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el Servei d’Informàtica de esta Universidad (a pesar de encontrarse, por lo general,
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Chapter 1

Introducción

La presente memoria está dedicada al estudio, por medio de simulaciones numé-

ricas, de dos escenarios astrof́ısicos: los chorros extragalácticos y las erupciones de

rayos gamma (ERG). Ambos fenómenos tienen en común la presencia de material

moviéndose a velocidades cercanas a las de propagación de la luz en el vaćıo y,

por tanto, su evolución dinámica puede tratarse convenientemente utilizando las

ecuaciones de la Hidrodinámica Relativista.

Los chorros extragalácticos son canales de plasma magnetizado que se propa-

gan (sin perder apreciablemente su colimación) desde los núcleos de algunas galáxias

(galáxias activas) hasta adentrarse en el medio intergaláctico (pudiendo alcanzar lon-

gitudes de varios megaparsecs) y son detectados fundamentalmente por su emisión

en radio frecuencia.

Las ERG son fenómenos esporádicos de alta enerǵıa cuyo espectro presenta

una enorme variabilidad temporal y energética. Están constituidos por fotones muy

duros de enerǵıas comprendidas entre varios centenares de keV y algunos MeV y

son observados fundamentalmente en la región gamma del espectro, aunque también

emiten parte de su enerǵıa en las bandas X, radio y óptico.

Ambos fenómenos están formalmente relacionados, dado que existe un meca-

nismo común de formación, a saber, el acrecimiento de material sobre un agujero ne-

gro (AN, en adelante) central en rotación que, por procesos púramente hidrodinámi-
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cos o magneto-hidrodinámicos da lugar a la transformación de eneǵıa gravitacional

en enerǵıa cinética. El resultado de esta conversión energética es la eyección de

material en la dirección del eje de rotación del sistema formado por el AN y el

disco de acrecimiento que le rodea. Tales eyeciones de material son colimadas por

mecanismos magneto-hidrodinámicos (en el caso de chorros extragalácticos) o por

confinamiento inercial (en el caso de ERGs), y pueden llegar a alcanzar velocidades

relativistas.

A pesar de las similitudes entre ambos escenários, también los separan múltiples

diferencias. Por ejemplo, el “motor central” del los chorros extragalácticos es un

AN supermasivo (de 107M¯ − 109M¯), mientras que las ERG se supone que están

vinculadas a AH estelares (es decir, de unas pocas masas solares). El mecanismo

de aceleración es también distinto. Los chorros son acelerados por mecanismos

magneto-hidrodinámicos; las ERG por la deposición de enerǵıa y momento (cerca

de las regiones axiales) debida a procesos de aniquilación de neutrinos conducentes a

la creación de pares electrón-positrón (que a su vez se aniquilan para formar fotones

de alta enerǵıa). Aśı mismo, el medio que rodea al lugar de formación es muy

diferente en ambos casos. Los chorros extragalácticos se forman en los núcleos de

galáxias activas en regiones con tamaños t́ıpicos de ∼ 1011 cm y con densidades muy

pequeñas. Las EGR se originan en regiones t́ıpicas de ∼ 106 cm y las densidades

son muy elevadas (corresponden a las existentes en los núcleos de estrellas masivas).

Por supuesto, el medio a través del que se propagan es también muy distinto, sobre

todo, en las etapas iniciales: las ERG están originadas, presumiblemente, en el seno

de estrellas masivas o en las regiones de coalescencia de sistemas binarios compactos;

los chorros extragalácticos se propagan inicialmente a través de regiones de mucho

menor densidad y presión en el interior de los cúmulos estelares que existen en los

núcleos galácticos.

Es notable, sin embargo, que ambos fenómenos pueden estudiarse empleando

una aproximación tipo fluido. Ello permite estudiar su evolución mediante las ecua-

ciones de la Hidrodinámica Relativista. No obstante, dadas las peculiaridades de

cada fenómeno, además de estas ecuaciones son necesarios otros ingredientes para

su simulación numérica. Uno de esos ingredientes, es el adecuado tratamiento del

campo gravitatorio. En el caso de los chorros extragalácticos, si pretendemos es-
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tudiar su evolución a distancias suficientemente grandes del AN central, el campo

gravitatorio no es importante y puede abordarse su estudio en el marco de la Relativi-

dad Especial. La formación de ERGs necesita de la inclusión del campo gravitatorio

en los cálculos, puesto que se generan a distancias del AH a las cuales la gravedad

sigue siendo importante. Además, ese campo gravitatorio es necesario para man-

tener la estructura material de la estrella o de la región de mezcla de un sistema

binario compacto (esto es, para equilibrar la tendencia disgregadora de la presión

del sistema). Otro ingrediente importante es la ecuación de estado empleada. Los

chorros extragalácticos están razonablemente bien caracterizados por ecuaciones de

estado del tipo gas ideal (aunque, por supuesto, seŕıa muy interesante considerar

los efectos dinámicos de ecuaciones de estado más realistas que consideraran la exis-

tencia de un plasma formado por pares electrón-positrón). Las ERG necesitan, al

menos, incluir los efectos de la radiación y los pares electrón-positrón en equilibrio

con la materia, puesto que en las etapas de formación, estas ERG son ópticamente

gruesas, lo que significa que los fotones no pueden escapar libremente del sistema,

de modo que contribuyen significativamente en la termodinámica del mismo.

La simulación numérica de estos fenómenos requiere como parte esencial la cons-

trucción de un código robusto que resuelva numéricamente las ecuaciones de la Hidro-

dinámica Relativista. Esta parte técnica se complica enormemente cuando se consi-

deran simulaciones multidimensionales y, particularmente en tres dimensiones es-

paciales (3D). GENESIS es un código hidrodinámico, relativista, multidimensional,

de alta resolución en la captura de choques que se ha desarrollado para abordar

problemas astrof́ısicos generales que involucren un tratamiento hidrodinámico y rel-

ativista. La pieza clave a partir de la que se construye un código de este tipo (tipo

Godunov), es el resolvedor de problemas de Riemann1. La idea básica de los métodos

tipo Godunov es discretizar una solucion f́ısica sobre una malla numérica y tomar

en cada nodo de esa malla el valor medio de cada variable en un entorno del nodo

(este entorno es la celda computacional). El proceso de promediado espacial intro-

duce discontinuidades en las interfases de las celdas computacionales. A su vez, la

presencia de discontinuidades da lugar a flujos de las variables promediadas hacia (o

1Un problema de Riemann es un problema unidimensional de valores iniciales discont́ınuos que,

tiene una solución anaĺıtica conocida en el caso de las ecuaciones de la Hidrodinámica.
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desde) las celdas adyacentes, cuyo valor puede calcularse resolviendo los problemas

de Riemann correspondientes a cada interfase. Tras evaluar los flujos espaciales, la

evolucion temporal del sistema hasta un instante de tiempo posterior, puede deter-

minarse mediante un método expĺıcito de alto orden. De esta forma se obtiene la

solución numérica en el instante tn + 1 partiendo de los valores en el instante tn.

GENESIS permite, dada su modularidad, la posibilidad de utilizar cualquiera

de los resolvedores linealizados existentes en la literatura. Particularmente, las apli-

caciones que se muestran en esta memoria se han realizado utilizando el resolvedor

(o fórmula de flujos) de Marquina (Marquina et al. 1992). La resolución espacial

se incrementa utilizando una interpolación parabólica monótona (PPM; Piecewise

Parabolic Method) de tercer orden. Las capacidades y rendimiento de GENESIS

tanto en ejecuciones secuenciales como en paralelas (para las que ha sido preparado)

se han analizado en el caṕıtulo 2 de esta memoria. En concreto, en dicho caṕıtulo, se

presentan los resultados de una bateŕıa extensa de tests numéricos que demuestran

que el código puede capturar y evolucionar con precisión choques fuertes en 3D.

El código es multiplataforma, y ha sido probado con éxito en varias arquitecturas

computacionales (HP y SGI), aunque en el futuro se pretende utilizar GENESIS

en superordenadores masivamente paralelos con memoria distribuida (en la actuali-

dad se está utilizando en arquitecturas multiprocesadoras de superordenadores con

memoria central compartida).

En el campo numérico hemos estudiado la implementación eficiente de las

fórmulas aproximadas de flujos en varias dimensiones espaciales. Estas fórmulas

de flujos son una pieza clave en cualquier código numérico basado en técnicas tipo

Godunov y, en problemas hidrodinámicos suelen ser una de las partes que deman-

dan más tiempo de cálculo (dada su complejidad). Las expresiones que se dan en

el Apéndice B generalizan (e incluyen) en el ámbito anaĺıtico a otras dadas por

diferentes autores (además de incluir prescripciones para aumentar el rendimiento

computacional).

Se han realizado las primeras simulaciones numéricas de alta resolución en tres

dimensiones espaciales de chorros relativistas alcanzando el haz del chorro factores

de Lorentz 7 (publicadas en Aloy et al. 1999b). El material que compone el chorro

(aśı como también el medio que lo rodea), se describe empleando una ecuación de
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estado de gas ideal (de tipo politrópico). La resolución espacial de estas simulaciones

ha sido de 8 celdas computacionales por cada radio del haz (el radio del haz, Rb, es

una escala de longitud caracteŕıstica del sistema). Las simulaciones se han realizado

en coordenadas cartesianas y GENESIS se ha modificado levemente para incluir

una nueva ecuación de adveción para la variable fracción másica de part́ıculas del

haz en cada celda computacional (f). Esta nueva variable conservada no requiere

cambio alguno en el resolvedor de problemas de Riemann, dado que las part́ıculas

del haz son advectadas con el fluido. La evolución de los chorros se ha seguido

hasta alcanzar ∼ 75 unidades de tiempo normalizado. Durante ese periodo hemos

analizado la morfoloǵıa y la dinámica de los chorros relativistas tridimensionales

(véase caṕıtulo 3).

Con objeto de inducir fenómenos genuinamente tridimensionales se han intro-

ducido perturbaciones de tipo helicoidal sobre el campo de velocidades en el punto

de injección de un modelo de referencia axisimétrico 3D que, a su vez, nos sirve

para calibrar y comparar nuestras simulaciones con las ya existentes en el caso 2D

axisimétrico (Mart́ı et al. 1997). Las perturbaciones dependen de dos parámetros:

amplitud de la perturbación y frecuencia de giro, cuya influencia en la dinámica se

ha estudiado considerando varios modelos (con perturbaciones de mayor o menor

amplitud y de alta o baja frecuencia).

Nuestras simulaciones muestran multitud de elementos novedosos respecto a

otras semejantes en dos dimensiones espaciales (2D) y, por supuesto, respecto a

las simulaciones 3D clásicas. Del análisis de los resultados se desprende que en

3D no aparecen contraflujos coherentes extremadamente relativistas que si estaban

presentes en los modelos 2D axisimétricos. Aśı mismo, se ha encontrado que cuando

los jets son expuestos a pequeñas perturbaciones no axisimétricas, (i) no muestran las

fuertes perturbaciones exitentes en modelos 3D clásicos, tanto hidrodinámicos como

magnetohidrodinámicos (al menos durante el periodo de tiempo cubierto por nues-

tros cálculos), y (ii) los chorros se propagan a velocidades próximas a la estimación

unidimensional (1D). Ello se explica como consecuencia, fundamentalmente, de dos

hechos: la primera es el tiempo de evolución de nuestros modelos, que está un par

de órdenes de magnitud por debajo del de una radio fuente extragaláctica real; la

segunda es la resolución con que se han realizado las simulaciones que, pese a ser la
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mayor las utilizadas hasta la fecha en 3D, puede no ser suficiente para capturar con

precisión algunas de las escalas de relevancia en el proceso de interacción chorro-

medio externo (el efecto de la resolución se puso de manifiesto en Aloy et al. 1999a al

comparar la morfodinámica del mismo chorro usando mallas de 4 y 8 celdas/Rb en

3D, y 20 celdas/Rb en el mismo modelo 2D axisimétrico). Otro elemento destacable

es que las pequeñas perturbaciones 3D inducen en el haz relativista una distribución

de velocidades aparentes de grupo semejeante a la observada en M87.

La parte final caṕıtulo 3, presenta las primeras simulaciones de radioemisión

procedentes de modelos relativistas tridimensionales de alta resolución, cuyo prin-

cipal objetivo es el estudio de las implicaciones observacionales de la interacción

entre el chorro y el medio externo (Aloy et al. 1999c). Como consecuencia de tal

interacción aparece una estratificación natural del chorro, consistente en una “es-

pina” central rápida (parte más interna del haz), rodeada por una capa de fricción

caracterizada por una elevada enerǵıa interna espećıfica y un campo de velocidades

progresivamente decreciente (respecto a la dirección normal al eje del jet). La estra-

tificación y, en particular, la relativamente alta enerǵıa interna y la baja velocidad

del fluido en la capa de fricción, determinan en gran medida la emisión del chorro.

Es de señalar que la estratificación del chorro es el resultado del cálculo y no ha sido

impuesta a priori (tal como han hecho otros autores para estudiar numéricamente

las propiedades de las capas de fricción entre el haz y el medio ambiente).

La inclusión ad hoc de diferentes configuraciones de campo magnético en el

chorro ha permitido extraer consecuencias observaciones importantes. Si, por ejem-

plo, el campo magnético en la capa de fricción combina un campo helicoidal (quizás

inducido por el efecto de fricción actuando sobre un campo magnético alineado con

el eje del jet que se une a un campo magnético toroidal) la emisión se observa que

muestra una asimetŕıa en sobre la sección transversal del chorro (respecto a la di-

rección normal al eje del chorro). Tal asimetŕıa, además del abrillantamiento hacia

los bordes o hacia la espina central, se debe al efecto relativista de aberración de la

luz y es función del ángulo de visión y de la velocidad del fluido, y puede cambiar

su sentido si el chorro cambia su dirección con respecto al observador (debido a su

interacción con el medio externo), o presenta un cambio en velocidad. La asimetŕıa

es más notable en el flujo polarizado, a resultas de la cancelación (o amplificación)
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del campo a lo largo de la ĺınea de visión. Suponiendo que el modelo es válido,

hemos interpretado las observaciones de polarización del blazar 1055+018 realizadas

por Attridge, Roberts y Wardle (1999), concluyendo que el jet de esta fuente se

está decelerando, y que tal deceleración es la responsable del cambio brusco en la

polarización (entre las partes superior e inferior del chorro).

El último caṕıtulo lo ocupa el estudio de flujos colimados relativistas propuestos,

en el modelo de collapsar, como un mecanismo para generar erupciones de rayos

gamma. Empleando el modelo de collapsar de MacFadyen y Woosley (1999) como

progenitor de una ERG, se ha simulado la propagación de un chorro relativista a

través del manto y la envoltura de una estrella masiva en rotación que colapsa.

Para estas simulaciones ha sido necesario modificar el código GENESIS para que

incluya un campo gravitacional estático de Schwarzschild semejante al producido

por el AN central en el modelo de collapsar. Adicionalmente, se ha incluido en

GENESIS una ecuación de estado anaĺıtica (Witti, Janka y Takahashi 1994) que

incluya las contribuciones de la radiación, de los pares electrón-positrón y de nueve

gases de Boltzman ideales que se corresponden con los núcleos de siete elementos

representativos del sistema, protones y neutrones. Esto es necesario porque con

una ecuación de estado de gas ideal con exponente adiabático constante estariamos

representando incorrectamente bien el chorro caliente y dominado por la presión

de radiación y los pares, bien el resto del manto que es no relativista y está so-

portado por la presión de los bariones. De este modo, nuestra ecuación de estado

es formalmente equivalente a una ecuación de ı́ndice adiabático variable. Sin em-

bargo, esta ecuación de estado es sólo aproximada (de hecho, el tratamiento de los

pares se realiza haciendo una interpolación entre altas y bajas temperaturas). El

modelo inicial de MacFadyen y Woosley se obtiene utilizando la ecuación de estado

de Blinnikov, Dunina-Barkovskaya y Nadyozhin (1996), que es más realista (tanto

en el tratamiento de los pares como en el de las contribuciones a la presión de los

electrones degenerados), aunque las diferencias efectivas entre esta ecuación y la de

Witti, Janka y Takahashi (1994) sólo son relevantes en las partes más densas del

toro (que se excluyen del modelo inicial al eliminar los 200 km más internos de la

estrella sustituyéndolos por una condición de contorno adecuada).

El flujo saliente con forma de chorro se origina como resultado de la deposición
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de ∼ 1050 − 1051 erg/s en el seno de un cono de 30◦ alrededor del eje de rotación

de la estrella progenitora. El fluido del chorro generado se propaga siguiendo este

eje debido a que la rotación del manto crea un canal de baja densidad alrededor de

tal eje (debido a la fuerza centŕıfuga). La distribución de masa del modelo inicial es

tal que el fluido del chorro saliente es fuertemente colimado (el chorro presenta un

ángulo de apertura menor o del orden de unos pocos grados) por el confinamiento

inercial proporcinado por las paredes del canal central y, adicionalmente, mantiene su

estructura (altamente colimada) hasta llegar a la superficie de la estrella progenitora

(r ≈ 3× 1010 cm).

Para verificar la convergencia de los modelos numéricos se han repetido dos

simulaciones (la de ∼ 1050 erg/s y 1051 erg/s) sobre mallas de diferentes tamaños la

dirección angular (manteniendo fija la resolución radial), siendo el resultado clara-

mente dependiente de la resolución empleada excepto cuando las mallas son sufi-

cientemente finas como para capturar las escalas apropiadas del problema (cosa que

sucede para resoluciones efectivas cerca del eje de rotación de medio grado).

Uno de los resultados del presente trabajo es que el máximo factor de Lorentz

alcanzado por los modelos justo cuando alcanzan la superficie de la estrella está en

el intervalo 20 − 34. Claramente estos factores de Lorentz están por debajo de los

mı́nimos requeridos desde el punto de vista teórico para explicar las observaciones.

Ello ha motivado que se estudiase la propagación del chorro tras haber alcanzado

la superficie de la estrella. Naturalmente, dado que nuestro modelo inicial unica-

mente cubŕıa la estrella progenitora propiamente dicha, ha sido necesario incluir una

atmósfera ad hoc, cuyas caracteŕısticas no se ajustan exactamente a las que cabŕıa

esperar en la atmósfera de una estrella Wolf-Rayet (modelo inicial). No obstante,

el perfil de la atmósfera (primero gaussiano y enlazando después con una región

uniforme) permite estudiar la evolución del chorro tanto en un ambiente progresiva-

mente más diluido y rarificado como en un medio uniforme.

Los principales resultados del análisis de la propagación a través del medio

externo son que se produce una mayor acelerción tanto del fluido del haz como de la

onda de choque delantera del chorro. Esta aceleración es mayor en la dirección lateral

que en la longitudinal (respecto al eje del chorro), tal como se espera teóricamente.

Cabe señalar, sin embargo, que nuestras simulaciones sólo cubren una parte pequeña
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de la evolución de una ERG (de hecho, considerando distancias de propagación,

sólo alcanzan entre la décima y la centésima parte de la distancia carácteŕıstica

a partir de la cual comienzan a ser detectables), por tanto, la extrapolación de

nuestros resultados debe ser hecha cuidadosamente. No obstante, es de señalar que

la viabilidad del modelo de collapsar como progenitor de erupciones de rayos gamma,

depende fuertemente del ritmo de deposición de enerǵıa y del perfil del gradiente

del medio que rodee a la estrella Wolf-Rayet a través del cual este proto-ERG se

propaga.
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Chapter 2

GENESIS: A high–resolution

code for 3D RHD

2.1. Introduction

Numerical relativistic hydrodynamics (RHD) has experienced an important step

forward in recent years when modern high–resolution shock–capturing (HRSC) tech-

niques began to be applied to solve the equations of RHD in conservation form. Prior

to the advent of HRSC techniques the field was dominated for more than one decade

by Wilson (1979)’s approach to relativistic hydrodynamics. This approach relies on

the use of artificial viscosity in order to handle the discontinuities (shocks, contact

discontinuities, etc.) that may appear in the flow numerically. However, techniques

based on artificial viscosity are prone to severe numerical difficulties when simulat-

ing ultrarelativistic flows (see, e.g., Centrella & Wilson 1984). Using modern HRSC

techniques instead, these difficulties are overcome (see, e.g., Donat et al. 1998) al-

lowing one to simulate challenging relativistic astrophysical phenomena like, e.g.,

relativistic jets or gamma-ray bursts (GRB hereafter).

The need for a relativistic treatment in the framework of astrophysical jets is

justified because flow velocities as large as 99.5% of the speed of light (Lorentz factors

> 10) are required – according to the nowadays accepted standard model (see 3.1.2)

– to explain the apparent superluminal motion observed at parsec scales in many jets
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of extragalactic radio sources associated to active galactic nuclei. Similar arguments

applied to the galactic superluminal sources GRS1915+105 (Mirabel & Rodriguez

1994) and GROJ1655–40 (Tingay et al. 1995) allow one to infer intrinsic velocities

of ≈ 0.9c in the jets of these sources. Further independent indication of highly

relativistic speeds can be inferred from the intraday variability occurring in more

than a quarter of all compact extragalactic radio sources (Krichbaum, Quirrenbach

& Witzel 1992). If the observed intraday radio variability is intrinsic and results

from incoherent synchrotron radiation (according to Begelman, Rees & Sikora 1994),

the associated jets must have bulk Lorentz factors in the range ∼ 30 – 100.

Another astrophysical phenomenon which also involves flows with velocities very

close to the speed of light are the GRBs. The standard fireball model (see 4.1.1)

assumes that the fireball that originates the GRB is accelerated to reach Lorentz

factors > 102 (Cavallo & Rees 1978; Piran, Shemi & Narayan 1993). In addition to

this high velocities, the thermodynamics of the GRB production needs a relativis-

tic treatment (for example, the energies involved in the GRB production are ∼ 1

MeV per particle –Rees 1997–), which for practical purposes means that a consistent

relativistic equation of state (EOS) must be used. Furthermore, this relativistic ther-

modynamics is closely linked to the dynamical evolution of any relativistic plasma,

governed by the RHD equations, through the value of the enthalpy as was pointed

out by Mart́ı et al. (1997) in the context of relativistic jets.

In the following we describe the main features of a special relativistic 3D hy-

drodynamic code, which is based on explicit HRSC methods, and which is a consid-

erably extended version of the special relativistic 2D hydrodynamic code developed

by Mart́ı, Müller & Ibáñez (1994) and by Mart́ı et al. (1995). The code has been

designed modularly which allows one to use different reconstruction algorithms and

Riemann solvers. As it is the final goal of our work to simulate relativistic jets

and GRBs in three spatial dimensions, the code has successfully been subjected to

an intensive testing in the ultrarelativistic regime (see Section (2.4)). In particular,

GENESIS has successfully passed the spherical shock reflection test (simulated in 3D

Cartesian coordinates) involving flow Lorentz factors larger than 700 (see §(2.4.3)).

The chapter is organized as follows. In Section (2.2), we introduce the 3D

equations of RHD in Cartesian coordinates in differential and discretized forms.
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The latter have been implemented into our 3D RHD code GENESIS. Detailed in-

formation about the structure and the main features of the code is given in Section

(2.3). Several 1D, 2D and 3D relativistic test problems computed with GENESIS

are described in Section (2.4). The performance of GENESIS on scalar and multi-

processor computers is analyzed in Section (2.5).

A summary of the chapter containing our main conclusions can be found in

Section (2.6). In Appendix A, we give the spectral decomposition of the three

dimensional system of RHD equations with explicit expressions for the eigenvalues

and the right- and left-eigenvectors. Appendix B shows how to get an efficient

implementation of flux formulae in multidimensional relativistic hydrodynamical

codes paying special attention to the explicit formulae for the numerical viscosity of

Marquina’s (Donat & Marquina 1996) flux formula. The Appendix C describes the

explicit algorithm to recover the primitive variables form the conserved ones.

2.2. Equations of RHD in conservation form

The evolution of a relativistic perfect fluid is described by five conserved quan-

tities: rest mass density, D, momentum density, S, and energy density, τ (all of

them measured in the laboratory frame and in natural units, i.e., the speed of light

c = 1),

D = ρW (2.1)

Sj = ρhW 2vj (j = 1, 2, 3) (2.2)

τ = ρhW 2 − p− ρW, (2.3)

where the Lorentz factorW = (1−v2)−1/2 and v2 = δijv
ivj (the Einstein summation

convention is used here, and δij is the Kronecker symbol). Furthermore, ρ is the

rest–mass density, p the pressure and h the specific enthalpy given by h = 1+ε+p/ρ

with ε being the specific internal energy. The components of the vector of variables

w ≡ (ρ, vi, ε)T are called primitive or physical variables.

The relativistic Euler equations form a system of conservation laws (see, e.g.,
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Font et al. 1994) which can be written in Cartesian coordinates as

∂D

∂t
+

3∑

j=1

∂

∂xj
(Dvj) = 0 (2.4)

∂Si

∂t
+

3∑

j=1

∂

∂xj
(Sivj + δijp) = 0 (i=1, 2, 3) (2.5)

∂τ

∂t
+

3∑

j=1

∂

∂xj
(Sj −Dvj) = 0 (2.6)

or, equivalently, as

∂U

∂t
+

3∑

i=1

∂Fi

∂xi
= 0 , (2.7)

where the vector of unknowns U (i.e., the conserved variables) is given by

U =
(
D, S1, S2, S3, τ

)T
, (2.8)

and the fluxes are defined by

Fi =
(
Dvi, S1vi + pδ1i, S2vi + pδ2i, S3vi + pδ3i, Si −Dvi

)T
. (2.9)

The system (2.7) of partial differential equations is closed with an equation of

state p = p(ρ, ε). Anile (1989) has shown that system (2.7) is hyperbolic for causal

equations of state, i.e., for those where the local sound speed, cs, defined by

hc2s =
∂p

∂ρ
+ (p/ρ2)

∂p

∂ε
, (2.10)

satisfies cs < 1.

The structure of the characteristic fields corresponding to the nonlinear system

of conservation laws (2.7) has explicitly been derived in Donat et al. (1998) and is

summarised in Appendix A.

