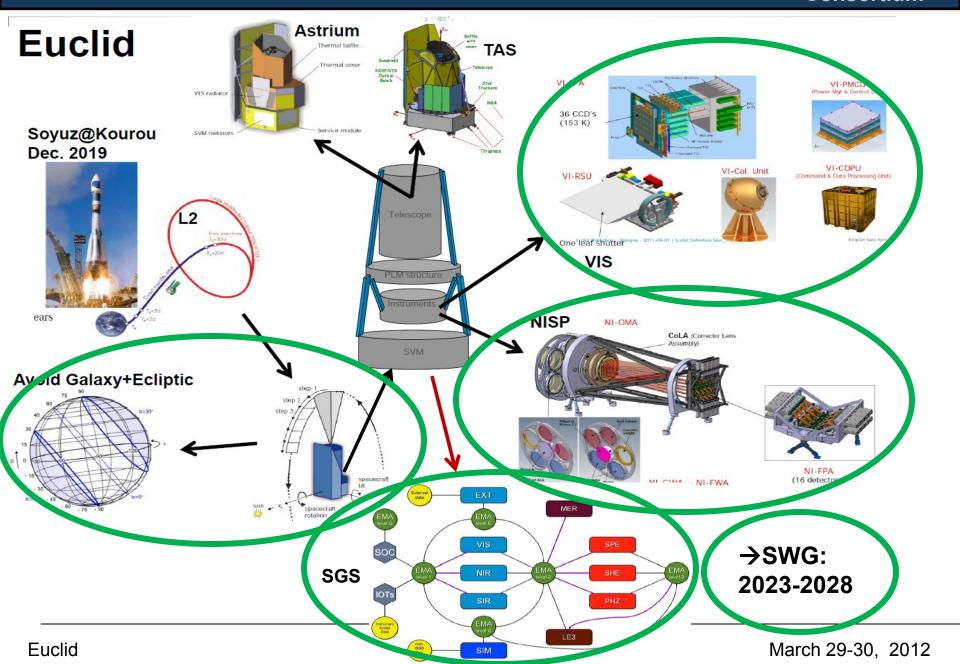
Euclid measurements of the growth rate of structure f(z) using RSD


DE constraints from Euclid: 68% confidence contours in the (w_p, w_a) .

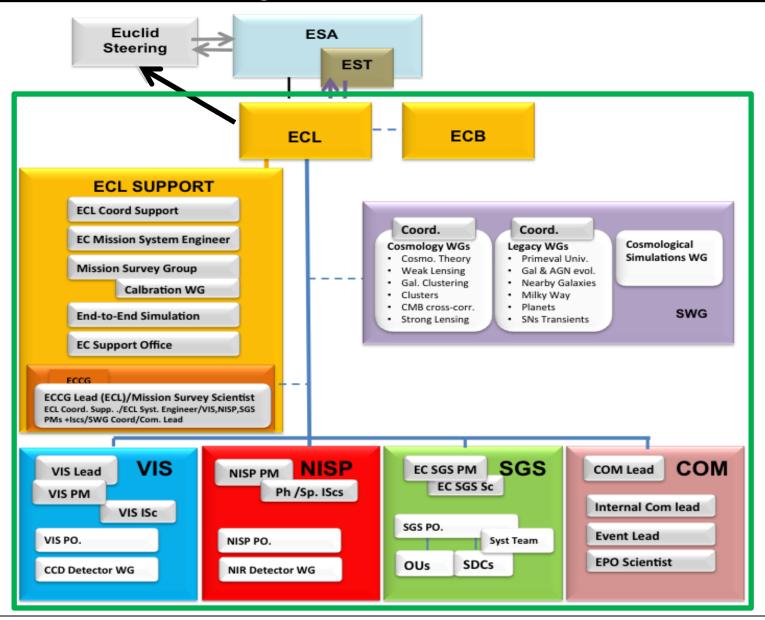
Constraints on the γ and $n_{\rm s}$. Errors marginalised over all other parameters.

Optical data from the ground




External survey								
timelines	2011	2012	2013	2014	2015	2016	2017	2018
Kids- Viking	Survey underway		VIKING completed	KiDS completed, VIKING final release	, KiDS final release			
Pan- STARRS1	Survey underway		Survey completed		PS1 final release			
Pan- STARRS2				Survey start				
DES		Survey start		1st data release		Survey end	Final data release	
LSST								2020?
HSC+WHT								

Survey	Area (sq deg)	U	G	r	i	z	Υ	J	Н	K
KiDS+VIKING	1500 Eq+SGC	24,8	25,4	25,2	24,2	23,1	22,3	22.0	21,5	21,2
Pan-STARRS1	15000 NGC+½ SGC		23,4	23.0	22,7	22,0	20,9			
PS2	15000 NGC+½ SGC		24,8	24,4	24,1	23,4	22,3			
DES	5000 ½ SGC		25,4	24,9	24,8	24,7	22,3			


Organisation and schedule

Euclid and Euclid Consortium contributions

- The EC: ~900 registered members (10/01/12):
 - ~550 researchers
 - in 109 laboratories/departments
- 13 European countries contributing:
 - Austria, Denmark, France, Finland, Germany, Italy, Netherlands, Norway, Spain, Switzerland, Portugal, Romania, UK
 - + Contributions from Berkeley labs.
 - Discussions: NASA/US, Canada, Belgium
- Contribute to ~35% of the total cost (~750 M€) of the mission until completion (~2027)

- October 4, 2011 : Euclid selected as ESA M2 Cosmic Vision
- **Spring 2012** : Completion of the Definition phase (A/B1)
- **Apr.2012-Feb.2014** Instrum. Phase B2
- June 2012 : Adoption for the Implem. Phase (B2/C/D/E1)
- July 2014 : ITT release for PLM
- November 2012 : KO PLM contract
- December 2012 : ITT release for SVM
- June 2013 : KO SVM contract
- October 2013 : Syst. Req. Review (SRR)
- Q1 2014 : Instrument PDR
- Q3/Q4 2017 : Flight Model delivery
- Q4 2019 : Launch (L)
- <(L+6 months) : Start Routine Phase
- L+7 yrs : End of Nominal Mission
- L+9 yrs : End of Active Archive Phase

Conclusion: Euclid

- An outstanding tool to understand the origin of the accelerating universe
- A major space mission for cosmology and fundamental physics
- One of the top European project in physics and astronomy for 2020+