In order to evolve system (2.7) numerically, one has to discretize the state

vector U within computational cells. The temporal evolution of the state vector

is determined by the flux balance across the zone interfaces of each cell and the

contribution of source terms. Using a method of lines (see, e.g., LeVeque 1991), our
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discretization reads

dUi,j,k

dt
= − 1

∆x

(
F̃x
i+ 1
2
,j,k
− F̃x

i− 1
2
,j,k

)
− 1

∆y

(
F̃y

i,j+ 1
2
,k
− F̃y

i,j− 1
2
,k

)

− 1

∆z

(
F̃z
i,j,k+ 1

2
− F̃z

i,j,k− 1
2

)
+ Si,j,k ≡ L(U) , (2.11)

where Latin subscripts i, j and k refer to the x, y and z coordinate direction,

respectively. Uijk and Si,j,k are the mean values of the state and source vector (if

non zero) in the corresponding three-dimensional cell, while F̃x
i± 1
2
,j,k

, F̃y

i,j± 1
2
,k

and

F̃z
i,j,k± 1

2

are the numerical fluxes at the respective cell interface. Finally, L(U) is a

short hand notation of the spatial operator in our method.

At this stage, our system of conservation laws is a system of ordinary differential

equations which can be integrated with a large number of algorithms. We have

chosen a multi-step Runge–Kutta (RK) method developed by Shu & Osher (1988)

which can provide second (RK2) and third (RK3) order in time. The explicit form

of the algorithms is (subindexes (i, j, k) are ommited to clarify the notation):

1. Prediction step (common for both RK2 and RK3):

U(1) = Un +∆tL(Un) (2.12)

2. Depending on the order do:

• RK2:

Un+1 =
1

α

(
βUn +U(1) +∆tL(U(1))

)
, (2.13)

being α = 2 and β = 1.

• RK3:

U(2) =
1

α

(
βUn +U(1) +∆tL(U(1))

)

Un+1 =
1

β

(
βUn + 2U(2) + 2∆tL(U(2))

)
, (2.14)

(2.15)

in this case, α = 4 and β = 3.
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2.3. The relativistic hydrodynamic code GENESIS

2.3.1. Code structure

The special relativistic multidimensional hydrodynamic code GENESIS de-

scribed in detail in the following is a 3D extension of the 2D HRSC hydrodynamic

code developed by some of the authors. The 2D code has been successfully used for

the simulation of relativistic jets (Mart́ı et al. 1994, 1995, 1997; Gómez et al. 1995,

1997). The main structural features of Mart́ı et al. ’s code has been kept, but there

are important changes in the computational part. Besides the addition of the third

spatial dimension, a large effort has been made to minimise memory requirements

and to optimize the performance of the code as well as to enhance its portability.

Like its predecessor, GENESIS evolves the equations of RHD in conservation

form using a finite volume approach in Cartesian coordinates. In accordance with

the method of lines, we split the discretization process in two parts. First, we only

discretize the differential equations in space, i.e. the problem remains continuous

in time. This leads to a system of ordinary differential equations (ODEs) in time

(2.11). The numerical fluxes between adjacent cells required for the time integration

are obtained by solving the appropriate 1D Riemann problems along the coordinate

directions (spatial sweeps). High-order spatial accuracy is achieved by applying a

high-order interpolation procedure in space, while high-order accuracy in time is

obtained by using high-order ODE solvers.

GENESIS integrates the 3D RHD equations on uniform grids in each spatial

direction. In order to have a flexible code GENESIS is programmed to allow for

different boundary conditions, spatial reconstruction algorithms, Riemann solvers,

ODE solvers for the time integration and external forces. The user selects these

options at the preprocessor level, which reduces the number of if–clauses inside the

nested 3D loops to a minimum, and thereby maximizing the code’s efficiency.

Making the selection at the preprocessing stage has allowed us to obtain a code,

which is independent of a specific (shared memory) machine architecture. Hence,

it runs on different types of machines and processors. Up to now, we have tested

GENESIS on SGI platforms (INDY workstations, Power Challenge and Cray-Origin

2000 arrays), on HP machines (712 workstations and J280 computers), and on a
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CRAY-JEDI multiprocessor system. As a next step we plan to port GENESIS on a

CRAY-T3E massively parallel computer.

Fig. 2.1.— Flow diagram of GENESIS.

The flow diagram of GENESIS is shown in figure 2.1. Details of the major

components of GENESIS are discussed in the following subsections.
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2.3.2. Memory requirements

The current version of GENESIS, which is written in FORTRAN 90 has the

capability of allocating memory dynamically, i.e. the number of computational cells

can be chosen at run time. Reducing the RAM requirements of a 3D hydrodynamic

code is obviously crucial. In GENESIS multidimensional variables are responsible

for about 99% of the code’s memory requirement. Thus, the number of these 3D

arrays has to be kept at the absolute minimum possible. In its present version,

GENESIS only requires three sets of five 3D arrays each, consisting of one set of

conserved variables at the beginning of each time level (Un), another set of primitive

variables and a third set of scratch variables (Ũ). The time integration scheme (eqs.

2.12–2.14) which results in the updated values of the conserved variables at the next

time level (Un+1) then reads:

1. Prediction step (common for RK2 and RK3):

Ũ = Un +∆tL(Un)

2. Depending on the order of accuracy of the time integration scheme do:

RK2:

Ũ = Ũ+∆tL(Ũ),

Un+1 =
1

α

(
βUn + Ũ

)
,

with α = 2 and β = 1, or

RK3:

Ũ = Ũ+∆tL(Ũ),

Ũ =
1

α

(
βUn + Ũ

)
,

Ũ = Ũ+∆tL(Ũ),

Un+1 =
1

β

(
βUn + 2Ũ

)
,

with α = 4 and β = 3.

Quantities like entropy, internal energy, sound speed or Lorentz factor are im-

plemented as FORTRAN scalars. Consequently, GENESIS needs about 1 Gbyte of

RAM memory to handle a grid of 100× 100× 720 (in double precision).
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2.3.3. Domain decomposition

The technique of domain decomposition is used to optimize the parallelization

of the code and to guarantee its performance in real applications, too. It is also

the first step towards the development of a parallel version of GENESIS which runs

efficiently on parallel computers with distributed memory.

Fig. 2.2.— (a) Complete three dimensional computational domain, showing a typical

subdomain (in grey). (b) Zoom of the previous subdomain including its internal

boundaries. These regions overlap with contiguous subdomains. (c) Cut through

the computational grid along the X-Y plane displaying the external boundaries.

The physical domain is split along one arbitrary spatial direction (z, in the

present version) in a set of subdomains (i.e. slices, see Fig. 2.2a) of similar compu-

tational load. The subdomains are then distributed across processors. Numerical
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fluxes at subdomain boundaries are calculated by providing the appropriate internal

and external boundary conditions (see Fig. 2.2b,c, respectively, and § 2.3.4).

2.3.4. Boundary conditions

The computational grid is extended in each coordinate in positive and negative

direction by four so-called ghost zones, which provide a convenient way to imple-

ment different types of boundary conditions. These boundary conditions have to

be provided in each spatial sweep for all primitive variables. In GENESIS sev-

eral types of boundary conditions are available including reflecting, inflow, outflow,

time-dependent and analytically prescribed boundary conditions.

Flow conditions at subdomain boundaries must be provided, too, in order to

calculate numerical fluxes at subdomain interfaces. Hence, subdomains are also

enlarged by four ghost zones in each coordinate direction. Note that these ghost

zones do overlap with adjacent subdomains (see Fig. 2.2). The internal boundary

conditions in these overlapping regions are defined by copying the corresponding

values of the respective adjacent subdomain. For NS subdomains and NX ×NY ×
NZ computational zones the number of overlapping cells is (4 + 4) × (NS − 1) ×
NX × NY , i.e. the fraction of overlapping cells is 8 × (NS − 1)/NZ. Hence, for

NS = 16 and NZ = 1000 (typical of a jet simulation) the fraction of overlapping

cells is about 12%.

2.3.5. Spatial reconstruction

In order to improve the spatial accuracy of the code, we interpolate the values

of the pressure, the proper rest–mass density and the spatial components of the

four–velocity (Wvi) within computational cells. These reconstructed variables are

afterwards used to compute the numerical fluxes. Because of the monotonicity

of the reconstruction procedures (see below) used in GENESIS, the occurrence of

unphysical (i.e., negative) values in the reconstructed profiles of pressure and density

are avoided. In addition, reconstructing the spatial components of the four-velocity

with monotonic schemes, also prevents the occurrence of unphysical values of the
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flow velocity, i.e., the flow velocity always remains smaller than the speed of light

even in multidimensional calculations.

GENESIS provides, at the preprocessing level, four different types of recon-

struction schemes: piecewise constant, linear using the minmod function of Van

Leer (1979), parabolic using the piecewise parabolic method, PPM, of Colella &

Woodward (1984; see also Mart́ı & Müller 1996) or hyperbolic using the piecewise

hyperbolic method, PHM, of Marquina (1994).

2.3.6. Source terms

Gravity, local radiative processes, etc., are coupled with hydrodynamics through

terms on the right hand side of the RHD equations (i.e., via the source terms, Si,j,k,

in Eq. (2.11)). GENESIS integrates such terms assuming piecewise constant profiles

for the source functions.

2.3.7. Computation of the numerical fluxes

In this paper we use a variant of Marquina’s flux formula (see Donat &Marquina

1996) which has already been shown to work properly in the simulation of relativistic

jets in 2D (Mart́ı et al. 1997).

The approach followed by Donat & Marquina (1996) relies on the extension of

the entropy–satisfying scalar numerical flux of Shu & Osher (1989) to hyperbolic sys-

tems of conservation laws. Given the spectral decomposition of the RHD equations

(see Appendix A), the implementation of Marquina’s scheme is straightforward.

The original Marquina’s algorithm computes the contribution to the numerical

viscosity of each characteristic field in a different way depending on whether the

corresponding eigenvalue (characteristic speed) does change its sign between the

left and right states or whether it does not. However, instead of using the original

algorithm, we only consider that part which corresponds to characteristic speeds

changing their signs between the left and right states of every numerical interface.

The modified algorithm has a larger numerical viscosity, but it is more stable and

25



does not involve any if-clause. Hence, it can easily be vectorized.

In the 2D version used in Mart́ı et al. (1997) the left eigenvectors of the Jacobians

are calculated numerically by inverting the matrix of right eigenvectors. In GENESIS

we use the analytical expressions for the left eigenvectors, which allow one to simplify

the computation of the numerical viscosity terms.

The explicit expressions for the numerical fluxes (F̃i, i ∈ x, y, z in Eq. 2.11) as

a function of the local (reconstructed) primitive and conserved variables are given

in Appendix B. Besides its influence on the efficiency of the code, the use of explicit

expressions for the left eigenvectors also leads to analytical cancellations in the

computation of the numerical viscosity causing a damping of the growth of round-

off errors and an improvement of the overall accuracy of the code. Previous versions

of GENESIS, in which numerical fluxes were calculated without the use of analytical

expressions, suffered from a growth of round-off errors due to the large number of

operations involved and due to the finite precision of floating point arithmetics. This

growth of errors manifests itself in a gradual loss of symmetry in initially perfectly

symmetric problems. Our experience shows that the analytical manipulation of the

expressions of the numerical flux together with their appropriate symmetrization

(i.e., using commutating formulas for the components of the velocity parallel to

cell interfaces) allows one to achieve a perfect numerical symmetry (see §2.3.10 and

§2.4.2).

2.3.8. Time advance and time step computation

Time integration is carried out by two different total variation diminishing RK

methods developed in Shu & Osher (1988). The user can choose, at preprocessing

level, between the RK2 and RK3 algorithm (see eqs. 2.12–2.14). Results of similar

quality can be obtained either with the RK3 algorithm or with RK2 using smaller

time steps. Nevertheless, for a given time step, the computational cost of RK3 is

about a factor 1.5 larger than that of RK2.

As in any explicit hydrodynamic code, time steps are limited for stability rea-

sons by the Courant-Friedrichs-Levy (CFL) condition, which is computed using the

characteristic speeds. At the end of each time step the size of the new time step is
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determined as the minimum of the time steps of all subdomains. This requires a

global operation across all subdomains. Experience has shown that acceptable CFL

numbers lie in the interval [0.1, 0.8]. CFL numbers larger than 0.8 can lead to post

shock oscillations.

2.3.9. Recovering primitive variables

The solution of the Riemann problem requires knowledge of the value of the

pressure and its thermodynamic derivatives. Given the functional dependence be-

tween conserved and primitive variables (see eq. (2.2)), the recovering procedure can

not be formulated in closed form. Instead a kind of iterative method must be used,

which is very time consuming. Hence, usage of the recovering procedure should be

reduced to the absolute minimum. Therefore, primitive variables are consistently

updated from the mean values of the conserved variables after each Runge-Kutta

step and their values are stored in a set of 3D arrays.

Our approach is the same as that of Mart́ı, Ibáñez & Miralles (1991) and that of

Mart́ı et al. (1997). Its explicit form can be found in Appendix C (see also Mart́ı &

Müller 1996). The iterative recovering procedure is based on a second order accurate

Newton-Raphson method to solve an implicit equation for the pressure.

In zones where the flow conditions change smoothly the typical number of it-

erations ranges from 1 to 3 when a relative accuracy of 10−10 is requested. There

exist zones, however, inside shocks or near strong gradients, where the number of

iterations required is larger depending on the strength of the shock or the steepness

of the gradient. For example, in the shock reflection test in 3D, the shock zone needs

about 4 to 8 iterations.

2.3.10. Some notes on code structure

We have taken special care in designing a numerical code that accurately pre-

serves any symmetries present in the initial data. This is an important point for a

code aimed to study, for example, the stability and long term evolution of initially

axisymmetric jets.
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There exist two potential sources of numerical asymmetries in our code, both

of them are related to the fact that floating point arithmetics is not associative.

One cause of asymmetries is due to the computation of numerical fluxes in spatial

sweeps, which violates what we call henceforth sweep–level symmetry (SLS). In order

to guarantee SLS the expressions by which the numerical fluxes are evaluated have

been symmetrized (see §2.3.7).

A second source of (numerically caused) asymmetry arises specifically in 3D

codes using directional splitting. It can only be avoided, if the code has a property

which we call sweep–coherence symmetry (SCS). It refers to the symmetry of the in-

tegration algorithm with respect to the order in which the 1D-sweeps are performed.

This symmetry property of the algorithm becomes crucial if an initially spherically

symmetric state is considered. We found that its initial symmetry is lost unless

special care is taken in the calculation of the Lorentz factor (in the numerical flux

routine), which involves the summation of the squares of the three velocity com-

ponents. To guarantee a perfect sweep–coherence symmetry of the algorithm the

addition of the vector components has to be performed in a cyclic manner, i.e. in the

X–sweep the components are summed up in x, y, z order, in the Y–sweep in y, z, x

order, and finally in the Z–sweep in z, x, y order. Due to the stochastic nature of

round-off errors, a violation of the sweep–coherence symmetry manifests itself only

in the last few significant digits of the state variables, if the number of time steps is

not too large (less than about 3000; see section §2.4.3).

Given that round–off errors grow sufficiently slow and that they do not interact

with the truncation errors due to the finite difference scheme (which can render

the scheme unstable), GENESIS does keep the symmetry of an initial state at an

acceptable level. We have also tried to develop a version of GENESIS with a perfect

3D symmetry (limited by the Cartesian discretization). For this purpose, we applied

the extended partial precision technique in the computation of expressions in which

the associative property should be satisfied. The procedure was successful, but

increased the total computational costs by more than 30%. All the results presented

in the following have been obtained without making use of such a technique.
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2.4. Code Testing

The capabilities of GENESIS to solve problems in special relativistic hydrody-

namics are checked by means of three tests calculations that involve strong shocks

and a wide range of flow Lorentz factors. In these test runs an ideal gas equation of

state with an adiabatic exponent γ has been used. All results presented in this sec-

tion have been obtained with the PPM reconstruction procedure and the relativistic

Riemann solver based on Marquina’s flux formula (see previous section for details).

2.4.1. Mildly Relativistic Riemann Problem (MRRP)

In the first test we consider the time evolution of an initial discontinuous state of

a fluid at rest. The initial state is given by ρL = 10, εL = 2, vL = 0, γL = 5/3, ρR =

1, εR = 10−6, vR = 0 and γR = 5/3, where the subscript L (R) denotes the state to

the left (right) of the initial discontinuity. This test problem has been considered by

several authors in the past (in 1D by Hawley, Smarr & Wilson 1984, Schneider et

al. 1993, Mart́ı & Müller 1996, Wen, Panaitescu & Laguna 1997; in 2D by Mart́ı et

al. 1997). It involves the formation of an intermediate state bounded by a shock wave

propagating to the right and a transonic rarefaction propagating to the left. The

fluid in the intermediate state moves at a mildly relativistic speed (v = 0.72c) to the

right. Flow particles accumulate in a dense shell behind the shock wave compressing

the fluid by a factor of 5 and heating it up to values of the internal energy much

larger than the rest-mass energy. Hence, the fluid is extremely relativistic from a

thermodynamical point of view, but only mildly relativistic dynamically.

To change this intrinsically one dimensional test problem into a multidimen-

sional one we have rotated the initial discontinuity (normal to the x-axis) by an

angle of 45o around the y-axis, and then again by an angle of 45o around the z-axis.

Gas states L and R are placed within a cube of major diagonal equal to 1 that

constitutes the 3D numerical grid.

The analytical solution to this test problem can be found in Mart́ı & Müller

(1994). Our analysis is restricted to the flow conditions along the major diagonal

of the numerical grid, which is normal to the initial discontinuity. Figure 2.3 shows
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the solution along the major diagonal at time t = 0.5. The shock is captured in two

to three zones in accordance with the capabilities of HRSC methods. The transonic

rarefaction has a smooth profile across the sonic point located at x = 0.5, and

exhibits sharp corners. The contact discontinuity is spread out over roughly three

zones.

Fig. 2.3.— Numerical and exact solution of the mildly relativistic Riemann test

problem (MRRP) described in the text after 0.5 time units. The computed one–

dimensional distributions of proper rest–mass density, pressure, specific internal en-

ergy and flow velocity are shown, in normalized units, with discrete symbols. Con-

tinuous lines depict the corresponding exact solution. The simulation was performed

on a grid of 1003 zones. The CFL number was set equal to 0.6 and a second–order

Runge-Kutta was used for time integration.
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Cells Pressure Density Velocity

403 8.0(2.0)E–2 1.1(0.3)E–1 0.9(0.4)E–2

603 5.2(0.4)E–2 9.8(0.8)E–2 1.1(0.3)E–2

803 4.5(0.2)E–2 9.2(0.5)E–2 1.1(0.1)E–2

1003 3.7(0.4)E–2 7.0(0.9)E–2 7.0(2.0)E–3

1503 2.5(0.2)E–2 4.8(0.7)E–2 5.0(2.0)E–3

Table 2.1: Absolute global errors (L1 norm) of the primitive variables for the mildly

relativistic Riemann test problem (MRRP) for different grids at t = 0.5. As the er-

rors are dominated by those zones located inside the shock and as the grid resolution

is still poor even on the finest grid, we have repeated every calculation four times

varying t within an interval t ± δt (δt being of the order of one Courant time) and

calculated the mean errors. In parentheses we give the standard root mean square

deviation of the errors (σn-1).

The absolute global errors1 of pressure, density and velocity are given in Table

2.1 for different grid resolutions at t = 0.5. Table 2.1 implies a convergence rate of

slightly less than 1 when comparing the errors obtained on the coarsest (403) and

the largest (1503) grid. This behavior is expected for multidimensional problems

involving discontinuities (see, e.g. LeVeque 1991).

2.4.2. Relativistic Planar Shock Reflection (RPSR)

This 1D test problem involves the propagation of a strong shock wave generated

when two cold gases, moving at relativistic speeds in opposite directions, collide. The

problem has been considered as a test for almost any new relativistic hydrodynamic

code (Centrella & Wilson 1984; Hawley, Smarr & Wilson 1984; Mart́ı & Müller 1994;

1in L1 norm given by εabs =
∑

i,j,k

∣∣
w

n
i,j,k −w(xi,j,k, tn)

∣∣ ∆xi∆yj∆zk, where w
n
i,j,k and

w(xi,j,k, tn) are the numerical and exact solution, respectively
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Eulderink & Mellema 1994; Falle & Komissarov 1996).

After the collision of the two gases, two shock waves are created in the plane of

symmetry of the physical domain propagating in opposite directions. The inflowing

gas is heated in the shocks and comes to a rest. The exact solution of this Riemann

problem was obtained by Blandford & McKee (1976).

The initial data are ρL = 1, εL = 2.29 10−5, vL = vi, ρR = 1, εR = 2.29 10−5

and vR = −vi, where vi is the inflow velocity of the colliding gas.

Figure 2.4 shows the numerical solution at t = 2.0 on the left half of a grid

having a total of 401 zones. The results obtained in the right half of the grid are

strictly symmetric with respect to the collision point (x = 0), i.e., the sweep–level

symmetry (SLS; see section §2.3.10) is exactly fulfilled. Near x = 0, the numerical

solution shows small errors (of the same order as the mean error in the post-shock

state, 0.3%) which are due to the wall heating phenomenon (Noh 1987) characterized

by an overshooting of the internal specific energy and an undershooting of the proper

rest-mass density.

In Table 2.2 we give the global absolute errors (L1 norm) of the primitive

variables for different grids at t = 2.0 and for an inflow velocity vi = 0.999c. We

find a convergence rate about equal to one (see columns 5-7) for all variables.

We can use this test problem to check the robustness of GENESIS in the ultra-

relativistic regime. To simplify notation, we define the quantity ν = 1 − vi, which
tends to zero when vi tends to one. Table 2.3 contains the relative global errors of

the primitive variables at t = 2.0 for a set of calculations performed on a grid of 401

zones, where we have varied ν from 10−1 to 10−11. The latter value corresponds to

a Lorentz factor W = 2.24× 105. The relative error of the primitive variables shows

a weak dependence on the inflow velocity. It never exceeds 3.5% and for ν ≥ 10−9

it is smaller than 1%.

The PPM parameters (see Colella & Woodward 1984) have been tuned to min-

imize the number of zones within the shock without introducing unacceptable nu-

merical post–shock oscillations. Fig. 2.5 demonstrates that there are no numerical

post-shock oscillations for ν ≤ 10−5 when the shock is captured by 2 to 3 zones.
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Fig. 2.4.— Numerical and exact solution of the relativistic planar shock reflection

problem (RPSR) described in the text after 2.0 time units. The computed distribu-

tions of proper rest–mass density, pressure, specific internal energy and flow velocity

are shown, in normalized units, with discrete symbols, for an inflow velocity of the

colliding gases equal vi = 0.9. Continuous lines depict the corresponding exact so-

lution. The simulation was performed on a grid of 401 zones spanning the interval

[−1, 1] with both gases colliding in the middle of the grid at x = 0. Only the left

half of the grid is shown. The CFL number was set equal to 0.3 and a second–order

Runge–Kutta was used for time integration.

2.4.3. Relativistic Spherical Shock Reflection (RSSR)

The initial setup consists of a spherical inflow at speed vi (which might be

ultrarelativistic) colliding at the centre of symmetry of a sphere of radius unity.

For a hydrodynamic code in Cartesian coordinates this is a 3D test problem, which

allows one to evaluate the directional splitting technique as well as the symmetry
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Cells Pressure Density Velocity rρ rp rv

101 19.3(0.3)E+0 290.8(0.4)E–2 2.4(0.1)E–2

201 10.8(0.2)E+0 147.2(0.7)E–2 10.1(0.4)E–3 0.99 0.84 1.26

401 49.2(0.7)E–1 85.0(1.0)E–2 92.8(0.8)E–4 0.80 1.14 0.14

801 25.2(0.2)E–1 37.3(0.1)E–2 3.4(0.1)E–3 1.19 0.97 1.44

1601 13.8(0.1)E–1 187.4(0.7)E–3 17.3(0.4)E–4 0.99 0.87 0.98

Table 2.2: Absolute global errors (L1 norm) of the primitive variables (columns 2-4)

and the corresponding convergence rates (columns 5-7) for the relativistic planar

shock reflection test problem (RPSR) for different grids at t = 2.0. The test runs

have been performed with a Courant number equal to 0.1 and the third order ac-

curate Runge-Kutta time integration method (RK3). In parenthesis we give the

standard root mean square deviation of the errors (see also Table 2.1).

properties of the algorithm. Figure 2.6 shows the numerical results for vi = 0.9c on a

grid of 1013 zones at t = 2.0. The shock capturing properties of GENESIS, which we

have already demonstrated in 1D, are retained in this genuine multidimensional case.

Two or three zones are required to handle the shock wave. The pressure and proper

rest–mass density have global relative errors of about 12% and 8% respectively.

Ultrarelativistic flows have been explored by increasing the inflow Lorentz fac-

tor. Table 2.4 gives the growth of the relative global errors2 on a fixed grid size of 813

zones for vi in the range 0.9c to 0.999999c (the latter inflow velocity corresponding

to a Lorentz factor W ≈ 707). The relative global errors are acceptable (considering

the inherent difficulty of the test and the resolution of the experiments) and do not

grow dramatically with the Lorentz factor. The observed growth can be explained

by the fact that the errors are dominated by the shock region and that the shock

strength increases with the Lorentz factor.

2εrel = εabs/
∑

i,j,k

|w(xi,j,k, tn)| ∆xj∆yj∆zk
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ν Pressure Density Velocity

10−1 90.7(0.5)E–4 96.6(0.5)E–4 80.3(0.5)E–4

10−3 58.0(0.8)E–4 72.0(0.8)E–4 12.6(0.1)E–3

10−5 100.3(0.5)E–5 79.3(0.5)E–4 72.0(0.8)E–4

10−7 61.0(0.8)E–4 93.0(0.1)E–4 85.6(0.1)E–4

10−9 65.2(0.1)E–4 103.0(0.1)E–4 81.3(0.5)E–4

10−11 141.0(0.1)E–5 340.1(0.1)E–4 325.7(0.5)E–5

Table 2.3: Relative global errors (L1 norm) of the primitive variables for the planar

shock reflection test problem (RPSR) on a grid of 401 zones at t = 2.0. The quantity

ν is defined as ν = 1 − vi. The test runs have been performed with a Courant

number equal to 0.1 and the third order accurate Runge-Kutta time integration

method (RK3). In parenthesis we give the standard root mean square deviation of

the errors (see also Table 2.1).

The CFL factors used in the last two tests of this series are unusually small

(0.019 and 0.005) which is due to the strength of the shock and the relatively small

grid resolution (compared with the 1D case). It is noticeable that for vi = 0.999999c

the errors are considerably larger (last entry in Table 2.4). This has two reasons.

Firstly, the global relative errors decrease with time in the RSSR test problem.

Secondly, we could not continue the run with vi = 0.999999c beyond 1.5 time units,

because interaction with the grid boundaries became severe causing the code to

crash. Hence, vi = 0.999999c must be considered as the maximum inflow velocity

in the RSSR test problem, which the present code can handle properly (for the

resolution used). The symmetry properties of the RSSR solution are very well

maintained by GENESIS, even though the number of timesteps was very large (>

30000) in the last two test runs.

The absolute global errors (L1 norm) and the convergence rates of the primitive

variables at t = 2.0 are displayed in Table 2.5. Obviously, the errors are much larger

in the 3D test than in the corresponding 1D one. This can be explained considering
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Fig. 2.5.— Density jump (in logarithmic scale) for different inflow velocities in the

relativistic planar shock reflection problem (RPSR), over an equally spaced grid of

401 zones at t = 2.0. As in the previous Figure, only the left half of the grid is

shown. Solid lines represent the exact solution while symbols refer to numerical

values. A third–order Runge–Kutta was used for time integration.

that (i) the grids are coarser than in 1D, and that (ii) the jumps in pressure and

density across the shock are nearly a factor of 30 larger in the 3D test than in the

planar case.

The preservation of the sweep-level symmetry (SLS; see section §2.3.10) is re-

flected in the symmetry of the one dimensional profiles in Fig. 2.6. Moreover, a

comparison of the profiles in X and Y direction in Fig. 2.6 shows the capability of
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Fig. 2.6.— Intensity plots of proper rest–mass density, pressure, specific internal

energy and flow velocity over the plane XY at z = 0 in the relativistic spherical

shock reflection test problem (RSSR) described in the text, after 2.0 time units.

Shaded surfaces represent the numerical results while dotted surfaces are the exact

solution. One dimensional plots along X and Y axes are projected on the front sides

of the pictures. Symbols inside the one dimensional plots are numerical values; solid

lines represent the exact solution on the same axis. The test was ran using a CFL

equal to 0.2 and a third–order Runge–Kutta for time integration.
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ν Pressure (%) Density (%) Velocity (%)

10−1 15.8 10.5 0.82

10−3 19.9 22.1 3.07

10−5 22.1 27.8 3.89

10−6(a) 32.2 39.1 1.91

Table 2.4: Growth of relative global errors of the primitive variables for the rela-

tivistic spherical shock reflection test problem (RSSR) for different inflow velocities

at t = 2.0. The four test runs have been performed with RK3 and Courant numbers

0.1, 0.1, 0.019 and 0.005, respectively. The quantity ν has the same meaning as in

Table 2.3.

(a)The run time for this test is 1.5.

Cells Pressure Density Velocity rρ rp rv

413 11.8(0.2)E+0 30.3(0.4)E+0 80.0(3.0)E–3

613 76.5(0.7)E–1 20.1(0.2)E+0 55.8(0.6)E–3 1.09 1.03 0.91

813 57.5(0.8)E–1 15.5(0.2)E+0 41.0(0.8)E–3 1.01 0.92 1.09

1013 45.2(0.8)E–1 12.5(0.1)E+0 32.4(0.5)E–3 0.99 0.97 1.07

Table 2.5: Absolute global errors (L1 norm) and convergence rates of the primi-

tive variables for the relativistic spherical shock reflection test problem (RSSR) for

different grids at t = 2.0. The test runs have been performed with a Courant num-

ber equal to 0.1 and the third order accurate Runge-Kutta time integration method

(RK3). In parenthesis we give the standard root mean square deviation of the errors

(see also Table 2.1).

the code to maintain the sweep-coherence symmetry (SCS), too.
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2.5. Code Performance

We have parallelized GENESIS in order to run on multiprocessor computers

with shared memory. Apart from the initial setup of variables, the grid generation

and the output, the rest of the program is organized in a 4-level nested loop. The

outermost loop runs from one to the total number of sub-domains, assigning one sub-

domain to each processor. This procedure allows an almost complete parallelization

of the code employing the corresponding parallelization directives (see Fig. 2.1).

The MRRP and RSSR tests have been run for different grids on a SGI Cray-

Origin 2000 computer. Tables 2.6 and 2.7 show the total execution time for every run

as a function of the number of CPUs used. We also give the speed up factor, defined

as the CPU ratio between a one processor run and one using several processors in

parallel. This factor is a measure of the degree of parallelization of the code and

should ideally be equal to the number of CPUs used. The tables also contain the

execution time per cell and time iteration (TCI). The TCI for a given number of

processors is nearly independent of the number of computational cells, and can be

used as a time unit to estimate the total execution time needed in a particular

simulation.

According to the data shown in Tables 2.6 and 2.7 the TCI is about 7.6 10−5,

2.1 10−5 and 1.3 10−5 seconds for 1, 4 and 8 processors, respectively. A significant

drop of the performance is noticeable for a grid of 643 zones due to the phenomenon

of cache trashing, because in this case the dimensions of the 3D matrices are multiples

of the size of cache lines. Hence, different 3D matrices are mapped into the same

set of cache lines, and every time the program needs to reference a new 3D matrix

all cache lines are updated.

Concerning the speed up factor, it is noticeable from Tables 2.6 and 2.7 that it

increases with the number of grid points, because the 3D nested loops consume a

larger percentage of the total CPU time when the number of grid zones is larger. The

maximum speed up factors are 3.7 and 6.5 for 4 and 8 CPUs, respectively. We also

notice a super linear behavior, for the largest grid, for the MRRP test problem. As

typical 3D simulations are performed with zone numbers larger than the ones used in

the test runs, we expect to reach even larger speed up factors in these applications.
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# cells # CPUs Time Speed up # iter TCI Mflops

443 1 3.91E2 86 5.34E–5 64.73/——

4 1.13E2 3.48 1.54E–5 59.03/236.11

8 6.02E1 6.50 8.22E–6 58.58/468.65

643 1 3.85E3 118 1.24E–4 30.05/——

4 1.84E3 2.09 5.94E–5 16.25/65.00

8 1.49E3 2.59 4.81E–5 10.46/83.70

843 1 5.56E3 150 6.26E–5 62.04/——

4 1.56E3 3.57 1.75E–5 56.77/227.08

8 8.46E2 6.58 9.52E–6 53.99/431.88

1043 1 1.31E4 183 6.35E–5 62.72/——

4 3.66E3 3.57 1.78E–5 57.02/228.08

8 2.36E3 5.54 1.15E–5 45.47/363.75

1543 1 8.94E4 265 9.23E–5 45.12/——

4 1.84E4 4.87 1.90E–5 54.92/219.68

8 1.15E4 7.80 1.18E–5 44.74/357.91

16 7.39E3 12.09 7.64E–6 35.90/574.41

Table 2.6: Performance of GENESIS for the mildly relativistic Riemann test problem

(MRRP) on different grids. The test runs are stopped at t = 0.5, and are performed

with a Courant number equal to 0.8 and the second order accurate Runge-Kutta

time integration (RK2) method. Times are measured in seconds on a SGI Cray–

Origin 2000. The last column displays the number of Mflops per processor and the

total number of Mflops. One notices that the efficiency per processor in parallel

mode (Speed Up/CPUs) multiplied by the number of Mflops in sequential mode

is equal to the number of Mflops in parallel mode. Megaflops are calculated using

SGI’s Perfex Tool.

The number of Mflops (millions of floating point operations per second) achieved

by the code is about 60 on one processor (R10000) of a SGI Cray–Origin 2000 com-

puter. The theoretical peak speed of such a processor is 400 Mflops. For com-

40



# cells # CPUs Time Speed up # iter TCI Mflops

453 1 8.73E2 114 8.40E–5 62.53/——

4 2.53E2 3.45 2.44E–5 56.88/225.67

8 1.51E2 5.78 1.45E–5 50.15/401.21

653 1 4.94E3 198 9.08E–5 62.27/——

4 1.50E3 3.29 2.76E–5 52.88/211.54

8 1.10E3 4.49 2.02E–5 37.54/300.28

853 1 2.15E4 369 9.49E–5 61.76/——

4 6.13E3 3.51 2.71E–5 55.40/221.60

8 3.41E3 6.30 1.51E–5 51.35/410.79

1053 1 9.92E4 890 9.63E–5 62.09/——

4 2.78E4 3.57 2.70E–5 56.41/225.65

8 1.57E3 6.31 1.53E–5 48.97/391.79

Table 2.7: Performance of GENESIS for the relativistic spherical shock reflection

test problem (RSSR) on different grids. The test runs are stopped at t = 2.0, and are

performed with a Courant number varying from 0.8 (453 grid) to 0.2 (1053 grid). The

third order accurate Runge-Kutta time integration (RK3) method has been used.

Times are measured in seconds on a SGI Cray–Origin 2000. The last column displays

the number of Mflops per processor and the total number of Mflops. One notices

that the efficiency per processor in parallel mode (Speed Up/CPUs) multiplied by

the number of Mflops in sequential mode is equal to the number of Mflops in parallel

mode. Megaflops are calculated using SGI’s Perfex Tool.

parison, Pen (1998) reports a performance of 48 Mflops for his 3D adaptive moving

mesh classical hydrodynamic code using a SGI Power Challenge machine with R8000

processors (300 Mflops theoretical peak speed).

Finally, we compare the performance of GENESIS achieved on the PA8000

processor of Hewlett Packard with that obtained on the R10000 processor of Silicon

Graphics. For the comparison we used a HPJ280 workstation equipped with a
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PA8000 processor with a 180 MHz clock and a cache memory of 512Kbytes and

a SGI Cray-Origin 2000 equipped with a R10000 processor with a 195 MHz clock

and 4 Mbytes of cache memory. The test problem selected for the comparison was

the relativistic spherical shock reflection test (RSSR) with an inflow velocity of 0.9c.

Test runs were done with four different grids. The resulting execution times per

zone and time step (TCI) are given in Table 2.8.

# cells Machine Time # iter TCI

453 SGI 8.73E2 114 8.40E-5

HP 2.11E3 101 2.29E-4

653 SGI 4.94E3 198 9.08E-5

HP 1.33E4 220 2.20E-4

853 SGI 2.15E4 369 9.49E-5

HP 4.76E4 357 2.17E-4

1053 SGI 9.92E4 890 9.63E-5

HP 2.16E5 879 2.12E-4

Table 2.8: Performance of GENESIS for the relativistic spherical shock reflection

test (RSSR) on different grids and machines.

We find that TCIHP ≈ 2×TCISGI . From Table 2.8 we can infer a general trend.

The TCIs obtained on both machines tend to become similar when the number of

zones increases. Furthermore, the TCI for the HP machine is nearly independent

of the number of zones, while the TCI for the SGI machine increases with that

number. This behavior may result from the fact that the problem size always leads

to an overflow of the cache memory on the HP workstation, while this does not

generally happen for the larger cache memory of the SGI machine.
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2.6. Conclusions

We have described the main features of a novel three dimensional, high–resolution

special relativistic hydrodynamic code GENESIS based on relativistic Riemann

solvers. We have discussed several test problems involving strong shocks in three

dimensions which GENESIS has passed successfully. The performance of GENESIS

on single and multiprocessor machines (HP J280 and SGI Cray–Origin 2000) has

been investigated. Typical simulations (in double precission) with up to 7 106 com-

putational cells can be performed with 1Gbyte of RAM memory with a performance

of ≈ 7 10−5 s of CPU time per zone and time step (on a SCI Cray-Origin 2000 with

a R10000 processor). Currently we are working on a version of GENESIS suited for

massively parallel computers with distributed memory (like, e.g., Cray T3E).

GENESIS has been designed to handle highly relativistic flows. Hence, it is

well suited for three dimensional simulations of relativistic jets. First results will be

presented in a separate paper (Aloy et al. 1999b). Further applications envisaged

are the simulation of relativistic outflows from merging compact objects (see, e.g.,

Ruffert et.al. 1997), from hypernovae (Paczynski 1998), or collapsars (MacFadyen

& Woosley 1998). In all these models ultra-relativistic outflow is thought to occur

and to play a crucial role in the generation of gamma-ray bursts.
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Chapter 3

High–Resolution 3D

Simulations of Relativistic Jets

3.1. Extragalactic jets

The first physical application in which we are interested in is the simulation

of the dynamical evolution of extragalactic jets and their emission properties. An

astrophysical jet is a collimate flux of plasma that some galaxies, quasars, micro-

quasars, X-ray binaries, etc., may produce as a consequence of the accretion of

matter onto massive objects. In order to motivate our work, we are going to es-

tablish the observational framework in which the jet phenomenon is included (Sect.

3.1.1). Then we will outline the standard model which tries to explain the current

observations (Sect. 3.1.2). In the next Section (Sect. 3.1.3) an historical overview of

the numerical simulations in this field will be given. Section 3.2 includes the results

obtained by Aloy et al. (1999b), in which we explore the 3D relativistic regime by

means of helically perturbed axisymmetric models. Additionally, we will make a

comparative study of a set of perturbed models with the one pesented in Aloy et

al. (1999b). Finally, the emission properties of 3D relativistic jets are evaluated in

section 3.3.
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3.1.1. Phenomenology

The first detected jet (Curtis 1918) was the one in the giant elliptic galaxy M87.

Although this jet was originally seen at optical wavelengths, typical jets are observed

at radio frequencies. This explains why the progress in the discovery of new sources

is strongly linked to the technical improvements in the radio observations. The first

observed radio jets where those associated to powerful radio sources. More precisely,

Jennison & Das Gupta (1953) reported that the radio emission from Cygnus A

originated from two lobes straddling the associated optical galaxy rather than the

galaxy itself. With the advent of the Cambridge 5 km telescope (in the mid 1970s),

the Very Large Array (VLA) and MERLIN telescopes (both in the early 1980s), jets

were discovered to be associated with a large number of double radio sources. The

development of Very Large Baseline Interpherometry (VLBI) showed that jets were

also common among compact radio sources. In addition to extragalactic jets, there

are many examples of jets and outflows that have been found within the Milky Way.

The galactic jets span a great range of luminosities and collimation factors, from

the optically visible jets and lobes associated with low-mass young stellar objects

(YSOs), which are morphologically very similar to the classical radiogalaxies, to the

poorly collimated and much less clearly defined jets associated with the Galactic

Center and with various supernova remnants (Padman, Lasenby & Green 1991).

VLA has allowed to detect in our galaxy the object SS433 (Abell & Margon 1979)

and the micro-quasars GRS 1915+105 (Mirabel & Rodriguez 1994) and GRO J1655-

40 (Tingay et al. 1995). In combination with VLBA (Very Large Baseline Array).

In the case of the diverse forms of extragalactic radio sources, the presence of

jets is a manifestation of a more general phenomenon which is the nuclear activity in

some galaxies. This nuclear activity characterizes the Active Galactic Nuclei (AGNs)

which are among the most spectacular objects in the sky. They produce enormous

luminosities (in some cases as much as 104 times the luminosity of a typical galaxy)

in tiny volumes (probably À1 pc3; Krolik 1999). This radiation can emerge over a

very broad range of frequencies (from infrared to gamma-rays). Their line spectra

show in the optical and UV emission (and occasionally absorption) lines whose total

flux is several percent to tens percent of the continuum flux, and whose widths

suggest velocities ranging up to ∼ 104 km s−1 (see e.g.,Krolik 1999).
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The interpretation of the diverse forms of observed radio source structures has

motivated the introduction of a classification scheme. Such classification scheme

has changed as the number of observations has increased. Nowadays, the primary

division among radio loud sources is the one that considers which part of the source

has a large relative emission. Actually, the observations show that at low frequen-

cies (i.e., a few hundred MHz), in most instances the radio emission comes from a

pair of extremely large lobes on opposite sides of the host galaxy. These lobes are

often several hundred kpc in length and can be separated from the galaxy by a

similar distance. The axis of the two lobes and the center of the galaxy generally

lie along a common line. However, there are other radio loud objects in which, es-

pecially at higher frequencies (i.e., several GHz), the region responsible for the bulk

of emission is essentially unresolved on VLA (i.e., 1 arcsecond scales), so that the

source must be smaller than ∼ 20(DAH0/c)(h/0.75)
−1 kpc, where DA is the angu-

lar diameter distance (i.e.,distance at which the length between two objects whose

angular separation is ε is given by DAε), H0 is the Hubble constant (H0 = 100h

km s−1) and h is the scale of the Hubble constant (usually h = 0.65). With this

criterion, radio sources are divided into lobe dominated and core dominated (Muxlow

& Garrington 1991). Each of these types have in its turn several subclasses. In the

lobe dominated radio structures found in luminous spiral and elliptical galaxies are

distinguishable three subtypes, associated to different classes of AGNs, radio Seyfert

galaxies, lobe-dominated radio galaxies and lobe-dominated radio-loud quasars. Many

Seyfert galaxies show S-shaped kpc scale radio structure (perhaps due to the dis-

ruption of the jet) and they are often less powerful emitters than elliptical galaxies.

Usually, this difference is ascribed to the lower power output of the central nuclear

engine and the dense rotating interstellar medium found in spiral discs (which dif-

ficults the plasma ejection through it). Some Seyferts however, do not contain any

evident jet structure. Typical luminosities at 1 GHz (P1GHz) of this radio structures

lie in the range P1GHz ∼ 1021 − 1025 W Hz−1.

The properties of lobe-dominated radio galaxies are dependent on their lumi-

nosity. In fact there exits a critical luminosity (P178MHz = 5×1025 W Hz−1) around

which, structures seem to undergo an abrupt transition (Faranoff & Riley 1974)

and, therefore they are conveniently classified as Fanaroff-Riley I (FR I) and II (FR

II) if their luminosities are, respectively, below or above the former limit. FR I
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sources tend to have prominent smooth (i.e.,not knotty) continuous two-sided jets

in antiparallel directions running into large-scale lobe structures (plumes) which are

edge-darkened1 and whose steepest radio spectra lie in the outermost extended re-

gions furthest from the host galaxy. They exhibit linear polarization with electric

vector normal to the jet, i.e., the embedded magnetic field is aligned with the jet.

The jets often contribute over 10% of the total power of the extended structure. A

typical FR I source is associated to the radio galaxy 3C 449. FR II however, tend

to have large-scale structures which are edge-brightened with bright outer hot spots

and they are usually one-sided with a jet to counter-jet intensity ratio > 4 : 1. These

jets are usually not smooth (i.e., formed by a set of bright knots). The steepest radio

spectra are found in the inner extended regions of the lobes or bridges. They show

parallel polarization with a magnetic field perpendicular to the jet axis. The cores

and jets in these structures usually contain < 10% of the total source luminosity

which results in the non-detection of some cores. The opening angle of jets in FR II

sources are smaller than those for FR I structures. Of course, the transition from

FR I to FR II is not abrupt, and there is a special class of sources (fat doubles)

which are among the weakest FR II sources (near the FR I/FR II luminosity limit),

have a steeper spectrum than typical FR II, and are characterized by fatter lobes

and almost no evidence for cores, jets or hot spots. The most characteristic example

of FR II source is Cygnus A (3C 405).

The overall morphology of lobe-dominated radio sources is believed to be dom-

inated by their interaction with the external medium (e.g.,Blandford & Rees 1974

–BR74, hereafter–). Actually, due to this interaction, it is possible that the path of

the jet would be changed or even considerably bent. This is the case for Narrow-

Angle-Tail (NAT) sources, Wide-Angle-Tail (WAT) sources, and Steep spectrum core

sources. NATs are FR I type structures with bent two-sided (and almost symmet-

rical) jets running into an extended tail. They are usually located in clusters of

galaxies where the host galaxy has a large proper motion with respect to the cluster

1Edge-darkened (see e.g.,Muxlow & Garrington 1991, or, Krolik 1999) means that the ratio of

the total separation of the peaks of radio lobe emission to the source size (i.e., the distance between

the outermost detected parts of the lobes), is significantly less than unity. For FR I sources this

ratio is less than 0.5, while for FR II sources the ratio is close to one.
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and the radio structure is bent back by ram pressure from the hot external medium

found in clusters (Begelman, Rees & Blandford 1979). The most well-known example

of this class is NGC 1265. WATs sources were first classified as a new morpholog-

ical class by Owen & Rudnick (1976). They are C-shaped structures formed by

FR I disrupted plumes or tails with inner hot spots linked to the central compo-

nents by jets. Jets seem to have physical properties similar to FR II type structures

(quite knotty and with jet/counter-jet intensity ratios > 4 : 1). Although there are

not too many observed structures of this type, they are often associated to optical

dominant galaxies in rich clusters, and have total radio luminosities intermediate

between NAT sources and typical FR IIs. An example of this structural type is

3C 465. Steep Spectrum Core sources are dominated by a kpc scale steep spectrum

component associated with the nucleus of the parent object, surrounded by a diffuse

low surface brightness halo. Objects of this class are also called Core-Halo sources,

where “Core” states for the complete nuclear component rather than the compact

flat spectrum feature within it. The best studied example of this structural type is

the radio galaxy M 87.

The lobe-dominated radio-loud quasars are mainly found at high redshift and

consist of very powerful radio extended structures surrounding some quasars. Their

luminosity is above P178MHz = 5×1025 W Hz−1, and display morphological features

similar to FR II sources of equivalent luminosity. They have bright one-sided radio

jets and cores with higher luminosities than those found in radio galaxies. The jets

are knotty, one-sided (jet/counter-jet intensity ratios > 4 : 1) and with small opening

angles. An example of this type of sources is 3C 179 (Shone, Porcas & Zensus 1985).

Core-dominated sources have very luminous cores and usually bright one-sided

jets. VLBI studies (for which these objects are particularly appropriate because they

have a very high core surface brightness) have pointed out that there is a continuity

between the small and large-scale structures with a milliarcsecond scale one-sided

jet (i.e., 20(θ/1mas)(DAH0/c)(h/0.75)
−1, being θ the angular size) running into the

outer arcsecond scale jet (kpc scale). Significant bending of the jet, specially near

the core, is a common feature in these sources; for example 3C 273 bends by ∼ 20o

within the first 10 mas before extending continuously for 22 arcseconds (∼ 40.7 kpc)

from the core to beyond the limit of the optical jet (Whitney et al. 1971; Cohen et
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al. 1971). Knots in the VLBI jet are often observed to be moving away from the core

with apparent superluminal speed. 3C 120 was one of the first four sources in which

superluminal motion was detected on the scale of pc (Seielstad et al. 1979; Walker,

Benson & Unwin 1987) to tens of pc (Benson et al. 1988; Walker 1997; Muxlow &

Wilkinson, 1991; Gómez et al. 1998, etc.). The most complete set of epochs and high

resolution VLBA observations has been undertaken by Gómez, Marsher & Alberdi

(1999). In this work and in Gómez et al. (1998), up to ten superluminal components,

with velocities between 2.3 and 5.4 h−1c, are shown. In addition to the core and

jet, VLA images show a low surface brightness extended component that is often

found on the opposite side to the jet and, in some cases, this whole triple structure

is embedded in a very low surface brightness amorphous halo like in the case of

1642+690 (Browne 1987). The jet properties are broadly similar to those found in

lobe-dominated quasars, but are of higher luminosity and show a greater degree of

bending.

Finally, there exist a morphological class (which is a remnant of the poor

resolved observations with the Cambridge 5 km telescope) named compact steep-

spectrum sources (Fanty et al. 1990). Most of them resembled miniature extended

sources. Detailed VLA and VLBI observations conclude that these radio structures

are of galactic or subgalactic dimensions (i.e., linear sizes ∼ 1 − 10 kpc) and have

a wide variety of morphologies (some are like doubles, others appear as core-jet

structures, and in a number of cases they are so extremely distorted that cannot

be easily classified). Fanty et al. (1985) have shown that there is a clear division

between quasars and radio galaxies in this class: the quasars are generally core-jet

or complex while the galaxies are doubles. Furthermore, some authors (e.g.,Phillips

& Mutel 1980) have claimed that the double structures represent the young progen-

itors of classical double radio sources. Others have argued that these sources are a

separate class of intrinsically small objects where the jets encounter great difficulty

in escaping from the inner regions of the host galaxy or quasar (Fanti & Fanti, 1986).
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3.1.2. The standard model

We have stated above which is the gross classification of the enormous set of ob-

servations of radio sources. Now we focus on the models that allow us to understand

such observations. There exists a unifying interpretation consisting in that our view

of a radio source is influenced by our relative orientation with respect to the source

axis (regardless of its luminosity). In the standard model (BR74; Scheuer 1974) jets

are considered as continuous channels of matter highly collimated, supersonic and

very stable. Additionally, following Blandford & Königl (1979) the superluminal

motions and the jet asymmetries in compact sources are explained by assuming that

both the jet and the counter-jet propagate with relativistic speeds at a small angle

to the line of sight towards the observer. The relativistic Doppler beaming of the

emission in the direction of motion can account for the observed asymmetry in the

luminosity of the jets. Additionally, the component of the velocity over the plane of

the sky may exceed the light speed due to a pure kinematic relativistic effect giving

rise to apparent superluminal velocities2. Assuming that this interpretation of the

superluminal motion is true and taking into account the relativistic beaming, bulk

flow motions with Lorentz factors as large as 20 may be assigned to many compact

radio jets.

The mechanism for the jet formation and collimation is still a challenge, mainly

because we have not detailed enough observations (i.e.,with sufficient resolution) be-

cause the most detailed high-frequency VLBI observations of nearby radio sources

can resolve at most the compact radio cores with linear resolutions of ≥ 100 mpc

(Blandford 1990) 3 while the Schwarzschild radius (Rs = GM/c2) of a 109M¯ galac-

tic BH is ∼ 10 µpc. Consistently, our theoretical view of the jet formation must be

mainly constrained by the fact that many jets are well collimated by the time they

have propagated to a distance ≤ 1pc from the nucleus (Blandford 1990; Junor &

Biretta 1995). Considering this element, many mechanisms have been proposed, all

2The apparent velocity is define as vapp = v sinΨ/(1− v cosΨ), Ψ and v being the angle that

forms the source respect to the line of sight and the velocity, respectively.

3Nowadays, within the project VLBI Space Observatory Program (VSOP), the angular resolution

is higher allowing for linear resolution of ∼ 0.1 − 1 pc even in distant sources like S5 0836+710

(z = 2.17; Lovanov et al. 1998).
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of which present some difficulties (Begelman, Blandford & Rees, 1984) and, addi-

tionally, there is a wide variety in the observed properties of jets, so there may be a

variety of jet collimation mechanisms.

Our common wisdom about AGNs establish the following anatomy for the in-

nermost (i.e.,≤ 100 mpc) part of the nuclei:

• 10 mpc scale. It is usually accepted that the power that feeds the ejection

is the matter which is accreted onto a black hole (BH) coming from an ac-

cretion disk. The morphology and dynamics of this accretion disk is different

depending on the distance to the BH. At this scale, the disk may be ionized,

being the evidence for this the optical continuum in quasars (if it is true that

this continuum is mainly thermal in origin). A relativistic jet is still formed

which emits due to synchrotron and inverse Compton. Moreover, a toroidal

magnetic field may be the responsible for jet collimation.

• 1 mpc scale. At this scale, the temperature is higher and may produce

UV radiation. The disk would be radiation pressure and Thomson opacity

dominated. The poloidal component of the magnetic field presumably helps

to extract matter from the accretion disk and accelerate it at velocities of

∼ 0.1c.

• 100 µpc scale. Within ten times of the radius of the BH, the nature of

the gas flow is quite controversial, but with complete certainty the effects

of General Relativity must determinate their characteristics. Observation of

highly variable X-ray emission from Seyfert galaxies imply that the X-rays

originate from this region (produced by electron–positron (e−e+) annihilation

into the plasma that forms the relativistic jet).

• 10 µpc scale. This is the typical BH scale and perhaps also its magnetosphere.

The mass of the BH dictates a characteristic length and luminosity scale for

nuclear activity.

The collimation of such matter emissions can be due to the combined action of

toroidal magnetic fields, radiation pressure, purely thermal pressure and other not

yet understood processes. In the following paragraphs we will summarize the main

52



issues that have been pointed out in order to explain the jet collimation up to ∼ 1

pc (for more details see e.g.,Kembhavi & Narlikar 1999; Krolik 1999; or Blandford

1990).

The first force one might look to in order to drive outflows is ordinary gas

pressure gradients. In the original scheme suggested by BR74, two twin antiparallel

channels propagate in opposite directions from the nucleus. The jets, assumed to

be made up of ultrarelativistic plasma, are subsonic close to the nucleus, but pass

through a nozzle (de Laval nozzle) where the cross-sectional area is a minimum, and

the flow is trans-sonic. Beyond the nozzle the flow is supersonic, and though the

cross-sectional area increases, the angle which is subtended at the nucleus decreases,

and well-collimated jets could be produced. However, even allowing for the reduced

collimation caused by internal dissipation, entrainment, etc., this mechanism does

not seem capable of creating well-collimated jets. The reason is that VLBI observa-

tions require that the collimation has to be produced on a scale <∼1 pc, where the

gas pressure and density required would have to be very large that the consequent

X-ray emission would easily exceed the observed upper limits for powerful sources.

This collimation model can therefore work only for jets of low power <∼1043erg sec−1.

Another possibility for jet collimation are the radiation forces. Such forces may

be important in powerful sources (like quasars) which would be radiating very close

to their Eddington limits. Then the pressure of radiation acting on e−e+ pairs may

be sufficient to overcome gravity along certain directions. This would happen in

the funnels formed by a radiation-pressure supported torus orbiting around a BH.

The most fundamental problem of this model is that once the flow reaches mildly

relativistic speeds4 (much less than those usually invoked to account for superluminal

motion), a medley of effects make further acceleration inefficient, while any isotropic

radiation acts as a source of drag5 (Phinney 1987). This radiative acceleration model

may not apply to sources which are observed to radiate at sub-Eddington rates.

Moreover, a theoretical complication of the model is that radiation-supported tori

could not be dynamically stable, which puts in question their long term existence.

4Lorentz factors <∼3 (for a pair plasma) or smaller (for a plasma of electrons and ions).

5This radiation may drag the well collimated fluid from its outflowing direction, thus, loosing

directionality and collimation.
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A third possibility arises if magnetic forces are an important ingredient. These

models are mainly based on thin magnetized accretion disks. Collimation seems

to be a generic feature of hydromagnetic winds, the reason for this tendency being

that one expects the footpoints of magnetic field lines to be fixed to the matter

of the accretion disk. The field lines will then rotate with the orbital frequencies

of their footpoints, creating a toroidal magnetic field even if there was none to

begin with. This toroidal component has an associated hoop stress which can act to

collimate the poloidal flow of the plasma. As the flows are centrifugally driven and

magnetically confined, the gas pressure is not very important except, perhaps, close

to the disk. In this magnetohydrodynamic (MHD) flows, there are three critical

points, along a flow line, at which the gas becomes sonic (corresponding to the three

types of wave modes which exist in MHD: fast, Alfvén and slow waves). After the

field passes through the third point, the magnetic field becomes mostly toroidal,

and the magnetic energy and angular momentum fluxes are typically half converted

into mechanical energy and angular momentum. In the process the jets become

collimated, whether they are relativistic or non-relativistic. In this models there

is a correlation between the accretion rate and the speed of jets on the pc scale,

so that quasar jets have highly relativistic speeds while jets in FR I galaxies may

be non-relativistic (Camenzind 1993). A theoretical difficulty with this explanation

for AGN jets is that magnetically collimated plasma is unstable, particularly to

non-axisymmetric perturbations.

Having summarized in the previous paragraphs the fundamental theories that

try to explain the mechanisms of jet formation and collimation, it is necessary to

remark that only a limited progress has been made in understanding jet physics,

because of the lack of detailed structural information on the very small spatial scales

on which the jets are produced, as well as the complexity of the physical processes

involved in the production and collimation. However, on bigger scales (from >∼10mpc

to ∼ 1Mpc) a very detailed set of observations has been made in a large number of

AGNs. This wide sample of observations has allow us to understand that powerful

sources are supposed to comprise a core, and two jets which feed a pair of radio-

emitting lobes. The radio-emitting electrons are supposed to be convected outward

along the jet with relativistic speed so that they beam their emission along their

directions of motion (due to the relativistic beaming). Most of the compact radio
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sources are intrinsically weaker and their compactness is mainly a projection effect

due to that they are beamed in our direction so that their compact jet emission

outshines the unbeamed emission from the lobes. In addition to this, from the

observations, it is possible to infer a characteristic anatomy of the observable parts

of the jets, in which two main regions are distinguishable in terms of the distance

to their origin: the parsec and kiloparsec scales.6

a) the parsec scale (100 mpc – 100 pc):

– Observational facts: the jet emits at radio frequencies due to synchrotron

and inverse Compton processes, and it is observed using VLBI imaging.

It displays a high collimation and its morphology is characterized by a

bright spot at the jet end and a series of components (usually preceded

by outbursts in emission at radio wavelengths) which separate from the

core, sometimes at superluminal speeds. Many parsec scale jets show

intraday variability of the radio flux, excess in brightness temperatures

and one-sidedness. Between 1 and 10 pc the broad emission lines seem to

be produced. These are observed in about 12% of all quasars (Weymann

et al. 1991). At about 10 pc the BH’s gravity may begin to dominate

the stellar distribution. In some galaxies the stellar velocity rises with

decreasing radius. The jets may exhibit structure reflecting this change in

gravitational potential. The narrow emission lines are detected at scales

∼ 100 pc.

– Theoretical interpretation: the jet material moves at small angles to the

line of sight with bulk Lorentz factors W ' 10(H0h)
−1 (Ghisellini et

al. 1993), or maybe larger (W ' 30 − 100) if the intraday variability is

intrinsic and a result of incoherent synchrotron radiation (Begelman, Rees

& Sikora 1994). The moving components are interpreted in the shock-in-

jet model as traveling shock waves (Marscher & Gear 1985; Hughes, Aller

& Aller 1989; Gómez, Alberdi & Marcaide, 1994, Gómez et al. 1994).

A worthy byproduct of this model is the explanation of the complex

6This division follows in distance to the previous scale (the subparsec scale) that we have ex-

plained previously.
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multifrequency brightness and polarization variations in blazars. The

width of the emission lines is interpreted in terms of the local velocity

of the clouds where the absorption is produced. For the broad lines, a

Doppler spreading interpretation ascribes flow velocities up to 60000 km

sec−1 in the gas which is within the quasar itself, relative to the emission

redshift. The narrow emission lines are generated in clouds which are

farther from the AGN center.

b) the kiloparsec scale (1 kp – 1 Mpc):

– Observational facts: ∼ 1 kp and ∼ 10 kpc are the typical sizes of the

galactic center nucleus, and the host galaxies, respectively. At this scale

there exist a dichotomy between FR I and FR II sources whose basis seems

to be the source power. Between 100 kpc and 1 Mpc the radio jets are

quite common, and extended radio lobes (which eventually may contain

bright host spots) can be found. The overall shapes of the jets are sen-

sitive to the galactic and circumgalactic environment (for example, NAT

and WAT sources have their characteristic morphology due to the pres-

ence of high peculiar velocities in rich clusters of galaxies). Evidences of

mildly relativistic jet speeds (∼ 0.6−0.8c, for the double–lobed quasar 3C

179; Akujor 1992) well outside the galaxy have been found, like e.g.,flux

asymmetries between jets and counter-jets (Bridle et al. 1994) and super-

luminal motions at kpc scales (e.g., in 1928+738, Hummel et al. 1992, in

1055+201, 1830+285, 2209+080, Hooimeyer et al. 1992).

– Theoretical interpretation: morphologies of FR I sources are the result of

a deceleration from relativistic to non-relativistic speeds (Bicknell 1996;

Laing 1996). FR I sources are mostly supposed to be moving with sub-

relativistic and probably no more than transonic speeds (Bicknell 1984;

Begelman, Blandford & Rees, 1984). Their jets are therefore visible from

both sides of the central galaxy (because small relativistic velocities imply

small relativistic beaming). The transonic speeds on kpc are explained in

terms of a slower shear layer that surrounds the inner core of the jet (for

example, in M 87, Biretta & Owen, 1990 or Biretta, Zhou & Owen, 1995,

have detected a shear layer with Lorentz factor ≤ 2). The existence of this
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layer has been pointed out by several authors both theoretically (Laing

1996; Komissarov 1990) and observationally (e.g.,Swain, Bridle & Baum

1998; Biretta, Zhou & Owen 1995), and has been buttressed by numerical

simulations (like e.g.,Aloy et al. 1999b –3D RHD–; Hardee & Rosen, 1999

–3D MHD–). In the most powerful sources (FR II and quasars), the jet–

counter-jet asymmetries are understood as the result the enhancement of

the jet emission due to the relativistic beaming while the counter-jet is

outshined. The mechanism by which the relativistic flows inferred from

radio jets at pc scales extend to kpc scales is still an unresolved ques-

tion. However, the named transition and the ulterior propagation of jets

needs of an efficient mechanism that stabilizes the possible developing of

(magneto-)hydrodynamical instabilities (mainly Kelvin-Helmholtz insta-

bilities).

3.1.3. Numerical simulations

The study of the jet phenomenon using numerical simulations has become an

important tool to understand the nature of the jets along with theory and observa-

tions. In order to simulate astrophysical jets a fluid-like approximation is usually

made, considering the intergalactic medium (IGM) and the jets themselves as con-

tinuous mediums in which the hydrodynamic (HD) equations hold. The validity

of this approximation is justified because of the presence of micro-Gauss magnetic

fields which provide the collisional coupling of the plasma (and hence, diminishing

the collisional mean free path of the jet plasma) and, moreover, Begelman, Blandford

& Rees (1984) stated that in extragalactic jets the Larmor radii and Debye lengths

of positrons (or protons) and electrons are several orders of magnitude smaller that

the jet widths.

In BR74 was made the first one-dimensional Newtonian study of jets in order

to analyze the behavior of a steady flux in pressure equilibrium with the IGM. From

this work is concluded that the head of the jet must end into a discontinuity that

has a supersonic velocity which, in its turn, produces a bow shock behind the contact

discontinuity. In addition, the authors suggest that a movement parallel but with
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opposite sense to the jet ought to appear (the backflow) giving rise to the formation

of a cocoon than surrounds the beam.

The simulations performed by Rayburn (1977) and, remarkably, by Norman et

al. (1982) allowed for the verification of the jet model of BR74 and Scheuer (1974).

Similarly to the observations, the evolution of numerical complexity of the simu-

lations has grown in parallel to the improvement of computers and computational

techniques. The main goals of the numerical work in the late 1970s and 1980s have

been the simulation of classical (Newtonian) jets in three spatial dimensions and

the consideration of dynamically important magnetic fields (in the framework of the

ideal MHD). Classical HD simulations provided us a new insight into the structures

observed in many VLA radio images (Norman et al. 1982) while MHD simulations

showed the importance of toroidal magnetic fields for the confinement of jets (Clarke,

Norman & Burns 1989; Lind et al. 1989; Kössl, Müller & Hillebrandt 1990; Appl &

Camenzind 1992). The stability and mixing properties of high Mach number jets

have been studied by means of HD numerical simulations in Bodo et al. (1995) (2D

slab symmetry) or Bodo et al. (1998) (3D). The stability of MHD jets using an ar-

tificial viscosity scheme (see Chapter 2, §2.1) was explored by Hardee & Norman

(1988), Norman & Hardee (1988) or Hardee et al. (1992) (2D slab symmetry), and

Hardee, Clarke & Howell (1995) or Rosen et al. (1999) (3D jets). Numerical sim-

ulations have been used to investigate the confinement properties of overpressured

cocoons in hypersonic jets (see Begelman & Cioffi, 1989) by Loken et al. (1992).

In order to explain the observed morphologies in NAT and WAT sources, the in-

teraction with the IGM has been included in some simulations like e.g.,Balsara &

Norman (1992) –3D simulations of NAT jets with a cross wind–, Norman, Burns &

Sulkanen (1988) and Loken et al. (1995) –2D and 3D simulations of WAT sources in

which the ambient gradients play a crucial rôle in the morphology–.

In the late 1980s and during the 1990s the dynamical and morphological prop-

erties of relativistic jets have been investigated by means of relativistic simulations.

The classical numerical techniques (e.g.,Wilson 1979) failed to describe accurately

complex fluids with strong shocks, large Lorentz factors or were impractical in multi-

dimensions (see Norman & Winkler 1986). Such drawback restricted the relativistic

simulations to the stationary regime (Wilson 1987; Daly & Marscher 1988; Dubal
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& Pantano 1993; Bowman 1994). Thereat, in order to fix these problems and to be

able of undertaking relativistic simulations it was necessary to write the equations

of RHD as a system of conservation laws, and employ new numerical methods ex-

ploiting the hyperbolic and conservative character of RHD equations (see e.g.,Mart́ı

et al. 1991; Marquina et al. 1992; Schneider et al. 1993; Eulderink & Mellema 1995;

Mart́ı & Müller 1996). The new treatment has allowed to produce axisymmetric

time-dependent relativistic hydrodynamical simulations (Duncan & Hughes 1994;

Eulderink & Mellema 1994; Mart́ı et al. 1994, 1995, 1997; Komissarov & Falle 1998;

Rosen et al. 1999). These simulations allowed to conclude that the main relativistic

effect is that both the internal energy and the Lorentz factor increase the effective

inertial mass of the beam which directly contributes to enhance the stability of rela-

tivistic jets compared to their classical equivalents with similar parameterizations.7

Relativistic MHD simulations in 2D (van Putten 1993, 1996 –using pseudo-

spectral techniques–; Koide, Nishikawa &Muttel 1996; Koide 1997) and 3D (Nishikawa

et al. 1997, 1998) have been another step forward in the understanding of the jet

phenomenon. A remarkable difference between our HRSC methods and the TVD

methods used by the Japanese group is that Koide and collaborators code, instead

of using fluxes obtained by solving Riemann problems at zone interfaces, rely on the

addition of nonlinear dissipation terms to their Lax–Wendroff scheme to stabilize

the code across discontinuities. This stabilization method was originally proposed

by Davis (1984), who applied it successfully to the equations of classical HD. The

method is robust and simple as no detailed characteristic information is needed.

Koide and collaborators did simulate the evolution of the jet only for a very brief

period of time. This fact and the coarse grid zoning used in their simulations, pre-

vented them from studying genuine 3D effects in relativistic jets in any detail. On

the other hand, the relative smallness of the beam flow Lorentz factor (4.56, beam

speed ≈ 0.98) assumed in their simulations does not allow for a comparison with

Riemann-solver-based HRSC methods in the ultrarelativistic limit.

7The direct comparison between classical and relativistic jets is not possible, because the beam

velocity is an extra parameter (in the relativistic case) which cannot exceed the light speed. Some

issues in the method for this comparison have been outlined by Komissarov (1996), who suggested

to establish equivalents considering jets with the same useful power (the energy flux) or the same

thrust (the momentum flux) at the jet inlet.
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Finally, only very recently, within the framework of General Relativity, gen-

eral relativistic MHD 2D axisymmetric simulations of jet formation near a rotating

Kerr BH (assuming a fixed Kerr background metric) have been performed by Koide

et al. (1999a,b). However, their results are still preliminar, because in Koide et

al. (1999a) it is said that a jet is formed with a maximum velocity 0.93c (W = 2.7),

and for a non-rotating Schwarzschild black hole, the maximum outflow velocity is

less than 0.6c for initial magnetospheric conditions similar to those of the Kerr black

hole case. In Koide et al. (1999b), nevertheless, the maximum velocities obtained

are 0.4c (counter-rotating disk) and 0.3c (co-rotating disk), and the results in the

Schwarzschild case are very similar to the co-rotating case.

3.2. 3D Hydrodynamical simulations of large–scale jets

As stated in Chapter 2, one of the applications of GENESIS is the study of

large–scale jets. In order to begin such a research in three spatial dimensions we

have first considered a 3D axisymmetric reference model consisting of a relativistic

jet propagating through an homogeneous atmosphere. Of course, this model could

be calculated with a two-dimensional code using cylindrical coordinates. However,

it will be taken as a calibration of the results in 3D (compared with the same model

in 2D), and additionally it will be used as a reference model in order to compare

with other 3D models which result from a slight perturbation of the axisymmetric

one.

3.2.1. An axisymmetric jet in 3D

We have considered a 3D model corresponding to model C2 of Mart́ı et al. (1997),

which is characterized by a beam-to-external proper rest-mass density ratio η = 0.01,

a beam Mach numberMb = 6.0, and a beam flow speed vb = 0.99c (beam Lorentz

factor Wb ≈ 7.09). An ideal gas equation of state with an adiabatic exponent
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γ = 5/3 is assumed to describe both the jet matter and the ambient gas.8 The

beam is in pressure equilibrium with the ambient medium which fills a Cartesian

domain (X,Y,Z) with a size of 15Rb × 15Rb × 75Rb (120× 120× 600 computational

cells), where Rb is the beam radius. The jet is injected at z = 0 in the direction

of the positive z-axis through a circular nozzle defined by x2 + y2 ≤ R2
b , and is in

pressure equilibrium with the ambient medium. Outflow boundary conditions are

imposed everywhere except at the plane z = 0, where injection is assumed through

the nozzle and the rest of the plane has a reflecting boundary. Two different spa-

tial resolutions with 4 and 8 zones per beam radius were used in our calculations

(Figs. 3.1, 3.2). Simulations are typically performed with 16 processors and need

about ten thousand time iterations.

Given that our relativistic, highly-supersonic models are dimensionless, we can

scale the beam kinetic power, Pj , of the jets according to

Pj = 3.5 1046
(

Rb

100 pc

)2 ( ρa
10−26 g cm−3

)
erg s−1 , (3.1)

which for typical values of the beam radius and the ambient density is that of a

powerful jet (Rawlings & Saunders 1991, Daly 1995).

In Mart́ı et al. (1997) the simulation was performed in cylindrical coordinates

assuming axial symmetry. The spatial resolution was 20 zones per beam radius

both in the axial and radial directions. It is well known that the propagation of a

supersonic jet is governed by the interaction of jet matter with the ambient medium,

which produces a bow shock in the ambient medium and an envelope surrounding

the central beam (the cocoon, in BR74). The cocoon contains jet material deflected

backward at the head of the jet. In the case of highly supersonic jets, discussed in

Mart́ı et al. (1997), extensive, overpressured cocoons are formed with large vortices

of jet matter propagating down the cocoon/ambient medium interface. The vortices

are the result of Kelvin–Helmholtz instabilities at the interface between the jet and

the shocked ambient medium. The interaction of these vortices with the central

beam causes internal shocks inside the beam. These, in turn, affect the advance

8According to Mart́ı et al. (1997), high Mach numbers correspond to flows with small specific

internal energies and, consistently we have chosen for this model a nonrelativistic value for γ.
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speed of the jet making it highly non–stationary. The propagation speed of the jet

can be estimated from the momentum transfer between the jet and the external

medium assuming a one dimensional flow. For model C2 one obtains an advance

speed equal to 0.42c (which agrees with the 1D estimate for the head of the jet

speed9), whereas the 2D hydrodynamic simulation presented in Mart́ı et al. (1997)

gives a mean jet advance speed of 0.37c.

The four panels in Figs. 3.1, 3.2 display, from top to bottom, the logarithm of

the proper rest-mass density, pressure and specific internal energy and flow Lorentz

factor in the plane x = 0 at t = 160Rb/c, when the jet has propagated about

75Rb. The analysis of cross sections of the grid perpendicular to the the jet’s direc-

tion of propagation (not shown here) reveals acceptable symmetry of the numerical

simulation, i.e.,both the SLS and the SCS properties are maintained (see §2.3.10).

The gross morphological and dynamical properties of highly relativistic jets as

inferred from our 3D simulations are qualitatively similar to those established in

earlier 2D simulations. An extensive, overpressured cocoon with pressure about 20

times that in the beam at the injection point is found surrounding the jet. The

pressure and density at the head of the jet in the model with 8 zones/Rb are a

factor of 2 larger and 1.3 smaller, respectively, than in the 2D calculation. For

the model with 4 zones/Rb these factors are 1 and 1.3, respectively. In contrast

with the model with 4 zones/Rb, in which the propagation speed coincides with

the 1D estimate, the larger pressure at the head of the jet in the model with 8

zones/Rb causes it to propagate through the ambient medium at a larger speed in

the 3D calculation (0.47c instead of 0.42c for the 1D estimate and 0.37c for the 2D

simulation) producing a narrower profile of the bow shock near the head. In all

the simulations, the supersonic beam displays rich internal structure with oblique

shocks effectively decelerating the flow in the beam from a Lorentz factor equal to

7 at the injection point down to a value of about 4 near the head. Whereas gross

morphological properties are qualitatively similar in all three simulations, finer jet

details (e.g., number, size, position and development of turbulent vortices in the

cocoon) do not agree. However, it has been pointed out before that the fine structure

9v1D =
√

η∗R/(1+
√

η∗R)vb, with η∗R = (ρbhb)/(ρmhm)W 2
b , ρm and hm being the density and the

enthalpy of the external medium (for more details see, e.g.,Mart́ı et al. 1997)
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is highly dependent on the numerical grid resolution (see, e.g.,Kössl & Müller 1988).

Fig. 3.1.— Snapshots (from top to bottom) of the proper rest–mass density distribution,

pressure, specific internal energy (all on a logarithmic scale) and Lorentz factor of the rela-

tivistic jet model discussed in the text (vb = 0.99c, Mb = 6.0, η = 0.01, γ = 5/3) after 160

units of time. The resolution is 4 zones/Rb.
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Fig. 3.2.— Same as Fig. 3.1 but with a resolution of 8 zones/Rb.
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In the model with 4 zones/Rb (see Fig. 3.1), the material deflected at the head

of the jet forms a thick, stable overpressured cocoon surrounding the beam up to the

nozzle. Due to the small resolution only large vortices develop in the cocoon/external

medium surface which grow slowly. A turbulent cocoon with smaller vortices growing

at a faster rate (much more similar to the one got in the 2D cylindrical model) are

obtained by doubling the resolution (compare, e.g., the proper rest–mass density

panels in Figs. 3.1, 3.2). There exists a layer of high energy around the beam, which

is wider an more energetic in the model with the worst resolution. The layer widens

from the nozzle to the hot spot.

3.2.2. General considerations

The calculations in the following sections have been performed with an updated

version of the code GENESIS (see Chapter 2), which includes an additional conser-

vation equation for the beam-to-external density fraction to distinguish between

beam and external medium fluids. The beam material is injected with a beam mass

fraction f = 1, and the computational domain is initially filled with an external

medium (f = 0).

First of all, we will discus in detail the simulation showed in Aloy et al. (1999b).

In this memory such simulation corresponds to the model n50p01 (see Table 3.1).

This model is slightly perturbed compared with the axisymmetric case, but it dis-

plays all of the specific 3D morphodynamical features that are common to the re-

maining simulations. After that we will compare with other perturbed 3D models.

Aloy et al. (1999b) reported on a high-resolution 3D simulation of a relativistic jet

with the largest beam flow Lorentz factor performed up to now (7.09), the largest

resolution (8 cells per beam radius), and covering the longest time evolution (75

normalized time units; a normalized time unit is defined as the time needed for the

jet to cross a unit length; see Massaglia, Bodo & Ferrari 1996). These facts together

with the high performance of our hydrodynamic code allowed us to study the mor-

phology and dynamics of 3D relativistic jets for the first time. Here, we consider a

wider sample of models to study such features in more detail.

The evolution of the jet was simulated up to T ≈ 150Rb/c, when the head of
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the jet is about to leave the grid. The mean jet propagation speed is vh ≈ 0.5c, while

v1D ≈ 0.42c, i.e., our simulations are still within the 1D phase (see Mart́ı, Müller &

Ibáñez 1998). The scaled final time T ≈ 4.6 104 (Rb/100 pc) yr is about two orders

of magnitude smaller than the estimated ages of powerful jets. It is expected that in

the long term evolution (Mart́ı, Müller & Ibáñez 1998) both the jet advance speed

and the jet’s head pressure ph ≈ 2.6 10−7(ρa/10
−26 g cm−3) dyn cm−2 decrease until

they reach realistic values (vh ≈ 0.05c, ph<∼10−8 dyn cm−2; Daly 1995). Hence, our

simulations cannot describe the long term evolution of these sources and conclusions

should be extrapolated cautiously.

In order to induce three-dimensional effects, non–axisymmetry was imposed by

means of a helical velocity perturbation at the nozzle given by

vxb = ζpvb cos

(
2πt

τp

)
, vyb = ζpvb sin

(
2πt

τp

)
, vzb = vb

√
1− ζ2p , (3.2)

where ζp is the ratio of the toroidal to total velocity and τp the perturbation period

(i.e., τp = T/n, n being the number of cycles completed during the whole simulation).

This velocity field causes a differential rotation of the beam, the fluid near the

axis rotating faster. The wavelength of the perturbation, λp, is obtained from the

expression

λp = vzb τp ≈
vb
vh

L

n
, (3.3)

where L is the axial dimension of the grid (in our simulations, 75 Rb). Note that

the perturbation is chosen such that it does not change the velocity modulus, i.e., it

preserves mass, momentum and energy flux of the beam. Table 3.1 collects the

perturbation parameters considered in our study. The chosen parameters try to

cover different perturbation types and all their possible combinations. This is the

reason to include high (n = 50) and low (n = 15) frequency modes and small

(ζp = 0.01) and medium (ζp = 0.05) amplitude perturbations.

3.2.3. Morphology and dynamics of 3D relativistic jets

Figure 3.3 shows various quantities of the model n50p01 in the plane y = 0

at the end of the simulation. Two values of the beam mass fraction are marked

with white contour levels. The beam structure is dominated by the imposed helical
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Model n ζp τp λp

n15p01 15 0.01 10 11.8

n15p05 15 0.05 10 11.8

n50p01 50 0.01 3 3.5

n50p05 50 0.05 3 3.5

Table 3.1: Perturbation parameters of the numerical simulations and expected values of

the perturbation wavelength.

pattern with a characteristic wavelength of ≈ 3.0Rb (to be compared with the value

λ = 3.5Rb expected from Eq. (3.3)) and an amplitude of ≈ 0.2Rb.

3.2.3.1. Cocoon

The overall jet’s morphology is characterized by the presence of a highly tur-

bulent, subsonic, nearly asymmetric cocoon. The pressure distribution outside the

beam is quite homogeneous giving rise to a symmetric bow shock (Figs. 3.3b). As

in the classical case (Norman 1996), relativistic 3D simulations show less ordered

structures in the cocoon than in the 2D axisymmetric calculations (where strongly

structured circular vortices are present). As seen from the beam mass fraction levels,

the cocoon remains quite thin (∼ 2Rb − 3Rb).

The flow field outside the beam shows that the high velocity backflow is re-

stricted to a small region in the vicinity of the hot spot (Fig. 3.3e), the largest

backflow velocities (∼ 0.5c) being significantly smaller than in 2D models. The flow

annulus with high Lorentz factor found in axisymmetric simulations (see flow pat-

terns in Mart́ı et al. 1996) is also present, but it is restricted to a thin layer around the

beam and possesses sub-relativistic speeds (∼ 0.25c). The smallness of the backflow

velocities in the cocoon do not support the possibility of having relativistic beaming

of the emitting material moving backwards in the counter-jet. The unrealistically

large speed of the hot spot (see Sect. 3.2.3.4) prevents fast backflows because the

67



Fig. 3.3.— Rest-mass density, pressure, flow Lorentz factor, specific internal energy and

backflow velocity distributions (from top to bottom) of the model n50p01 in the plane y = 0

at the end of the simulation. White contour levels appearing in each frame correspond

to values 0.95 (inner contour; representative of the beam) and 0.05 (representative of the

cocoon/shocked external medium interface) of the beam mass fraction. The bottom panel

displays the isosurface of beam mass fraction equal to 0.95.
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material efficiently pushes the terminal contact discontinuity and, therefore, only a

small fraction of the beam fluid is deflected backwards. However, as the hot spot

pressure is larger too, it favors the acceleration of the rear-going beam material.

3.2.3.2. Beam and hot spot

Within the beam the perturbation pattern is superimposed to the conical shocks

at about 26 and 50Rb. The beam does not exhibit the strong perturbations (de-

flection, twisting, flattening or even filamentation) found by other authors in the

classical case (Norman (1996) for 3D HD jets; Hardee (1996) for 3D MHD jets).

This can be taken as a sign of stability, although it can be argued that our simu-

lation has not evolved far enough. The beam cross section and the internal conical

shock structure are correlated (Fig. 3.3). Before the first recollimation shock the

beam cross section shrinks to an effective radius of 0.7Rb. After this shock and in

the rarefaction the beam reexpands and stretches due to an elliptical surface mo-

de (e.g.,Hardee 1996). Between 37Rb
<∼z<∼50Rb the beam flow is influenced by the

second recollimation shock, which causes a compression of the beam. A triangular

mode seems to grow in this region.

The helical pattern propagates along the jet at a velocity which is intermediate

between the jet’s head speed and the beam speed10 which could yield to superluminal

components when viewed at appropriate angles. Besides this superluminal pattern,

the presence of emitting fluid elements moving at different velocities and orientations

could lead to local variations of the apparent superluminal motion within the jet.

This is shown in Fig. 3.4, where we have computed the mean (along each line of

sight, and for a viewing angle of 40 degrees) local apparent speed. The distribution

of apparent motions is inhomogeneous and resembles that of the observed individual

features within knots in M87 (Biretta, Zhou, & Owen 1995). In this source, whereas

a typical apparent speed of 0.5c is measured for knots A, B and D, small regions

within the knots show a large range in speeds (up to 2.5c). Besides that, significant

motions transverse to the jet axis were found in knots A, B and C with a trend for

10see animation at http://scry.uv.es/aloy.html/JETS/videos/n50p01
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larger transverse speeds at larger distances from the nucleus, and specially in the

regions where the jet appears to bend and oscillate form side to side.

Fig. 3.4.— Mean local apparent speed for the jet of Fig. 3.3 observed at an angle of 40

degrees. Arrows show the projected direction and magnitude of the apparent motion the

contours corresponding to values of 1.0 c, 1.6 c, and 2.2 c, respectively. Averages have been

computed along each line of sight using the emission coefficient as a weight.

The jet can be traced continuously up to the hot spot which propagates as a

strong shock through the ambient medium. Beam material impinges on the hot

spot at high Lorentz factors. We could not identify a terminal Mach disk in the

flow. We find flow speeds near (and in) the hot spot much larger than those inferred

from the one dimensional estimate. This fact was already noticed for 2D models by

Komissarov & Falle (1996) and suggested by them as an acceptable explanation for

an excess in hot spot beaming.

3.2.3.3. Beam/cocoon shear layer

We find a layer of high specific internal energy (Fig. 3.3d) surrounding the beam

like in previous axisymmetric models (Aloy et al. 1999a or §3.2.1) although in the

specific internal energy is higher in the perturbed models (by more than a factor

of 3). A comparison with the backflow velocities (Fig. 3.3e) shows that it is mainly

composed of forward moving beam material at a speed smaller than the beam speed.

The intermediate speed of the layer material is due to shear in the beam/cocoon

interface, which is also responsible for its high specific internal energy. It is possible

to characterize the shear layer, in order to have an operative criterion, as the region
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having a beam mass fraction 0.2 < f < 0.8.

The existence of such a boundary layer has been invoked as the cause of a smooth

deceleration of the material in the jet which offers an admissible explanation for the

existence of emission gaps close to the jet basis and the decrease of the jet sidedness

ratio with distance from the nucleus (Laing 1996). For appropriate angles to the line

of sight, it would be also responsible of the limb brightening of the jets (Komissarov

1990).

De Young (1993) has compared boundary layers in laboratory experiments with

the ones in FR Is as inferred from observations to constrain the properties of the

ambient medium surrounding these sources. Additionally, De Young has concluded

that the very low radio luminosity of the jets in FR IIs and the lack of deceleration

may be due to the relatively weak interaction of the jets in these sources with the

ambient (i.e., if a boundary layer exists in FR IIs, its relative importance in the

dynamics is smaller than in FR Is). However some manifestation of these boundary

layers in FR IIs has been reported recently (Swain, Bridle & Baum 1998). Relying on

total and polarized radio observations of the jets in the FR II radio galaxy 3C 353 the

authors infer that most of the jet emission comes from a thick outer layer where the

magnetic field has no component transverse to the jet axis and where the axial and

toroidal components are random and approximately in equipartition. The authors

suggest as a possible interpretation that the emission layer is a boundary layer where

the field is ordered by velocity shear, the apparently lower emissivity near the jet

axis being produced by Doppler hidding of emission from fast flowing material in

the jet core.

The diffusion of vorticity caused by numerical viscosity is responsible for the

formation of the boundary layer. Although being caused by numerical effects (and

not by the physical mechanism of turbulent shear) the properties of PPM–based

difference schemes are such that they can mimic turbulent flow to a certain degree

(Porter & Woodward 1994). Hence, our calculations represent a first approach

to study the development of shear layers in relativistic jets and their observable

consequences.

The structure of both the shear layer and the beam core are sketched in Fig 3.5.

The specific internal energy of the gas in the shear layer is typically more than one
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order of magnitude larger than that of the gas in the beam core. The shear layer

broadens with distance from 0.2Rb near the nozzle to 1.1Rb near the head of the jet

(Fig. 3.6).

Fig. 3.5.— Beam mass fraction (dotted line), flow Lorentz factor (filled line) and specific

internal energy (dashed line), in arbitrary units, accross the beam (z = 11.7Rb). Model

n50p01.

3.2.3.4. Jet propagation efficiency and disruption

The mean jet advance speed is 0.47c, but the jet’s propagation proceeds in two

distinct phases: (i) for t<∼100 the jet propagates roughly at the estimated 1D speed

(0.42c); (ii) for t>∼100 the jet accelerates and propagates faster (0.55c). Comparing

with the 3D simulation of Norman (1996) we find a similar behaviour: after a

short 1D phase and before the deceleration, the jet transiently accelerates to a
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propagation speed which is ≈ 20% larger than the corresponding 1D estimate. This

result contradicts the one obtained by Nishikawa et al. (1997, 1998), who found

a propagation speed of only 70% of the corresponding 1D estimate in a shorter

(≈ 20 normalized time units) simulation of a denser jet. During phase (i) the

propagation speed slightly oscillates around the 1D value, a behaviour already found

for classical jets (Norman et al. 1982) and for axisymmetric relativistic jets (Mart́ı

et al. 1997). It can be understood in terms of the periodic variations in the terminal

shock structure changing from Mach disk to biconical and back. Figure 3.6 shows

the axial component of the momentum of the beam particles (integrated across the

beam) along the axis, which decreases by 45% within the first 60Rb. Neglecting

pressure and viscous effects, and assuming stationarity the axial momentum should

be conserved, and hence the beam flow is decelerating. The momentum loss goes

along with the growth of the boundary layer whose material is accelerated and heated

by viscous stresses. Biconical shocks in the beam are responsible for the break in

the axial momentum profiles at z = 26Rb and z = 50Rb, because when the beam

material passes a conical shock and enters into the adjacent rarefaction fan, it is

accelerated by local pressure gradients.

How can the jet accelerate while the beam material is decelerating? Although

the beam material decelerates, its terminal Lorentz factor is still large enough to

produce a fast jet propagation. On the other hand, in 3D, the beam is prone to

strong perturbations which can affect the jet’s head structure. In particular, a simple

structure like a terminal Mach shock will probably not survive when significant 3D

effects develop. It will be substituted by more complex structures in that case,

e.g.,by a Mach shock which is no longer normal to the beam flow and which wobbles

around the instantaneous flow direction. Another possibility is the generation of

oblique shocks near the jet head due to off–axis oscillations of the beam. Although

difficult to check quantitatively (due to both the lack of an operative definition

for Mach disk identification and the present resolution of our simulations11) both

possibilities will cause a less efficient deceleration of the beam flow at least during

some epochs. At longer time scales the growth of 3D perturbations will cause the

11In practice, the resolution of our simulations is mainly limited by the available RAM memory

of the computer employed
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Fig. 3.6.— Into each panel, the dashed line represents the axial component of the momen-

tum of the beam particles (integrated accross the beam) along the jet axis at the end of the

simulation. The solid lines mean beam radius as a function of distance for a beam particle

fraction f ≥ 0.2 (top line) and f ≥ 0.8 (bottom line), respectively. Quantities are in code

units.

beam to spread its momentum over a much larger area than that it had initially,

which will efficiently reduce the jet advance speed.
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Fig. 3.7.— Same as Fig. 3.3 for model n50p05.
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Fig. 3.8.— Same as Fig. 3.3 for model n15p01.
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Model Amplitude (Rb) λp (Rb) vh

n15p01 0.2 9.1 0.46

n15p05 1.3 9.0 0.40

n50p01 0.2 3.1 0.48

n50p05 0.4 2.9 0.46

Table 3.2: Approximate numerical values of the perturbation amplitudes, wavelengths and

mean jet head propagation speeds of the numerical simulations.

3.2.4. Other models

Next we discuss other models obtained varying the perturbation parameters

(Table 3.1). As in the n50p01 case, the evolution of the jets was simulated up to

T ≈ 150Rb/c. The mean jet propagation speeds (see Table 3.2) lie in the interval

vh ∈ [0.4c, 0.5c] (compare with v1D = 0.42c), so that all of them are still within

the 1D phase. Figures 3.7-3.9 show various quantities of the jet in the plane y = 0

at the end of the simulation. In every case, the beam structure is dominated by

the imposed helical pattern with characteristic wavelengths and amplitudes given in

Table 3.2 (to be compared with the values given in Table 3.1 expected from Eq. 3.3).

High frequency modes tend to stabilize the jet despite of the strength of the

perturbation, because for n = 50, the amplitudes remain below 0.4 Rb, and the mor-

phology is more similar to the non perturbed model (see Fig. 3.2). Low frequency

modes seem to be much more perturbed, particularly, the model n15p05 displays

the largest off-axis perturbations that, eventually, can made the jet to enter into

a disruptive phase on larger time scales. The explanation for this is that for low

frequencies of the perturbation, the velocity field at the injection nozzle points into

each considered solid angle more time than for high frequencies and, consequently,

beam material travels farther in directions normal to the jet axis. Hence, the am-

plitude of the beam distortion is larger. As expected, the strongest perturbation

(ζ = 0.05) induces bigger amplitudes for the same frequency.
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Fig. 3.9.— Same as Fig. 3.3 for model n15p05.
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3.2.4.1. Cocoon

Similarly to n50p01, the cocoon is highly turbulent, non-asymmetric and sub-

sonic. It remains quite thin for models with ζp = 0.01 but it widens for models with

ζp = 0.05 (∼ 3Rb − 5Rb) as long as the jet propagates efficiently. Nevertheless, the

model n15p05 displays a supersonic envelop around the beam formed by material

which is dragged by the off-axis perturbed beam material. The beam in this case

acts rarefying some regions of a channel (see e.g., the little dark holes at z = 27Rb

in panels a and b of figure 3.9) of radius ∼ 1.3Rb
12. The dragging effect is due

to a mixture of the viscous forces that exist between the beam and the surround-

ing medium and the Venturi effect that the moving beam material exerts on the

surrounding cocooun.

A layer with a relatively high Lorentz factor can be found around the beam

(thinner in the models with ζp = 0.01 than in those with ζp = 0.05), nevertheless,

the mean speed of this layer is sub–relativistic (∼ 0.25c − 0.35c). The highest

backflow velocities (∼ [0.5c, 0.7c]) are restricted to a small region in the vicinity of

the hot spot (Figs. 3.7-3.9 panels e) and are significantly smaller than in 2D models

(consecuently, in no case a relativistic beaming of the counter–jet is feasible). This

is due to several factors; the first one is the additional degree of freedom in 3D,

which allows the backflow to move in directions different to the one determined by

the Z-axis. The second factor is the unrealistically large speeds of the hot spots

(see Sect. 3.2.3.4) which prevents fast backflows in models with small perturbations.

However, an effect that helps to have larger backflow velocities is the bigger hot spot

pressures (see Table 3.3), which favor the acceleration of the deflected beam material,

at least for the less perturbed models. For largest perturbation (e.g.,model n15p05)

the hot spot pressure is smaller than in 2D and, consistently, the propagation speed

is the lowest one. Let us remain that vh ∝ (phs/ρext)
1/2, and as can be seen in the

second row of Table 3.3 this proportionality is almost confirmed (the constant of

proportionality is ∼ 1.42− 1.93 for 3D models). Another practical conclusion which

may be extracted from Table 3.3 is that the hot spot pressure decreases as the size

of the perturbation grows (an explanation for this trend is given below).

12This is precisely the perturbation amplitude corresponding to this model.
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Model 2D 3D n15p01 n15p05 n50p01 n50p05

log phs -0.82 -0.42 -0.45 -1.14 -0.51 -0.73√
p
hs

vh
1.79 1.93 1.74 1.42 1.61 1.51

Table 3.3: Values of the hot spot pressure for the unperturbed (2D model C2 of Mart́ı et

al. 1997, and 3D axisymmetric reference model) and perturbed models at the end of each

simulation. The second row shows the constant of proportionality between the hot spot

pressure and the mean velocity of the head.

3.2.4.2. Beam and Hot spot

The models with low frequency or high ζp value display some twisting, flatten-

ing and local deflections of the jet head, although no evident signs of filamentation

have been found (see beam mass fraction isosurfaces on Figs. 3.3, 3.7 – 3.9). How-

ever, it is remarkable that nor these 3D effects is strong enough to break the beam

neither they grow significantly over the linear regime to be disruptive during the

simulation run time. Even if this may be a sign of stability, let us remind the reader

that in Sect. 3.2.2 we argued that our simulations were still in the 1D phase and,

furthermore, our simulations have run for a “physical time” two orders of magnitude

smaller that the real sources, and therefore, the perturbations might not have had

enough time to grow substantially.

Within the beam the perturbation pattern is superimposed to the shocks. To

determinate the location of the shocks we have considered the relative increments

of the averaged pressure over each cross section of the beam (p̄bk
13). The results are

plotted on Fig. 3.10, where the most significative feature is the relative maximum

of p̄bk in the interval [26, 29]Rb. This fact, together with the increment in density

and the jump in velocity, allows us to conclude that the maximum is associated to

a recollimation shock. In the 2D axisymmetric case, considering that the evolution

13The mathematical definition of this variable is: p̄b
k =

∑
i,j,fijk>0.85

pijkfijk∆xi∆yj∑
i,j,fijk>0.85

fijk∆xi∆yj
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of the model C2 has arrived only to 130.23 Rb/c, the first recollimation shock is at

17 Rb(the second shock ∼ 34Rb). The recollimation effect is seen in isosurfaces of

f (Figs. 3.3, 3.7 – 3.9) and is presented in Fig. 3.10 as a decrement of p̄bk which is

inversely proportional to the beam cross section.

Fig. 3.10.— Averaged beam pressure over each beam cross section.

In the less perturbed models, another recollimation shock is seen at about 50Rb.

This shock seems to disappear in the model n15p05. An acceptable explanation is

that all the models are produced as perturbations on a reference axisymmetric one

which has the first biconical shock at about 27 Rb, so that it is natural that the

structure of the reference model is partially retained by the perturbed ones at least

during an initial phase. This justifies the presence and location of the first shock (it is

closer to the injection point and the estructure within this region is still dominated

by the initial data). However, as the jets evolve the non linearity of the modes

excited by the perturbation give rise to a quantitatively different morphology at
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larger scales. A confirmation of this point is that the beam in the model n15p05 is

highly distorted after 50Rb, and the main shock structure is almost lost.

The beam structure is very similar for the models n50p01 (Fig. 3.11) and n15p01

(Fig. 3.13) and, in both cases an effective radius of 0.7Rb results from the stretching

of the beam cross section (see subsection 3.2.3.2) between the first and the second

recollimation shock. Of course, the main difference between both models is that the

amplitude of the perturbation is larger for n15p01 than for n50p01 and, consequently,

the beam local axis oscillates more in n15p01 than in n50p01.

The models n50p05 (Fig. 3.12) and n15p05 (Fig. 3.14) show a smaller con-

traction of the beam after the first recollimation shock. In the model n50p05, the

perturbation symmetrizes the beam shape in such a way that it seems almost circu-

lar up to ∼ 33Rb. Then, the cross section shrinks and starts to develop a triangular

mode at ∼ 48Rb. Approximately 10Rb farther this mode is about to break in

filaments the beam. The model n15p05 is actually so perturbed that is difficult

to evaluate the effect of the shock on the beam structure. Additionally, due to

the large off-axis oscillations the shape of the beam is highly distorted by elliptical

modes (starting at ∼ 24Rb), triangular modes (at ∼ 37Rb) and other non linear

effects. Let us remark that is possible that filaments on the beam are not seen due

to the numerical diffusion inherent to the advection of the beam mass fraction.

The helical pattern propagates along the jet at different velocities, depending

on the perturbation. While for models less perturbed it is closer to the beam speed,

for the more perturbed ones it is nearly equal to the head’s velocity (e.g., in n15p01

and n15p05 this velocity is ∼ 0.46, while their head’s velocities are 0.46 and 0.40

respectively). Given that the presence of emitting fluid elements moving at relativis-

tic speeds in non axial directions can lead to local superluminal motions for favored

angles to the line of sight, we have analyzed these possibilities: (i) apparent speeds

much larger than the one expected for a Lorentz factor ≈ 7 at a certain viewing

angle, (ii) large apparent transverse motions in our models by computing the mean

(along each line of sight and for a viewing angle of 40 degrees) local apparent speed of

all the fluid elements as if they were emitting flows (Fig. 3.4 with arrows showing the

magnitude and projected direction of the apparent motion), and (iii) inhomogeneous

distribution of apparent speeds. We find that for model n50p01, the first possibility
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Fig. 3.11.— Shape of the beam mass fraction levels 0.2 and 0.8 for model n50p01 at

different distances from the injection point. The central cross represents the z−axis.

is rejected because, for the considered viewing angle, the maximum apparent veloc-

ity computed is ∼ 2.63, which corresponds exactly with the theoretical maximum

for the beam speed at the injection point. The second possibility is not completely

discarded, although the range of apparent velocities lies in the expected (theoretical)
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Fig. 3.12.— Same as Fig. 3.11 for model n50p05.

range. However, it is true that we can see a distribution of apparent velocities which

is not axisymmetric, and it is the result of the fact that, at the considered time,

a number of fluid elements have velocities pointing towards the observer (and this

points are enhanced) while other may point in any other direction (having a smaller
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Fig. 3.13.— Same as Fig. 3.11 for model n15p01.

Doppler boosting). Variations of this kind in the apparent velocity field have been

found in e.g.,M87 (Biretta, Zhou & Owen 1995). The analysis of other models is

still not done, however, we expect that all of them satisfy the third possibility. We

believe that the model n15p05 is a good candidate to fulfill the second possibility
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Fig. 3.14.— Same as Fig. 3.11 for model n15p05.

because it displays the largest out of axis motions. In addition, for some angles to

the line of sight close to the pitch angle of the helical pattern (roughly 40◦; Fig 3.9c)

a set of separate components moving with the velocity of the pattern are feasible

(although a more detailed analysis is necessary in order to be sure of this assertion).
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3.2.4.3. Beam/cocoon shear layer

The layer of high specific internal energy (Figs. 3.3, 3.7 – 3.9 panels d) sur-

rounding the beam and moving forward at a velocity smaller than the beam speed

(Figs. 3.3, 3.7 – 3.9 panels e) is present in all the models, but it is more distorted in

the more perturbed ones.

The structure of both the shear layer and the beam core are sketched in Figs. 3.5,

3.15 – 3.17 (these figures show one dimensional cuts at a distance of z = 11.7Rb

from the origin). The specific internal energy of the gas in the shear layer is, in every

model, typically more than one order of magnitude larger than that of the gas in

the beam core. Table 3.4 shows the approximate range of variation of the width of

Fig. 3.15.— Same as Fig. 3.5 for the model n50p05.
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the core and the shear layer for the models analyzed here. The shear layer broadens

with distance from ∼ 0.2Rb near the nozzle to a value near the head of the jet

which is different for every model. Nevertheless, the maximum width of the layer

grows with the perturbation size and decreases with the frequency. This trend is

shown in Fig. 3.6, where the solid lines display the mean radius as a function of the

axial position for the two values of f that determinate the limits of the shear layer.

Model rc ∆rs

n50p01 1.1-0.8 0.2-1.1

n50p05 1.1-0.9 0.2-1.6

n15p01 1.1-0.7 0.2-1.1

n15p05 1.1-0.7 0.2-2.0

Table 3.4: Width of the beam core and shear layer. Values at the left of the variation inter-

vals correspond to values near the injection position whereas values at the right correspond

to values near the jet head.

One can realize that the inner part of the shear layer (lower solid lines in the figure)

behaves differently for different values of ζp. For the models n50p01 and n15p01 the

layer grows inwards up to the first recollimation shock (∼ 26Rb) then it expands

and shrinks again reaching a new local minimum at the second recollimation shock

(∼ 48Rb). However, for ζp = 0.05 the inner boundary of the shear layer is almost

uniform up to ∼ 40Rb and then it decreases in radius (faster in model n15p05).

A more detailed picture of the shape of the cross section of the shear layer is

given by the isocontours f = 0.2, 0.8 in Figs. 3.11 – 3.14. Evident signs of disruption

of the layer are located from 44Rb and after, particularly in model n15p05, in which

the fixed width selected to display the shear layer (a 3Rb× 3Rb window centered on

the initial axis of the simulation) is not enough to capture the full extension of the

layer.
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Fig. 3.16.— Same as Fig. 3.5 form the model n15p01.

3.2.4.4. Jet advance and disruption

The evolution of the head’s position for every model is displayed in Fig. 3.18. It

is noticeable from the head’s position at the end of the simulation that the mean jet

advance speeds are unrealistically large (the exact values are written in Table 3.2),

even larger than the 1D estimated speed of 0.42c (except for model n15p05). All

the models propagate following two distinct phases which are delimited by a turning

time (t12) lying in the interval [85, 110], when the head of the jet has propagated

along 40Rb. These phases are characterized by different propagation speeds, v1

(phase 1) and v2 (phase 2) that are presented in Table 3.5. The general behavior is

that the jet starts to propagate with a velocity of 0.43c−0.45c, which is close to v1D

(but a bit larger). Then, most of the models accelerate at considerably larger speeds

(about 9% to 26% larger than the previous v1 velocities). Contrary to this general
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Fig. 3.17.— Same as Fig. 3.5 form the model n15p05.

trend, the model n15p05 decelerates up to v2 = 0.37c. This is again a result of the

applied perturbation because as mentioned in previous sections, the cross section of

the beam at the jet end is bigger than in the rest of the models. Consequently, the

effective advance surface is larger too, and, in addition, the hot spot pressure is the

lowest one (see Table 3.3), allowing for a smaller head speed.

From Fig. 3.6 we infer the same qualitative conclusion for all the models than for

n50p01 (see 3.2.3.4). The axial component of the momentum of the beam particles

decreases and hence the beam flow is decelerating. However, the degree of deceler-

ation is very different for models with ζp = 0.05 (the axial momentum at 60Rb is a

factor ∼ 2.7− 4 smaller than at injection nozzle) than for those with ζp = 0.01 (an

smooth momentum loss of ∼ 50% is noticeable in the first 60Rb). This behavior is
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Model v1 v2 t12 z12

n50p01 0.43c 0.54c 85 36

n50p05 0.45c 0.49c 93 42

n15p01 0.43c 0.52c 110 46

n15p05 0.44c 0.37c 80 35

Table 3.5: Velocities of the heads of the jets in each propagation phase. t12 and z12 are the

times and distances that separate the two phases (both quantities in code units).

explained in terms of the growth of the boundary layer (see 3.2.3.4), since this layer

is bigger (so that the dissipation of axial momentum due to viscous stresses –which

depend on the extension of the contact surface– is bigger) for the strongest pertur-

bation (Figs. 3.12, 3.14) than for the smallest one (Figs. 3.11, 3.13). Furthermore,

the strength of the perturbation by itself motivates a change of axial into non-axial

momentum, because for ζp = 0.05 we are putting in non-axial directions five times

more momentum than in the case ζp = 0.01. Actually, the perturbation drives the

beam along a twisted path instead of along a right one (as in the axisymmetric case),

and in order to twist the path, a part of the initial axial momentum is needed. The

momentum loss rate is almost constant into the first 40Rb (of course, it is steeper

for ζp = 0.05), and then enters into an oscillatory phase which coincides with a

region where the cocoon is particularly turbulent and perhaps large external mass

entrainment is taking place.

Even if the beam material is decelerating most of the models (except n15p05)

accelerate after t12. The suggested mechanism to account for this acceleration has

been proposed in subsection 3.2.3.4. However, we expect that at longer time scales

the growth of the perturbations will spread the momentum of the beam over a much

larger area than that it had initially, reducing the jet advance speed (actually, this

is the mechanism that we has started to work for n15p05 –the model having the

largest cross sectional area near the head of the jet–).
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Fig. 3.18.— Evolution of the head’s position for every numerical model.

3.3. Emission from 3D relativistic jets

Since the radio-emission is the observable signature of the astrophysical jets,

we need to be able to produce radio maps in order to explain totally or partially

(i.e., some features) the existent observations. VLBI imaging of some radio-loud

AGNs revealed the presence of narrow cones or jets where the radio emission was
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mainly concentrated, and another smaller regions or components where the emission

was more powerful. These components may move at apparent superluminal speeds

which is explained in the framework of the standard model (see e.g.,Pearson et

al. 1981, or Sect. 3.1.2) considering a relativistic jet (W ∼ 10) viewed at small angles

to the line of sight.

The analytical models aiming to explain the appearance of radio jets were de-

veloped by Jones & O’Dell (1977a,b), Marscher (1980), Marscher & Gear (1985) and

Königl (1981). They studied the spectrum of the synchrotron emission produced in

different parts of the jet and the perturbations induced on the spectrum of such

emission due to the jet inhomogeneities. The inhomogeneities were introduced to

mimic the ejection of components in real sources. Such ejections are usually pre-

ceded by outbursts in emission at radio wavelengths, whose frequency dependent

light curves of both total and polarized flux were successfully interpreted as trave-

ling shock waves (over the underlying steady jet). The three regions in which the

jet was divided came from BR74 and, of course, this division relies on a simplified

hydrodynamical model (actually, the jet shape is theoretically inferred instead of

being the result of a complete numerical calculation).

The standard emission model assumes that the jet (at pc scale) is inertially

confined, and it is characterized by its Lorentz factor, the half-opening angle and

the distance to a given starting point (the fiducial point). The jet is formed by

an ultrarelativistic plasma described as an ideal gas EOS with constant adiabatic

index (γ = 4/3). The plasma is magnetized and the charged particles (electrons,

ions or positrons) follow helicoidal paths around the magnetic field lines. Given that

the particles are accelerated (due to the helicoidal trajectory), they will emit elec-

tromagnetic radiation (the synchrotron radiation). The variations of the magnetic

field, the number density per unit of energy, etc., are determined by the adiabatic

expansion of the jet. The presence of shocks in the fluid is allowed and they are

supposed to comprise two fronts (forward and rear fronts; see Hughes et al. 1985) in

order to connect the shocked region with the steady jet.

The detected synchrotron emission in the ultraviolet, optic and infrared bands

comes from the innermost parts of the jet, which are optically thick to the radioe-

mission. The maximum in the radio band is produced where the Lorentz factor,
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and hence the Doppler boosting, is maximum. This region is usually identified as

the radio-core. The rest of the external part of the jet is optically thin at radio

frequencies.

The radiation density in the innermost parts of the jet is a bit larger than

the energy density associated to the magnetic field. This makes possible that the

relativistic electrons interact with the photons coming from the synchrotron emission

increasing their energy (of the photons). This process is known as synchrotron-self

Compton (SSC). Using this mechanism either X-rays (by first order scattering) or

gamma-rays (by second order scattering, being more energetics because the photons

have interacted twice with the electrons) are produced. In this region, the internal

energy of the relativistic plasma is converted into bulk kinetic energy and the jet

accelerates (Marscher 1980; Maraschi et al. 1992).

The external part of the jet is characterized by the synchrotron emission in

radio and is observed using VLBI. Here the jet does not accelerate any more and

expands adiabatically. The conservation of the magnetic flux along with the adia-

batic expansion produce a decrease of the magnetic field and the particle density

along the jet and, consequently, the synchrotron emission.

The theoretical models gave rise to more detailed numerical models (e.g., Jones

1988; Hughes, Aller & Aller 1989a, b; Marscher, Gear & Travis 1992; Gómez, Al-

berdi & Marcaide 1993, 1994; Gómez et al. 1994) trying to validate the underlying

theory and to get the physical jet parameters which were able to match the observa-

tions of some sources. However, all these previous works (as the theoretical models)

were limited by an oversimplified hydrodynamical evolution (result of the solution

of the one-dimensional RHD equations). Such restriction has motivated the com-

bination of RHD in 2D with the calculation of the synchrotron radiation transfer

at pc scales. The first numerical simulations of the pc scale synchrotron emission

from hydrodynamic relativistic jets were presented in Gómez et al. (1995). Since

then, other works have followed this idea (Gómez et al. 1997; Duncan, Hughes &

Opperman 1996; Mioduszewski, Hughes & Duncan 1997; Komissarov & Falle 1997).

From their simulations these authors inferred that the observations of such sources

can be explained in terms of traveling perturbations (or shocks) in steady relativistic

jets. Other important consequence of this description has been the establishment
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of the rôle played by the external medium in determining the jet opening angle

and the presence and positions of standing shocks (actually, the opening angle is a

consequence of the external medium pressure gradient).

The present work follows the same algorithm to evaluate the emission from 3D

relativistic jets than in Gómez et al. (1995). The key points of this method are two:

(1) the jet structure is calculated using a relativistic time-dependent hydrodynamical

code and (2), the radio emission from the model jets is calculated by integrating the

transfer equations of synchrotron radiation, accounting for the appropriate opacity

and relativistic effects, such as Doppler boosting and relativistic aberration. The

first part is made here by using GENESIS, and we have employed the same hydro-

simulations than in the previous sections. The radio emission, has been calculated

with the same code than in Gómez et al. (1994, 1995 and 1997) and, for the sake of

completeness, we explain in the Appendix D the basic ingredients of the calculations

involved in what the emission concerns.

Gómez et al. (1995) approach relies on several physical hypothesis like, e.g., that

the particle and energy density of these non-thermal electrons at the jet inlet are

assumed to be proportional to the thermal electrons, which dynamics are computed

using our relativistic hydrodynamical simulations, i.e., emissivity of the jet is com-

puted from the high energy relativistic non-thermal electrons. This approach has

been followed previously by different authors (Rayburn 1977; Wilson & Scheuer

1983; Mioduszewski, Hughes, & Duncan 1997; Komissarov & Falle 1997) as well as

by Jones, Tregillis & Ryu (1999), as the initial assumption before allowing radiative

loses or accelerations by shocks to change the energy distribution of the non-thermal

electrons.14 It is therefore a common basic ansatz when studying the emission of

jets in AGNs using hydrodynamical simulations.

The validity of our assumption can be asserted by considering that the total

energy carried by the non-thermal electrons is significantly smaller than for thermal

gas, and therefore they are expected to share the same dynamics than the simu-

lated relativistic thermal gas. Any exchange between internal and kinetic energy

14In such work, the non-thermal flow is assumed to share the dynamics of their non-relativistic

computed flow.

95



along the jet will maintain the proportionality between thermal and non-thermal

electrons. Only gains by particle acceleration in shocks or losses by radiation can

modify this proportionality. In the model presented in this memory we are only

interested in studying the emission at radio wavelengths, for which the loses can be

neglected (specially taking into account that in our model the magnetic field to ther-

mal particle energy ratio is small –see below–). We are only interested in studying

the emission from the jet, neglecting the hot spot and the cocoon, where no strong

shocks are found (see also Jones, Tregillis & Ryu 1999). Therefore, we do not expect

to have strong particle accelerations that could influence the non-thermal spectra,

and hence our emission calculations. Furthermore, the emission distribution is not

influenced by the particular value chosen for the proportionality between the non-

thermal and thermal electrons. It would only change the final quantitative emission

values, something that is unimportant in our results.

The magnetic field energy is set to be locally proportional and significantly

smaller than the particle energy density. Therefore, although the structure of the

magnetic field is set in a certainly arbitrary way, we can be confident that the jet

dynamics will not be influenced by the field. Non relativistic MHD simulations of

Jones, Tregillis & Ryu (1999) show that even with “weak” magnetic fields there are

numerous places in the cocoon where magnetic, Maxwell stresses are significant. Is

therefore in the cocoon where the strongest shocks and magnetic influence in the

jet dynamics are found, not in the jet itself. We explicitly neglect the emission

from the cocoon and hot spot, consistently, our approximation of considering the

jet dynamics unaffected by the magnetic field (as well as neglecting the radiative

losses in the emission at radio wavelengths) seems completely appropriated. Once

the magnetic field has been chosen dynamically unimportant, we are allowed to

consider different, certainly ad hoc, magnetic field jet geometries.

In this memory we study for the first time the radio emission properties of

three-dimensional relativistic hydrodynamical models, focusing on the observational

consequences of the interaction between the relativistic jet and the surrounding

medium, leading to the development of a shear layer15. The presence of such a

15The following sections gather and develop the work done in Aloy et al. (1999c).
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shear layer (with distinct kinematical properties and magnetic field configuration)

has been invoked ad hoc in the past by several authors (Komissarov 1990, Laing

1996) to account for a number of observational characteristics in FR I radio sources

but, its physical nature is still largely unknown. Recently, Swain, Bridle, & Baum

(1998) have found evidence of such shear layers in FR II radio galaxies (3C353),

and Attridge, Roberts, & Wardle (1999) (ARW99, henceforth) have inferred a two-

component structure in the parsec scale jet of the source 1055+018.

3.3.1. Jet Stratification: Beam and Shear Layer

The hydrodynamical model we have used to study the emission properties of

relativistic jets is n50p01. The model is characterized by a two-component structure

(see Fig. 3.19) with a fast (W ∼ 7) inner jet and a slower (W ∼ 1.7) shear layer

with high specific internal energy. We define for practical purposes the shear layer

as the region with the beam particle fraction between 0.2 and 0.9516, represented

with white contours in Fig. 3.19 (0.95 for the inner contour). Although, as discussed

in Sect, 3.2.3.3 the numerical viscosity inherent to our code is the responsible for

the formation of the shear layer and not the turbulent shear, it allows us to obtain

the first approach to study the physics of shear layers in relativistic jets and their

observational consequences. The width of the shear layer, ∆rl, increases with the

distance from the nozzle from a value ∆rl ∼ 0.2 near z = 0 to ∆rl ∼ 0.65 − 1.0 at

z = 68Rb. The broadening of the shear layer is due to the transfer of momentum

of the inner jet. As shown in Fig. 3.6, the axial component of the momentum of the

beam particles decreases by a 30% within the first 60 Rb. The transfer of momentum

conveys a decrease in the Lorentz factor in the inner jet with values ∼ 5.8, 5.3, and

4.8 at z = 25, 50, and 68 Rb, respectively.

The computed hydrodynamical structure of the jet agrees with the proposed

in two-component jet models (Komissarov 1990, Laing 1996), also revealing a high

energy in the shear layer not considered in previous theoretical models. This rela-

16Note that in Sect. 3.2.3.3 we defined the hydrodynamical shear layer as the fluid having 0.2 <

f < 0.8. Here we have extended inwards (to the axis o the jet) the upper limit of the shear layer

because it fits better with some observations (see below).
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Fig. 3.19.— Cuts of the Lorentz factor (top half panel) and specific internal energy (bottom

half panel) distributions of the hydrodynamical model along the plane y = 0. White contours

representing constant values of the beam particle fraction (0.95 for the inner contours, 0.2 for

the outer ones) are used to characterize the shear layer. Rightmost plots show the average,

along lines x =constant, of the corresponding distributions across the jet.

tively higher internal energy in the shear layer has specific observational evidence,

as shown in the following sections.

3.3.2. Emission properties

In order to study the emission properties of large scale jets in AGN, we need

to establish the actual structure of the magnetic field within the jet. For this, the

magnetic energy is set to be locally proportional and significantly smaller than the

particle energy density, hence being dynamically unimportant. Different ad hoc dis-

tributions of the magnetic field in the jet spine and shear layer can be considered,

allowing us to test different models for the observed jet polarization stratification.

In our model we assume that the jet magnetic field compress two components: a

toroidal field present in both, the jet spine and shear layer, and a second component

(in equipartition with the toroidal field) aligned in the shear layer, and radial in

the jet spine. The aligned component in the shear layer may be the result of shear

between the jet and external medium, while the radial field in the jet spine can arise

from transverse shocks (i.e., ARW99). The resulting magnetic field will be aligned in

the shear layer, and perpendicular in the jet spine, as suggested by several observa-

tions (Laing 1996; Swain, Bridle, & Baum 1998; ARW99). In order to reproduce the

observed relatively low degrees of polarization, an extra randomly oriented magnetic

field component is assumed for the shear layer and jet spine. The random field is
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considered to contain 60% of the total magnetic field energy, obtaining degrees of

polarization below ∼ 40%. The Stokes parameters that determine the emission are

calculated following the prescriptions given in Ap.D.

Since only jet material is expected to radiate, we have multiplied the proper

rest–mass density by the beam particle fraction. We are only interested in studying

the emission properties of the stratified jet (beam and shear layer), hence we neglect

the relatively small emission that can arise from the jet cocoon by limiting the

calculations to values of the beam particle fraction above f = 0.2. We also ignore

the emission from the hot spot, which due to its relatively young evolved state would

out shine the rest of the jet. For this, we limit the calculations to the inner 68Rb.

3.3.2.1. Total and polarized emission stratification as a function of the

viewing angle

Because of the highly relativistic speeds in the jet, the emission is mainly de-

termined by the observing viewing angle, Θ, through the Doppler factor and light

aberration. The different velocities and magnetic field configurations in the beam

and shear layer would then result in substantially different total and polarized emis-

sion structure as a function of the viewing angle.

Figures 3.20 and 3.21 show the computed emission from the hydrodynamical

model n50p01, corresponding to a viewing angle of 50◦ and 10◦, respectively. The

emission is computed for an optically thin observing frequency, an spectral index of

the electrons of 2.4. For relatively large viewing angle, as in Fig. 3.20, the jet emission

is limb brightened. This is in part due to the higher specific internal energy in the

shear layer, resulting in a larger synchrotron emission coefficient. On the other hand,

the rôle played by the Doppler factor (see Eq.D13) can either enhance or cancel the

limb brightening, as a function of Θ. For Θ > 1/W , the emission is dimmed,

while for Θ < 1/W the emission is boosted in the observer’s frame. Because of

the jet velocity stratification (see Fig. 3.19), for Θ > 1/W the fast jet spine suffers

a larger amount of dimming than the shear layer, enhancing the limb brightening.

For the jet model we study, with a mean W ∼ 7 in the jet spine, this is maximized

for θ ∼ 50◦, for which the shear layer emission is boosted while the jet spine is
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Fig. 3.20.— From top to bottom, panels showing the total intensity, polarized intensity,

degree of polarization, and mean Doppler factor for a jet viewed at an angle of 50◦ (right

panels) and its counterjet (left panels). Averages along the line of sight for each pixel, using

the emission coefficient as a weight, have been used to plot the Doppler factor. The total and

polarized intensities (in units normalized to the maximum in the main jet total intensity) are

plotted in a square root scale. The bars in the polarized intensity panels show the direction

of the magnetic field.

Fig. 3.21.— Same as Fig. 3.20, but for a viewing angle of 10◦.

dimmed, as shown in the Doppler factor panel in Fig. 3.20. Cross section profiles

of the jet emission at different viewing angles are plotted in Fig. 3.22, where the

limb brightening effect can be more easily observed. For smaller viewing angles, as

corresponding to Fig. 3.21, the jet spine emission is boosted, while the shear layer
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emission appears dimmed. Details of the jet spine can then be observed, as for

instance two recollimation shocks, situated at 26Rb and 50Rb. The jet emission

then becomes spine brightened, instead of limb brightened, as observed in Figs. 3.21

and 3.22.

Fig. 3.22.— Logarithm of the integrated total (left) and polarized (right) intensity across

the jet for different viewing angles. Lines are plotted in intervals of 10◦ from an angle of

10◦ (top line in both plots), to 90◦ (showing a progressive decrease in emission). Dashed

lines (dot dashed) correspond to an observing angle of -100◦ (-140◦). Positive beam radii

correspond to the top in the images of Figs. 3.20 and 3.21. Units are normalized to the

maximum in total intensity.

The same arguments apply to the polarized flux and, therefore, we obtain the

same limb brightening for large viewing angles, and spine brighting for smaller values.

As a result of the helical field in the shear layer, the apparent orientation of the

magnetic field at the jet edges is parallel to the jet axis. For the jet spine, the toroidal

and radial components of the magnetic field yield a net polarization perpendicular

to the jet axis. As observed in Figs. 3.20 and 3.22, for relatively large angles the

aligned component of the helical magnetic field in the shear layer projects into the

jet spine partially canceling its field, yielding a smaller net polarization, stressing

the limb brightening. Rails of low polarization can be observed where the apparent

magnetic field rotates between being parallel (in the shear layer) to perpendicular

to the jet axis, as observed in 3C353 (Swain, Bridle, Baum 1998).

Some of the kinematical and physical properties of the jet can be deduced by

analyzing the jet/counterjet emission ratio, as plotted in Fig. 3.23 corresponding to
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Fig. 3.23.— Total (top) and polarized (bottom) intensity jet/counterjet ratios for the jet

models of Fig. 3.20. Polarized ratio is saturated at 100.

the jet model of Fig. 3.20. Jet deceleration is apparent as a progressively decrease

in the total flux ratio along the jet axis. The velocity stratification across the jet is

also visible as a decrease of the flux ratio close to the jet edges, that is, in the shear

layer. This is visible in the inner jet region, while further down the jet, when the

jet spine and shear layer velocities are more similar (due to the jet deceleration),

the flux ratio is more uniformly distributed across the jet. The slower velocity in

the shear layer and its high emission coefficient result in a smaller global flux ratio

between the jet and counterjet than for the case of a “naked” high velocity jet spine

(see also Komissarov 1990). This is because the shear layer emission is less affected

by the viewing angle, that is, the Doppler factor.

3.3.2.2. Jet cross section emission asymmetry

Because of the helical magnetic field structure in the shear layer, an asymmetry

in the emission appears across the jet. This asymmetry is more pronounced in the

polarized emission, and is a function of the viewing angle, as shown in Fig. 3.22.

In order to understand this effect we need to study the variation across the jet

of the angle between the magnetic field and line of sight in the fluid frame, ϑ.

The synchrotron radiation coefficients are a function of the sinus of this angle (see

Eq.D3), and asymmetries in the distribution of ϑ will be translated into the emission

maps. In order to compute ϑ we need to Lorentz transform the line of sight from
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Fig. 3.24.— Relationship between the pitch angles (φt and φb) and the angles between the

magnetic field and line of sight in the fluid frame (ϑt and ϑb). θ
′ is the angle to the line of

sight in the fluid frame. The solid line represents the projection over the plane of the sky of

the helicoidal magnetic field.

the observer’s to the fluid’s frame (see e.g., Rybicki & Lightman 1979)

sin θ′ =
sin θ

W (1− β cos θ)
, cos θ′ =

cos θ − β
(1− β cos θ)

where θ′ is the viewing angle in the fluid frame. Consider an helical magnetic field

with a pitch angle φ, measured with respect to the jet axis (see Fig. 3.24). The

angles ϑt and ϑb (where upper-script t and b refer to the top and bottom of the

jet, respectively) differ by 2φ. Therefore, as long as φ is not zero or π/2, that is,

the field is not pure aligned or toroidal, the sinϑt,b in the synchrotron radiation

coefficients will introduce an asymmetry in the jet emission. This asymmetry will

reach a maximum value for an helical magnetic field with φ = π/4, as the one
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considered here. However, indistinctly of the helix pitch angle, the predominance

between sinϑt and sinϑb will reverse at θ′ = π/2, which corresponds to a viewing

angle in the observer’s frame of cos θr = β. For an helical field oriented clockwise as

seen in the direction of flow motion (i.e., the aligned component of the field is parallel

to the jet flow), for θ′ < π/2 the bottom of the jet will show larger emission, while

for θ′ > π/2 the top of the jet will be brighter (the opposite is true for an helical

field oriented counter-clockwise, that is, with φ > π/2). The maximum asymmetry

will be obtained for θ′ = φ and θ′ = π−φ, and the fastest transition (with changing

θ′) between top/bottom emission predominance will be obtained for φ close to π/2,

that is, when little aligned field is present.

In the model we are considering, the shear layer has a mean W ∼ 1.7, and

therefore θr ∼ 36◦. Smaller angles will show bottom jet dominance in emission,

while for larger values the top of the jet will appear brighter. This is more clearly

visible in Fig. 3.22. Note also that for the counter jet the helical field rotates

opposite to the main jet, and therefore the jet asymmetry emission reverses. This

is particularly well observed in the plot of the polarized emission ratio between the

jet and counterjet of Fig. 3.23.

Although the sinϑ factor affects to both, total and polarized emission, the

asymmetry is more clearly present in the polarized flux (see Figs. 3.20, 3.22, and

3.23). This is due to: i) The presence of randomly oriented magnetic field compo-

nent, which renders the magnetic field distribution more homogeneous in the jet and

diminish the asymmetry. ii) Smaller values of ϑ, indistinctly if present at the top

or the bottom of the jet, always represent a larger variation of the magnetic field

orientation along the line of sight, which in practice represents a larger degree of

randomness in the magnetic field along the integration columns, decreasing the net

polarization.

It is interesting to note that for θ ∼ θr, small changes in jet velocity or viewing

angle will produce a flip in the top/bottom jet emission dominance. For fast jets,

θr will be accordingly small, and we will be biased towards observing jets with top

emission predominance (as long as the helical field rotates clockwise as seen in the

direction of flow motion).

An interpretation of the polarization observations of the blazar 1055+018 by
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ARW99) can be obtained in terms of the model presented here. For that, we need to

assume that 1055+018 is oriented close to θr, and contains a shear layer with helical

field. If the helical field is oriented clockwise, the polarized emission observed at the

top of the jet in inner regions would require that initially θ > θr, or θ
′ > π/2. To

obtain the opposite situation further down the jet, θ′ has to become smaller than

π/2, and for that either θ decreases, or θr increases, which requires that β decreases.

Another third possibility, but that we find less plausible, is that the helical field in

the shear layer changes orientation, that is, the pitch angles becomes larger that

π/2. Therefore we can successfully explain the flip in the top/bottom orientation of

the polarization asymmetry in 1055+018 if the jet bends towards the observer, or

if decelerates. ARW99, and references therein) report the existence of bends in the

jet of 1055+018. This support our hypothesis, but at the location of the flip in the

polarization emission asymmetry, the jet spine emission decreases abruptly, contrary

to what it would be expected in the case of a bend towards the observer, which should

increase the jet spine emission by differential Doppler boosting. ARW99 obtained

significantly larger apparent velocities for components closer to the core, suggesting a

deceleration along the jet. Therefore, this points to our hypothesis of jet deceleration

as the most plausible for the sudden change in polarization predominance between

the top and bottom of the jet in 1055+018, since a jet deceleration will decrease the

Doppler boosting, and hence the jet spine emission as observed. A relatively small

aligned field (helical pitch angle close to π/2) will help to obtain such a fast flip in

the polarization asymmetry with a relatively small jet deceleration.

Future observations of jet stratification in FRI and FRII sources should provide

the necessary information to obtain a more detailed comparison with numerical

simulations, helping to understand the nature of the shear layer, which as we have

shown, plays an important rôle in the emission of relativistic jets.

3.3.3. Discussion and conclusions

We have analyzed the morpho-dynamical properties of a set of 3D relativistic

jets. From our simulations, we can conclude that the coherent fast backflows found

in axisymmetric models are not present in 3D models. We have investigated the
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beam’s response to non-axisymmetric perturbations to check its stability. During

the period of time studied by us (t<∼150Rb/c), the beam does not display the strong

perturbations (particularly the filamentation of the beam) found by other authors

in classical jets (Norman 1996, Hardee 1996) and it propagates according to the 1D

estimate. Small 3D effects in the relativistic beam give rise to a lumpy distribution

of apparent speeds like that observed in M87 (Biretta, Zhou & Owen 1995).

Our study must be extended to a wider range of models and perturbations.

In particular, stronger perturbations should be considered to reach the nonlinear

regime and to identify the acoustic and mixing phases (Bodo 1998) leading to the

jet disruption. Further investigation also requires the dependence of the shear layer

properties on the perturbation parameters. Finally, appropriate perturbations can

be studied that mimic the wiggles observed in specific sources both at pc (0836+710,

Lobanov et al. 1998; 0735+178, Gómez et al. 1999) and kpc scales (M87; Biretta,

Zhou & Owen 1995).

We have also analyzed the properties of the boundary layer present in our

models, both considering purely its hydrodynamics and their emission properties.

From a dynamical point of view, the shear layer has appeared naturally in our

model without being induced initially. The hydrodynamical jet structure agrees

with the two-component models of Komissarov (1990) and Laing (1996), although

the relatively high energy in the layer is a new element that leads to important

observational consequences. Concerning the emission properties, these are closely

linked to the ad hoc magnetic field configuration, and such fact has allowed us to

interpret the ARW99 observations of 1055+018.

Other configurations of the magnetic field should be proven to reproduce par-

ticular features of current observations and, of course, the influence of the hydro-

dynamical model used to calculate the emission has to be investigated. A natural

extension of the work would be to study the emission properties of the highly per-

turbed models in order to see if the characteristics of the shear layer emission persist

when the central spine is highly distorted. These results will be reported elsewhere

(Aloy et al. 2000).
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Chapter 4

Relativistic jets from Collapsars.

An astrophysical phenomenon which also involves flows with velocities very close to

the speed of light are gamma-ray bursts (GRB). This is the reason why hydrody-

namic models (including, in some cases, the appropriate micro-physics) have become

a main research tool in order to understand the GRB phenomenon (e.g.,Piran, Shemi

& Narayan 1993; Mészáros, Laguna & Rees 1993; MacFadyen & Woosley 1999; Ruf-

fert & Janka 1998, 1999a, 1999b; Aloy et al. 1999c).

We are going to present the observational framework in which GRBs are in-

cluded (Sect. 4.1). The standard model trying to explain the current observations

will be summarized in Sect. (4.1.1). The next subsection (4.2) gives an historical

overview of the numerical simulations in this field. The modifications that we have

included in the code GENESIS to treat a background Schwarzschild metric are

discussed in Sect. 4.3.2, and the EOS employed in our calculations is described in

Sect. 4.3.3. Section 4.3 deals with the relativistic version of the collapsar model in-

troduced, in the Newtonian case, by MacFadyen & Woosley (1999) (MW99 in what

follows).
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4.1. Phenomenology

Gamma-ray bursts are known observationally since over 30 years. They were

discovered by chance by American military satellites of the VELA class, which were

developed at Los Alamos in order to detect clandestine nuclear tests in space by

their associated gamma-ray emission. The detected radiation consisted of gamma-

ray flashes lasting a few seconds. The results of these detections where published

five years afterwards (Klebesadal, Strong & Olsen 1973). This paper reported 16

short bursts of photons in the energy range 0.2− 1.5MeV lasting between 0.1− 30 s

and having a complex time-structure (mainly in the longer bursts).

The phenomenology of these first set of bursts has proven to be the common

one of GRBs. These common features, that define a GRB, are described in the

following sections (for a longer review see, e.g.,Piran 1999 –PI99– or Daigne 1999).

Temporal properties. GRBs are very short events, with a typical duration

between several milliseconds and several hundreds of seconds, showing a large vari-

ability even at the millisecond scale (suggesting an association between GRB sources

with very compact progenitors). They show a bimodal time-distribution, the bor-

der between the two groups being at ∼ 2 s. The first group is composed of short

bursts centered around 0.1 s, while the second group consists of long bursts (more

numerous) centered at about 15 s. The time-structure is very different from burst to

burst. There are GRBs which show a simple and regular structure, whereas others

have a very complex profile (Norris et al. 1996, explain the complex structure as the

superposition of several pulses). From the data collected by the BATSE1 experiment

(Kouveliotou et al. 1993) and PHEBUS (Dezalay et al. 1996) mission it seems that

short GRBs are harder than the long ones. Additionally, it is more difficult to detect

short bursts, and there exist indications that short GRBs are closer than the longer

ones, and that they form a separate subgroup (Mao, Narayan & Piran 1994).

Spectral properties. GRB spectra are non-thermal. The observed energy

flux as a function of the energy (E2n(E) or νFν ; where E, n(E), ν and Fν are the

energy, the number of counts per unit of time, area and energy, the frequency and

1BATSE (Burst and Transient Source Experiment) is an experiment launched in 1990 on board

of the satellite CGRO (Compton Gamma-Ray Observatory).
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the flux per frequency, respectively) can be well described by one or a combination

of several power laws. The maximum of the energy distribution corresponds to an

energy, Ep (the energy peak), which is characteristic of each GRB and usually is

about several hundreds of keV. The spectra can be fitted by the following function

(Band et al. 1993):

n(E) = A

(
E

100keV

)α
exp

(
− E

E0

)
for E ≤ E

α− β

n(E) = A

(
(α− β)E0

100keV

)α
exp(β − α)

(
E

100keV

)β
for E ≥ E

α− β
where α and β are the slopes of the power laws at low and high energy, and E0 =

Ep/(2+α). The values of α and β lie in the range α ∈ [−3/2,−2/3] and β ∈ [−3,−2].

The observed fluence on earth is 10−5−10−7 erg/cm2 the upper limit depending

on the duration of the observation, and the lower limit depending on the detector.

Redshift measurements of half a dozen of GRBs indicate that, for isotropic emis-

sion, the total energy is of the order of 1051 − 1054 erg (PI99). Recent observations

(e.g.,GRB990510, Harrison et al. 1999) suggest that the radiation is beamed (Sari,

Piran & Halpern 1999; Rhoads 1999), reducing this energy by two orders of magni-

tude.

Spatial distribution. The BATSE experiment has observed more than 2000

events since 1991 (at a rate of ∼ 1 per day) in its systematic all-sky coverage.

The positional accuracy of this detector is quite low the typical error-boxes being

∼ 1−2 degrees for the brightest bursts, and more than 5 degrees for the fainter ones.

However, there are some bursts whose locations have been pinned down with a pre-

cision of minutes of arc or better by triangulation experiments involving deep space

probes (e.g., the ULYSSES spacecraft). The technique utilizes the rapid time struc-

ture which, when recorded and timed by detectors separated by 10 light-minutes or

more, allows for an accurate positioning. The statistical analysis of the BATSE data

shows that the bursts are isotropically distributed (BATSE restricts any dipole or

quadrupole anisotropy below the few per cent level and shows no evidence for clump-

ing on smaller scales), but not homogeneously (see e.g.,Rees 1997). This heterogene-

ity is found in logN − logP diagrams, where N(P ) is the number of bursts which

have an intensity at maximum larger than a threshold P . These number-versus-

intensity diagrams of the events tell us whether they are uniformly distributed in
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Euclidean space or not. The reason is that if the events were uniformly distributed,

one would expect the number of bursts should be proportional to the volume ob-

served, i.e.,N ∼ R3. As the luminosity drops with distance as P ∼ R−2, one should

find that N ∼ P−3/2. Consistently, a homogeneously distributed sample of bursts

in Euclidean space must have a slope equal to −3/2 in the logN − logP plane. The

GRB observations are in agreement with such a distribution in the case of short

(i.e.,powerful) bursts (Katz & Canel 1996; Tavani 1998), but their distribution sig-

nificantly deviates from this slope for longer (i.e., fainter) bursts (i.e., small values of

P ).

Interpretation. A key point for the interpretation of the results is the dis-

tance at which the bursts occur, because this strongly influences (1) the estimated

energetics of the GRB events, (2) the homogeneity of their distribution, and (3)

their production rate. Concerning the energetics, three different characteristic GRB

energies can be derived depending on their distance. Assuming that the energy of

each burst is isotropically released these energies are 1037 erg, 1041 erg, or 1051 erg

for bursts occurring in the Galactic Disc (at distances of a few hundred of pc), in the

Galactic halo (at distances of tens kpc), or at cosmological distances, respectively.

For years a controversial debate has been taken place whether GRBs are local or

cosmological (see e.g.,Fishman & Meegan 1995; Mèzáros 1995; Piran 1997). How-

ever, a galactic origin has to be rejected, because the meanwhile extensive BATSE

catalog shows an isotropic distribution of GRBs over the sky, and no source en-

hancement either towards the plane of the galaxy or towards the galactic center.

Moreover, the recent redshift determinations (the first one obtained was z = 0.695

for GRB970228; van Paradijs et al. 1997) prove the cosmological origin at least of the

majority of GRBs. Observed redshift values are in the range 0.7 ≤ z ≤ 3.4 implying

emitted gamma-ray energies of 2 × 1051 ≤ E ≤ 2.3 × 1054 erg for an isotropically

radiating source. The cosmological origin of the GRBs is consistent with the distri-

bution of bursts in the logN − logP plane. Actually, the deviation from the −3/2
slope can be interpreted as a consequence of the expansion of the Universe (which

is, in addition, consistent with the redshift measurements). In fact, the point at

which the deviation from the slope −3/2 is observed gives one information about

the characteristics and distribution of the GRBs (see e.g.,Daigne 1999).
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Nonetheless, this picture was challenged by the detection of the Type Ib/c

supernova SN1998bw (Galama et al. 1998) within the error box of GRB980425

(Soffitta et al. 1998; Pian et al. 1999) whose explosion time is consistent with that

of the GRB. BeppoSAX detected two fading X–ray sources within the error box,

one being positionally consistent with SN1998bw (Pian et al. 1999)2.This suggests

a relationship between GRBs and SNe Ib/c, i.e., core collapse supernovae of massive

stellar progenitors which have lost their hydrogen and helium envelopes (Galama

et al. 1998; Iwamoto et al. 1998; Woosley, Eastman & Schmidt 1998). As the host

galaxy of SN1998bw has a redshift of z = 0.0085 (Tinney, Stathakis & Cannon

1998), this has led Castro-Tirado (1999) to estimate the isotropic gamma-ray energy

emission of GRB980425 to be Eγ = 7 × 1047 erg (i.e.,more than four orders of

magnitude fainter than a typical cosmological GRB).

Depending on whether the number of bursts is correlated or not with the stellar

formation rate, one can argue:

a) If there is no correlation, the expected redshift for the burst distribution should

be z ∼ 1, the typical energy of an event in gamma-rays should be Eγ ∼
1051(Ω/4π) erg (Ω is the solid angle into which the emitted radiation may be

beamed), and considering the observed frequency, the burst production rate

should be ∼ 10−6(4π/Ω) GRB/year/galaxy.

b) If there is a correlation, the effect of the expansion of the Universe would

be delayed, and the typical redshift might be z>∼3. The energy per event

would be larger than in the previous case, and the production rate smaller

(∼ 10−7(4π/Ω) GRB/year/galaxy).

Afterglow observations. The BATSE instrument does not allow for an ac-

curate positioning of the GRB sources and, therefore, it has been very difficult to

identify optical counterparts within the instruments error box. Leaving aside the

large number of possible candidates for a given burst detection, one of the main

problems of this search is that the optical detection starts some time after the burst

2However, there exist a debate about the truthfulness of this association, see e.g.,Wang &

Wheeler 1998, Kippen et al. 1998.
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has been observed by the gamma-ray satellites and, consequently, possible observa-

tions in other wavelengths (X-rays, optical or radio bands) are delayed with respect

to the burst itself. Thus, what is actually observed is the “afterglow” of the emission.

The Italian Dutch satellite, BeppoSAX, discovered the first X-ray afterglow for

GRB970228 (Costa et al. 1997). Since then, more than two dozen X-ray afterglows

have been detected. If an X-ray detection happens, the size of the error box is

reduced to 50 arcseconds to 3 arcminutes. With this more accurate position, it is

possible to start to look for optical counterparts (using ground based telescopes)

with a delay smaller than one hour. However, as BeppoSAX can trigger only long

bursts, it is not known whether short bursts also have afterglows. If the optical

counterpart is seen, the localization of the object is obtained within an error box

of ∼ 1 arcsecond size. Moreover, if a radio detection is also successful, the posi-

tioning is enhanced up to ∼ 1 milliarcseconds. Optical (e.g., van Paradijs 1997) and

radio (e.g.,Frail et al. 1997) afterglows have been discovered in about half of the

cases in which X-ray afterglows have been seen. A remarkable feature of the VLBI

detection of GRB970508 has been the observation of a superluminal motion of the

emission region (Frail et al. 1997) indicating that relativistic expansion of the matter

is responsible for the emission.

The main observational properties of the afterglow emission are (PI99):

• The energetics of the process can be estimated from the late phases of the

optical afterglows (Galama et al. 1998; Granot, Piran & Sari 1999; Wijers

& Galama 1998; Vreeswijk et al. 1999). The overall energy emitted in the

afterglow (1050−1052erg) is a fraction of the one emitted during the GRB. The

characteristic energy of the emission decays from the X-ray band to the radio

band. Such behavior can be interpreted as the emission of an ultrarelativistic

wind braked by its interaction with the ambient medium (Daigne 1999; Daigne

& Mochkovitch 1999).

• The afterglow light curves decay in most cases following a single power law in

time: Fν = t−a, with a ∼ 1.2. Nevertheless, a ∼ 2 fits much better the bursts

GRB980326 (Grot et al. 1998) and GRB980519 (Halpern et al. 1999). In other

two cases, GRB990123 (Kulkarni et al. 1999a) and GRB990510 (PI99) that
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power-law is broken in two parts (a ∼ 1.1 − 1.2 to a ∼ 2), leading to the

interpretation of beaming in the GRB emission (Sari, Piran & Halpern 1999).

Obviously, such a beaming could reduce the energy release of the GRB by one

or two orders of magnitude.

• The GRB990123 has shown, for first time, a prompt optical emission, i.e., the

optical detection was done at the same time than the burst itself, using the

ROTSE experiment (Akerlof et al. 1999); therefore, this emission is not exactly

an afterglow, but shows the whole history of the GRB in the optical spectrum.

The emission is peaked with a 9th magnitude signal which lagged 70 s after

the gamma-ray peak and coincided with the prompt X-ray peak.

4.1.1. The standard model: the relativistic fireball

The observed gamma-rays reveal that GRB spectra are non-thermal. This

indicates that the observed emission emerges from an optically thin region. However,

the fast variability of the source (δt ≤ 1 s) implies that the emission region is very

compact (∼ cδt). Moreover, gamma-ray energies sometimes exceed 1MeV, i.e., they

are above the pair production threshold in the rest frame. These facts along with

the estimate of the number of photons with energies above 500 keV shows that

the source should be quite optically thick to pair creation (e.g.,Fenimore, Epstein

& Ho 1993) and, therefore, the source cannot emit non-thermally. Theoretically,

this compactness problem has been overcome assuming that the emission region is

moving ultrarelativistically towards us (Ruderman 1975; Goodman 1986; Krolik &

Pier 1991). This is the basis of the fireball model, in which slowing relativistic ejecta

produce the GRB and its afterglow. The observed gamma-rays are produced by the

synchrotron or synchrotron self-Compton emission of the relativistic electrons that

have been efficiently accelerated by shocks.3 Such shocks can be either internal,

i.e.,within the plasma (Narayan, Paczyński & Piran 1992; Paczyński & Xu 1994;

Rees & Mészáros 1994) or external, i.e.,due to the interaction with the ambient

medium (Mészáros & Rees 1992).

3Note the parallelism between this emission mechanism and the one which works in extragalactic

jets (see §3.3).
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External shocks are collisionless and become effective at min(RWs , R∆), where

RWs ≡ l/W
2/3
s0 and R∆ ≡ l3/4∆1/4 (Sari & Piran 1995). Ws and ∆ are the Lorentz

factor and the width of the shell (in the observer frame), and Ws0 is the initial value

of the shell Lorentz factor. The radius within which the rest mass energy of the

external material, whose density is nism, equals the initial energy of the ejecta, E0,

is known as the Sedov length, l ≡ (E0/[(4π/3)nismmpc
2])1/3. Some typical values of

the previous quantities are: l ∼ 1018cm and RWs ∼ R∆ ∼ 1015 − 1016cm. However,

external shocks may not to be the only cause for the GRB emission, because (1) they

cannot produce efficiently the highly variable temporal structure seen in GRBs (Sari

& Piran 1997; Fenimore, Madras & Nayakshin 1996), because (2) the lack of any

correlation between the width of late sub-pulses (produced when the Lorentz factor

is lower and at larger radii, so that they should be longer) and the time of arrival

(Fenimore, Ramirez & Summer 1998), and because (3) the invoked mechanism to

account for the variability of GRBs in this case (inhomogeneities in the external

media –Dermer & Mitman 1999–) is extremely inefficient (Sari & Piran 1997).

The other possibility to explain the emission of GRBs are internal shocks. The

non-linear hydrodynamic evolution of the plasma may lead to the growth of internal

shocks. It is assumed that faster shells overtake slower ones and collide, converting

some of their kinetic energy into internal energy. According to PI99, internal shocks

would take place at Rint ∼ δW 2
0 , where δ is a typical length scale of the problem.

Actually, δ = cδt can be inferred from the observed temporal variability δt ≤ 1 s

indicating that Rint ∼ 1013cm. If the shocks are formed earlier the radiation does

not escape (the fireball is optically thick). The observed GRB time scales reflect

the time scales of the “inner engine” (Kobayashi, Piran & Sari 1997), and their

duration corresponds to the time of activity of the central engine. Another evidence

for the internal shock model is the lack of a direct scaling between the GRB and the

afterglow. Nonetheless, internal shocks can extract only a fraction of the total energy

(Mochkovitch, Maitia & Marques 1995; Kobayashi, Piran & Sari 1997; Daigne &

Mochkovitch 1998). The remaining energy would be extracted later via external

shocks giving rise to additional emission at different wavelengths (Sari & Piran

1997).

Let us note that a relativistic expansion reduces the necessary energy budget
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of the photons because of the relationship between the frequencies in the observers

frame (ν) and in the proper frame of the matter moving relativistically (ν ′): ν = Dν ′
(Rybicki & Lightman 1979), where D is the Doppler factor (defined in Ap.D). In

addition, BATSE observations put a constraint on the value of the mean Lorentz

factor in the expanding fireball, because they show no indication of high-energy

photon-photon collisions (which would enhance the opacity via annihilations γ+γ →
e+ + e−). This means that the interaction cross sections of the photons are pretty

small, or would strongly depend on the Lorentz factor. Actually, as matter is moving

relativistically with a Lorentz factor W , the emission (i.e., the photons’ trajectories)

is beamed in a rest frame within a solid angle of ∼ 1/W . Larger Lorentz factors

give more beaming, and the trajectories of the photons tend to become parallel in

the ultrarelativistic limit. Hence, the probability of interaction decreases, because

the momentum of the photons is directed mainly in radial direction (the opacity due

to electrons and pairs is reduced by a factor ∼ W 4, e.g.,Rees 1997). In order to

overcome the problem of the photon-photon interactions many authors have arrived

to a consensus on the minimum value of the mean Lorentz factor required for the

fireball of W ≥ 100 (e.g.,Baring 1995). Such a high Lorentz factor can only be

attained if the baryon loading is sufficiently small. If one releases an energy E

into a mass M (initially), a measure of the baryon loading is the ratio 1
η =Mc2/E.

Assuming that all the energy is converted into kinetic energy, the final Lorentz factor

will be W = E/Mc2 = η. Thus, a baryon loading ≤ 10−2 is required in order to

obtain W ≥ 100.

4.1.2. Models for the central engine

The astrophysical scenarios in which the GRBs are produced are still unknown.

The main reason is the lack of observations which are detailed enough to resolve the

host galaxy or the “burster engine”. As GRBs are most probably born at cosmolo-

gical distances, I will only give a brief review of the theoretical models that consider

such cosmological scenarios (the reader interested in a more extensive overview is

addressed to the reviews by Blaes 1994, Fishman & Meegan 1995 or Hartmann

1996).
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The cosmological origin of GRBs was first proposed by Prilutskii & Usov (1975)

and Paczyński (1986). In these early models, bursts were thought to originate in

classical extragalactic sources (galaxies, quasars) or in other more exotic objects,

like super-conducting cosmic strings or through a random pattern of gravitational

radiation which is focused by a distant and steady source. More modern theories

involve the coalescence and merging of neutron star binary systems, or the accretion

onto a BH in a “failed” supernova.

If GRBs are cosmological, the typical energy of a burst should be ∼ 1051 −
1054 erg. Moreover, the temporal profiles of these events show a fast variability

indicating that the size of the GRB’s progenitors should not be larger than a few

light-milliseconds. Thus, promising astrophysical sources of GRBs involve one or

more compact objects of stellar size (i.e.,with a mass of a few solar masses). In

principle, such compact objects can provide the required energy (after all, whenever

a supernova goes off, the binding energy of a neutron star is released in a fraction

of a second, and this amounts to 1053 erg).

In order to explain the amount of energy released in a GRB (∼ 1051−1054 erg),

the necessary Lorentz factors (∼ 102 − 103), the observed rapid variability of the

emission (to occur at radii in the range ∼ 1014 − 1016 cm) and the necessary low

baryon loading (∼ 10−3 − 10−5 or <∼10−6M¯), various catastrophic collapse events

have been proposed. These can be categorized as follows:

1) Coalescence of compact binary systems. This group includes NS/NS mer-

gers (Pacyński 1986; Goodman 1986; Eichler et al. 1989; Narayan, Pacyński & Pi-

ran 1992) and NS/BH mergers (Narayan, Pacyński & Piran 1992; Mochkovitch et

al. 1993). Recently, the coalescence of a NS or BH with a white dwarf (Fryer et

al. 1999) or with the Helium core of a red giant has been proposed, too (Fryer &

Woosley 1998). A binary NS/NS system, that may survive for ∼ 109 years, will

eventually coalesce when gravitational radiation drives both objects together. The

final merger, leading probably to the production of a Kerr BH, happens in a fraction

of second, and the energy released during the merging process is ∼ 1054 erg. It is

also possible that a ∼ 0.1M¯ accretion disk forms around the BH and is accreted

within a few seconds, then producing internal shocks leading to the GRB (Katz

1997). The calculated event rates for such phenomena are 100 per year at a distance
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smaller than 200Mpc (Fryer et al. 1999). This rate is a tenfold larger if one considers

NS/BH mergers. Both rates are compatible (if the beaming factor Ω/4π is not very

small and almost every merger produces a GRB) with the hypothesis that the GRBs

are not correlated with the stellar formation rate (see previous subsection), in which

case a burst frequency of ∼ 10−6(4π/Ω) GRB/year/galaxy is expected.

2) Hyper-accretion onto compact objects resulting from the gravitational col-

lapse of massive stellar cores. This category includes two families of models: the

hypernovae (Pacyński 1998) and the collapsars (Woosley 1993). The hypernova

model assumes that a core of a massive rapidly spinning star collapses directly to a

BH without producing a supernova. A collapsar is the result of a failed Type Ib/c su-

pernova which is produced by the gravitational non-spherical collapse of the rotating

iron core of a Wolf-Rayet star. The likely result of both models is the formation of a

Kerr BH with a 0.1−1 M¯ dense viscous torus around it. The matter is accreted at

a very high rate (∼ 1M¯s
−1; Popham, Woosley & Fryer 1998). Both scenarios are

quite similar but they differ in the energy extraction mechanism: while a hypernova

releases ∼ 1054 erg s−1 of kinetic energy by tapping the rotational energy of the Kerr

BH using the Blandford & Znajek (1977) mechanism, a collapsar converts the grav-

itational binding energy released by accretion into neutrino and anti-neutrino pairs

(via viscous dissipation of energy in the accretion torus), which in turn annihilate

into electron-positron pairs. It is hard to determine the minimum mass required for

a progenitor star to produce any of these collapses but most probably it should be

a main sequence star of several dozens of solar masses (which are necessary in order

to produce, by evolution, a stellar core of 10 − 15M¯). In any case, a “fireball”,

which will also contain the baryons present in the neighbourhood of the BH, will be

produced reaching a luminosity ∼ 300 times larger than that of a normal SN. For

the collapsar model, provided the baryon load of the fireball is not too large, the

baryons are accelerated together with the e+ e− pairs to ultrarelativistic speeds with

Lorentz factors > 102 (Cavallo & Rees 1978; Piran, Shemi & Narayan 1993). The

bulk kinetic energy of the fireball then is thought to be converted into gamma-rays

via cyclotron radiation and/or inverse Compton processes (see, e.g., Mészáros 1995).

The event rate for these models (∼ 10−3 per year and galaxy) is larger than that of

the coalescing binary systems. However, strong effects due to stellar evolution are

expected (a typical 30M¯ star that forms a Wolf-Rayet and then collapses lives for
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106 years only). As the event rate is correlated with the star formation rate (see 4.1)

the number of events expected is < (4π/Ω)10−7 per year and galaxy. Consequently,

to be consistent with this rate, the beaming should be quite large, or only a fraction

of core collapses do produce GRBs.

The two main differences between both families of models are their locations

and environment. A typical binary system formed by two NS needs ∼ 109 years

to merge. During this time the system can travel tens of kpc due to the large kick

velocity acquired during the two supernovae explosions (Tutukov & Yungelson 1994).

A massive star on the other side only lives for a few million years and hence cannot

move far during its lifetime, i.e., it explodes within the star forming region where it

was born. The environment around a Wolf-Rayet star is more complex and dense

than that around a binary system because the star has lost an important part of

its mass due to the ejection of the outer shells. However, current observations have

been unable to give any insight on this issue (the position of the bursts in the host

galaxies has not been accurately established yet), although some authors claim that

GRBs are produced in star formation regions (Fruchter et al. 1999) and possibly,

the optical afterglow might be heavily obscured by dust commonly present in such

regions (Jenkins 1997). In MW99 is said that the hypernova/collapsar model can

explain better long and very energetic bursts than the coalescence of binary systems.

The reason being that the dynamical time to accrete the matter of the torus formed

due to the merger of the two NS is very small (depending on the viscosity of the

model –which is still uncertain– it can be, at most, 0.5 s), and according the standard

model, the duration of a burst depends on the life-time of the engine.

All the models just discussed can be subdivided into two groups according to

the energy extraction mechanism, namely those which invoke hydromagnetic energy

extraction, and others that rely on the dissipation of energy in the accretion disk

via neutrino emission. Within the first group of models one considers two different

possibilities: (1) extremely intense magnetic fields (∼ 1015− 1016 G) extract matter

and energy from the disk and the BH itself via the Blandford-Znajek mechanism

(Usov 1994; Mészáros & Rees 1997), or (2) reconnection of the magnetic field lines

in the corona of the disk (which is much less dense than the disk) liberates enough

thermal energy to power a relativistic wind (Narayan, Paczyński, & Piran 1992). The
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second group of models was proposed by Mészáros & Rees (1992) and Mochkovitch

et al. (1993), (1995). In this case neutrinos preferentially deposit their energy in a

region near the rotation axis, because the inner boundary of the accretion torus is

almost parallel to the axis thus favoring “head-on” collisions of the neutrinos.

4.1.3. An afterglow model

The afterglow is the emission that follows a GRB at frequencies gradually de-

clining from X-rays to visible and radio wavelengths. Soon after the first BeppoSAX

observations it was suggested by Paczyński & Rhoads (1993) (for the radio after-

glow) and independently by Katz (1994) (for the optical afterglow) that the long

term interaction of the relativistic ejecta with the external medium will produce a

low frequency afterglow. Mészáros & Rees (1997) and Vietri (1997) pointed out

that afterglows are produced by the external blast wave moving ahead of the fireball

(sweeping the interstellar matter). This afterglow is the long time continuation of

the GRB and should have properties similar to the GRB itself, if the emission of the

GRB is produced by external shocks. However, as we have noted above, the external

shock model for GRBs has several problems. This leads one to the assumption that

GRBs themselves emit due to the presence of internal shocks. In the currently ac-

cepted “Internal-External” model the GRB and the afterglow are produced by two

different processes, i.e. no direct scaling between both is expected.

The radio afterglow of GRB970508 has provided a direct confirmation of the

fireball model, because it has shown an evident flickering (decreasing with time) for

about a month. The transition from the flickering to the non-flickering regime has

allowed Frail et al. (1997), using the theoretical analysis of Goodman (1997) for the

determination of angular sizes from refractive radio scintillation, to estimate that

the afterglow had a size of ∼ 1017cm one month after the burst. Katz & Piran (1997)

estimated a similar size independly, suggesting that the source could become opti-

cally thick, if the synchrotron self-absorption rises the spectrum in radio frequencies.

Using the observed flux and an estimate of the temperature of the emitting regions

they were able to obtain the size of the emitting region. Both observations provide

evidence (for first time) that the fireball is expanding relativistically.
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4.1.3.1. Emission properties

The generic emission process for both the GRB and the afterglow is synchrotron.

The energy distribution of the emitting electrons has the same power law distribution

than in the case of relativistic jets (Eq.D4), but the spectral index of the distribution

that fits better the observations is p ∼ 2.5. For this value of p the distribution

diverges at low energies. Thus, like for extragalactic jets, this produces a low energy

cutoff (Eq.D6).

The emission that originates the afterglow comes from the external shock sur-

rounding the fireball. Actually, such a shock has a more complex structure that fits

better with that of a blast wave. The properties of this blast wave can be derived

from the synchrotron spectrum (Pacholczyk 1970) of a population of electrons with

the addition of self absorption at low frequencies and cooling break, according to

Sari, Piran & Narayan (1998). The spectrum depends on four parameters:

• The synchrotron frequency, νm, which corresponds to We,min (or Emin; see

Eq.D6).

• The cooling frequency, νc. This is the synchrotron frequency of an electron

that cools during the local hydrodynamic time scale: Ec/Pνc(Ec) = thyd (Pνc

is the power emitted by a single electron due to synchrotron radiation; Ec is

the energy corresponding to νc). Fast cooling (i.e., typical electrons are cooled

within times smaller than thyd) implies that high energy electrons will cool

rapidly for νc < νm. Slow cooling leads to a reduced cooling of low energy

electrons for νm < νc.

• The self-absorption synchrotron frequency, νsa. The same electrons that pro-

duce the synchrotron radiation can also scatter with low energy photons via

inverse Compton. Self-absorption may appear at late time typically in radio

emission (e.g.,Paczyński & Rhoads 1993). It is defined (e.g.,Rybicki & Light-

man 1979) as the frequency for which the optical depth along the line of sight

is equal to one (τ(νsa) = 1).

• The maximum flux Fν,max.

120



The combination of all these effects (fast or slow cooling, presence or not pres-

ence of self-absorption) leads to a spectrum which is a combination of four power

laws, where three of the four slopes are fixed and one is depending on whether or

not the electrons are rapidly cooled. The corresponding flux can be written (at a

fixed time) as Fν ∝ νβ with:

β =





2 for ν < νsa - self absorption;

1/3 for νsa < ν < min(νm, νc);

−1/2 for νc < ν < νm - fast cooling;

−(p− 1)/2 for νm < ν < νc - slow cooling;

−p/2 for max(νm, νc) < ν.

(4.1)

This instantaneous spectrum is valid for the GRB and the afterglow phases.

However, as the GRB stage involves simultaneous emission from multiple shocks,

the resulting spectrum may be more complicated PI99. To determine the light

curve one needs νsa, νm, νc, and F (νm) as a function of time (all other fluxes are

determined by these quantities). Moreover, for comparison with the observations

it is necessary to express the instantaneous size of the fireball (R) and its Lorentz

factor as a function of the detector time. The appropriate relations are given by the

adiabatic energy equation (if the expansion is ultrarelativistic, the fireball cannot

exchange energy with the ISM) and the photon arrival time:

E0 =M(R)c2W 2, (4.2)

and

tobs =
R

2cW 2
, (4.3)

M(R) and E0 are the accumulated mass at a radius R and the value of the initial

energy, respectively. With these equations in mind, and if the flux is parameterized

in terms of its dependence on frequency and the time as Fν ∝ t−ανβ (Sari, Piran &

Narayan 1998), a relation between α, β and p can be obtained. For the spherical

adiabatic case this relation reads:

α =

{
3β/2 = 3(p− 1)/4 for ν < νc,

(3β − 1)/2 = (3p− 2)/4 for ν > νc.
(4.4)
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4.1.4. Are GRBs Jet–like structures?

The aim of this section is to review the observational and theoretical evidence

for a non-isotropic evolution of the GRBs or their afterglows. Actually, the present

work tries to provide some answers to this question (see §4.3) in case of a particular

astrophysical scenario (the collapsar model).

The possibility of non-isotropic emission is important for two reasons: the en-

ergetics and the event rate of the bursts. Clearly, beamed emission relaxes the

energetic requirements to explain the observations. If the energy happens to be

emitted into a solid angle Ω, the overall energy would be lower by a factor Ω/4π (if

the angle is small, one can write Ω/4π = (1− cos θ)/2 ' θ2/4). On the other hand,

if the emission is beamed, we would not see all events (only those which point in our

direction), i.e., the actual event rate will be larger by 4π/Ω.

Beamed emission results both from an anisotropy of the emitting region and

from relativistic beaming due to relativistic motion (see §3.3). The second effect

produces an enhancement of the emission into a cone with an opening angle W−1

(if the source is moving towards us with a Lorentz factor W ) independent of the

shape of the emitting region. While beaming due relativistic motion is of the same

strength in afterglows and in extragalactic jets (in both cases W ∼ 2− 10 implying

θr ∼ 0.1−0.5 rad, θr being the angle of beaming of the radiation field, i.e., θr ∼W−1),

beaming of GRBs is much larger (W ∼ 200⇒ θr ∼ 10−2 rad). However, the beaming

is determined by θ and not by θr, because a source will only be seen by those

observers with a viewing angle up to θ from the center. Nevertheless, an observer

can only see a fraction of the whole region of angular sizeW−1, because the radiation

is beamed at most into such an angle in his direction of observation. Furthermore,

each of these fractions are causally disconnected (e.g.,Christiansen, Scott & Vestrand

1978; Shapiro 1979). The number of non-causally connected regions for a burst is

∼ (θW )2.4 This number decreases with W , hence, during the afterglow there are

fewer regions present than during the GRB, and when θr ∼ θ the external shock is

coherent (i.e., causally connected).

4Such number is calculated as
Ω

Ωr

=
1− cos θ

1− cos θr

' θ2

θ2r
= (θW )2.
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Can we, by any means, infer from observations the shape of the emitting re-

gion?. In particular, can we distinguish a spherical ejecta from a non-isotropic one?.

Different authors have answered differently to these questions. Let us examine the

alternatives in more detail. In the comoving reference frame of an expanding rela-

tivistic flow, the proper time required to reach a radial distance R (measured in the

rest frame of the source) is R/cW (due to the contraction of the length in the direc-

tion of motion seen by the comoving observer). The maximum sideways expansion

is not affected by the length contraction and, therefore it is R/W . As long as the

Lorentz factor of the flow is sufficiently high (W−1 < θ), the sideways expansion

(R/W ) is rather small, and according to PI99 matter does not have enough time to

expand sideways and to realize that it is not part of a spherical shell.5 Of course,

as W decreases and W−1 ≈ θ the communication between all points in the shell

becomes causal and matter begins to expand sideways. The transversal expansion

velocity is a matter of debate, because Sari, Piran & Halpern (1999) argue that as

the matter at the front is constantly shocked to relativistic energies it should expand

with the speed of light (i.e., θ ∼ W−1). Rhoads (1999) assumes that the sideways

expansion occurs at the maximum allowed sound speed, c/
√
3 (i.e., θ ∼ W−1/

√
3).

In any case, the sideways motion is so rapid that it dominates completely the fluid

expansion. Narayan & Piran (1999) have found for an expansion into a homogeneous

medium that6

W ∝ R−3/2 exp

[
−3

2

c

W0θ0

(
R3/2

R
3/2
0

− 1

)]
(4.5)

where R0, W0 and θ0 are the initial values of the radius, the Lorentz factor and the

beaming angle respectively. The reduction of W , and the fact that the radiation is

beamed into a larger cone (W−1 > θ0) reduces the observed emission and causes a

break in the light curve7. After the break the emission decays faster (roughly by an

additional factor t−1). As the light curve changes, different relations between the

5This assertion can be formulated in hydrodynamical terms as follows: If one has an expanding

jet with proper Mach number Mj then the opening angle of the beam is just sin θ =
1

Mj

. If

the movement is highly relativistic, i.e., vj ∼ 1, (even with the maximum allowed sound speed,

csj = 1/
√
3), it results that Mj =

Wjvj

Wcsj
csj

∼Wj implying that θ ∼ 1

Wj

.

6Changing c in the exponential by cs one gets Rhoads’ (1999) solution.

7Panaitescu & Mészáros (1998) claim that two successive breaks will take place, one at W ≈
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spectral indexes α, β and p arise compared to the spherical adiabatic case (Eq. 4.4)

(see Halpern et al. 1999):

αjet =

{
2β + 1 = p for ν < νc,

2β = p for ν > νc.
(4.6)

There are many bursts (GRB970228, 970508 and 980519) which do not show such

a break in the light curve. However, Sari, Piran & Narayan (1999) interpret that

this is because the sideways spreading must have started before the first optical

observations. If this is true, using Eq. (4.3) PI99 finds an upper limit for the opening

angle of θ < 0.05 for GRB980519.

The first direct evidence for a beaming break has been found in GRB990123

(Kulkarni et al. 1999a) by a prompt optical detection. The optical afterglow ex-

hibits three stages: (1) a prompt optical decay that Sari, Piran & Narayan (1999)

interpret as coming from a reverse shock decaying like t−2 and disappearing quickly,

(2) a subsequent afterglow decay proportional to t−1.1±0.03, and (3) a late fast de-

cline. The most likely explanation of this behavior is that we have observed the

transition from a spherical like phase to a sideways expansion phase (Shari, Piran

& Narayan 1999). From the transition time (∼ 2 days) a beaming angle of θ0 ∼ 0.1

is inferred. Additionally, the lack of a significant radio afterglow in GRB990123

provides independent evidence for jet–like geometry (Kulkarni et al. 1999b). Most

recently, Harrison et al. (1999) have seen such a transition 1.2± 0.08 days after the

rising of GRB990510 going from t−0.82±0.02 to t−2.18±0.05.

From all this evidence, it seems that GRBs most probably involve non-isotropic

emission. However, the exact shape of the emission is far from being clear. Depend-

ing on the apparent geometry several more or less exotic terminologies are in use

to describe the shape of GRBs: “jets”, “bullets” or “pancakes”. PI99 assumes that

probably because of the analogy with AGNs jets the terminology “jets” has become

the most widely used. However, typical extragalactic jets are long and narrow, and

usually they show a continuous activity during ∼ 107 − 108 years. Such time scales

are much longer than the typical ones of the BHs that power them. A bullet shape,

θ−10 , and a second one induced by the hydrodynamic time scale related with the sound speed at

W ≈ (
√
3θ0)

−1.
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however, would be more self-consistent, because a bullet has a shorter length (in the

direction of motion) and it clearly represents a transient phenomenon. Nevertheless,

their angular sizes are Rθ and their “lengths” are L ∼ cT . Thus, if a burst of 30 s

duration typically may have L ∼ 1012 cm, a radial size R ∼ 1013 − 1014 cm (see

§4.1.1) and θ ∼ 0.1, one finds Rθ > L. To PI99 such a source resembles a “pancake”

moving relativistically in a direction perpendicular to its flat part. Moreover, if we

look at its shape in the comoving frame it is longer by a factor W , i.e., initially it

is actually a bullet. However, even at this early phase the ejecta expands sideways

proportionally to R (unless it is continuously collimated) and, consequently, even in

the comoving frame it looks like a pancake.

4.2. Numerical simulations

The dynamics of spherically symmetric relativistic fireballs has been studied

by several authors by means of 1D Lagrangian hydrodynamic simulations. Piran,

Shemi & Narayan (1993) and Mészáros, Laguna & Rees (1993) have examined the

expansion of a mass–loaded fireball, initially at rest, from the acceleration stage

through the coasting phase. Panaitescu et al. (1997) have simulated the interaction

between an expanding fireball and a stationary external medium with a uniform

or power law density stratification, and Panaitescu & Mészáros (1998) computed

the interaction between relativistically expanding shells. Kobayashi, Piran & Sari

(1999) have studied the evolution of an adiabatic fireball expanding into a cold uni-

form medium. Using a 1D relativistic Lagrangian PPM code, Daigne & Mochkovitch

(1999) and Daigne (1999) have studied the evolution of a relativistic wind with a

very inhomogeneous distribution of the Lorentz factor. Such inhomogeneity pro-

duces internal shocks which may radiate reproducing the temporal variability of the

observed bursts.

Other authors have studied the generation and transport of energy in potential

astrophysical sources which might produce a relativistic fireball. In a sequence of

papers Ruffert and coworkers (Ruffert, Janka & Schäfer, 1996, Ruffert et al. 1997;

Ruffert & Janka 1998, 1999a) have used a Newtonian 3D Eulerian PPM hydrody-

namic code (which includes self-gravity, the effects of gravitational wave emission
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and their back-reaction on the hydrodynamics, a neutrino leakage scheme and a

realistic equation of state) in order to show that the neutrino emission associated

with the dynamic phase of the merging or collision of two neutron stars, although

being powerful, is too short to provide the necessary energy for GRBs by neutrino–

antineutrino annihilation (mainly because the accretion torus that forms due to the

merger rapidly falls into the hole). Nevertheless, such a mechanism could explain

the short GRBs (i.e., those lasting less than 2 s; see Sect. 4.1). Ruffert and collab-

orators simulate the gravity of the BH by means of an effective Paczyński–Wiita

potential and, in a post-processing stage, they evaluate the energy deposition by νν̄

annihilation around the accretion torus.

MW99 have explored the evolution of rotating helium stars (Mα
>∼ 10M¯),

whose iron core collapse does not produce a successful outgoing shock. Instead

a BH is formed. For values of the specific angular momentum reasonable for such

stars (j ≈ (0.3 . . . 2)× 1017 cm2/s) a compact accretion disk forms at a radius where

the gravitational binding energy of the accreting stellar matter can be efficiently

radiated as neutrinos. Assuming that the efficiency of neutrino energy deposition

by νν̄–annihilation is higher in the polar regions (because the νν̄ cross-section is

σνν̄ ∼ (1− cos θνν̄)
2, θνν̄ being the angle between the trajectories of the interacting

neutrinos) MW99 obtained “relativistic” jets, along the rotation axis, which remain

highly focused and seem to be able of penetrating the star. However, as they per-

formed their simulations with a Newtonian hydrodynamic code, they got speeds

in the jet flow which were appreciably superluminal, and they had to stop their

simulations.

4.3. Relativistic jets from collapsars

The collapsar model of GRBs relies on the presence (or formation) of a fast

rotating BH (of a few solar masses) surrounded by a thick accretion disk (torus)

formed by the debris of a massive star which is not “instantaneously” accreted onto

the BH essentially due the fast rotation of the progenitor star. This fast rotation

also causes the formation of a “clean” axial funnel (i.e., of relatively low density)

centered around the rotation axis. The funnel favors the escape of the fireball,
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because it collimates and confines the fireball due to the much larger density of the

walls of the funnel, and because it has a smaller baryon content. The expected result

is the formation and evolution of a relativistic jet.

In the following we investigate some aspects of the collapsar model of MW99.

Using appropriate hydrodynamics (relativistic instead of Newtonian), a better de-

scription of the BH gravity (background Schwarzschild metric) and a variable gamma

equation of state (which is less realistic than the one of Blinnikov, Dunina-Barkovskaya

& Nadyozhin (1996) used by MW99; see §4.3.3) we have studied the question,

whether it is possible to produce an ultrarelativistic jet releasing energy (at dif-

ferent deposition rates) near the center of the star in a region restricted to the

neighborhood of the rotation axis.

4.3.1. Initial model and the numerical setup

Our axisymmetric relativistic simulations of jets from collapsars are based on

Model 14A of MW99, which is obtained by MW99 in several steps. First, they

evolve a 35M¯ from the main sequence, without mass loss and rotation, to the

presupernova stage (collapse velocity equal 1000 km/s) using a stellar evolution code.

Then, they extract the helium core of the star which has a mass of 14.13M¯, and

remove its inner 2.03M¯ which correspond to the iron core by introducing an inner

boundary at a radius r = 200 km. In a third step, MW99 map the helium core model

onto a 2D Eulerian grid and add some angular momentum to the spherical model,

which is distributed so as to provide a constant ratio of 0.04 of centrifugal force to the

component of gravity perpendicular to the rotation axis everywhere. Finally, MW99

evolve the model with a 2D hydrocode taking into account the effects of viscosity

in the thick accretion disk (torus), which forms due to the action of rotation, by

implementing the alpha viscosity prescription of Shakura & Sunyaev (1973) with

α = 0.1. At t = 18.96 s, when the central black hole, which forms in the center of

the star, has acquired a mass of 3.762M¯, we map the model to our computational

grid.

In a consistent collapsar model the jet should be launched due to neutrino

energy deposition by νν̄–annihilation. Similar to MW99 we mimic this process by
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depositing energy at a prescribed (constant or variable) rate within a 30◦ cone around

the rotation axis of the star8. In radial direction, the deposition region is bounded by

the inner boundary and an outer radius of r = 6×107 cm. Numerically, the internal

energy of the corresponding zones of the computational grid is raised to a certain

value. Note that we thereby neglect any momentum deposition by νν̄–annihilation.

We have investigated three different cases (Table 4.1): (i) a constant energy

deposition rate of 1050 erg/s, (ii) a constant rate of 1051 erg/s, and (iii) a strongly

(by a factor of ten) and rapidly (on milliseconds) varying energy deposition rate with

a mean of value of 1050 erg/s. The first two cases roughly bracket the expected energy

deposition rates of collapsar models, while the latter case mimics time–dependent

mass accretion rates, i.e., time–dependent νν̄–annihilation, and hence a fluctuating

energy deposition rate as found by MW99.

The simulations have been performed with GENESIS (see Chapter 2; and Aloy

et al. 1999a) using 2D spherical coordinates (r, θ). In r–direction, the computational

grid consists of 200 zones spaced logarithmically between the inner boundary at

r = 200 km and the surface of the helium star at r = 2.98 × 1010 cm. Assuming

equatorial symmetry we used four different zonings in angular direction: 43, 90 and

180 uniform zones (i.e., 2◦, 1◦ and 0.5◦ angular resolution), and 100 nonuniform zones

covering the polar region 0◦ ≤ θ ≤ 30◦ with 60 equidistant zones (0.5◦ resolution)

and the remaining 40 zones being logarithmically distributed between 30◦ ≤ θ ≤
90◦. The latter mesh provides the same resolution than the 180 uniform zone run

(Sect. 4.3.4).

As the equatorial region evolves slower than the polar one, the loss of resolution

due to the logarithmic spacing in θ does not affect the main conclusions derived

below. As the number of angular zones is reduced by almost one half compared to

the model with 180 θ-cells, the computational costs are approximately reduced by

one half, too. The typical size of a time step for this angular resolution is between

tens of microsecond to some microseconds. Several million time step are required to

8Let us remind the reader that the numerical energy deposition may, in fact, be produced by any

other physical mechanism like, e.g.,magneto-hydrodynamic processes. In this sense, our simulations

may be representative of either a hypernova or a collapsar.
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Name # zones (r × θ) Ė (erg/s) Deposition rate M (g) η−1

e50c043 200× 43 1050 constant (9± 4) · 1029 2.1± 1.9

e50c090 200× 90 1050 “ (7± 4) · 1029 1.9± 1.7

e50c100 200× 100 1050 “ (5± 2) · 1029 1.3± 0.9

e50v100 200× 100 1050 variable (7± 2) · 1029 1.9± 0.9

e50c180 200× 180 1050 constant (5± 4) · 1029 1.3± 2.0

e51c090 200× 90 1051 “ (6± 4) · 1030 3.2± 3.1

e51c100 200× 100 1051 “ (9± 5) · 1030 3.4± 3.4

Table 4.1: Overview of the simulated models at the end of the pre–breakout phase. Note that

model names involving letters “c” or “v” refer to a constant or variable energy deposition

rate Ė, respectively. M is the jet rest-mass and η−1 is the baryon loading. The errors

assigned to the mass are due to uncertainties in determining the material belonging to the

jet (we consider that the jet is formed by the material whose velocity is larger than 0.1−0.3 c,

and whose specific internal energy density is larger than 5× 1019 erg g−1). The errors in the

baryon loading are also caused by this uncertainty.

follow the evolution of the system for several seconds.9.

4.3.2. Equations of Special RHD in a spherical gravitational

background

In order to take into account the BH’s gravity, it has been necessary to include

a spherical gravitational background field into GENESIS. Effects due to the self-

gravity of the star on the dynamical evolution are neglected, i.e.,we consider only

the potential generated by the BH (as if it were a point mass). The validity of such

assumption relies on several facts:

• Deviations from spherical symmetry induced by the non-sphericity of the in-

9Working with 8 processors on a SGI ORIGIN 2000 a typical simulation needs 1 to 2 weeks.
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ner (and denser) matter distribution (the torus) are small, i.e., a spherically

symmetric potential provides a reasonably good approximation.

• The Newtonian gravitational potential of the system (BH + surrounding stellar

matter assuming a spherical matter distribution) differs by less than 20% from

the potential produced by the central BH mass alone (see Fig. 4.1). The

contribution of the stellar matter is negligible, even if the BH mass is smaller

than the torus mass, which is distributed over a large volume).

The inner boundary of the computational domain (see §4.3.1) is at more than

35 Schwarzschild radii (Rs = GM/c2 ∼ 5.6 × 105cm). General relativistic effects

are small at such distances. Hence, although the star and the BH are rotating,

it also does not make a large difference to represent the gravitational field of the

BH by a static Schwarzschild metric instead of a more appropriate but also more

complicated external Kerr metric. A more accurate treatment of General Relativistic

effects becomes only necessary, if one comes closer to the event horizon.

The line element of the static Schwarzschild space–time can be written as

(e.g.,Schutz 1985)

ds2 = −e2φdt2 + e−2φdr2 + r2dθ2 + r2sin2θdϕ2, (4.7)

where φ is a function only of r given by e2φ = 1− 2GM/rc2, or using natural units

(G = c = 1) by e2φ = 1− 2M/r. The evolution of a relativistic perfect fluid in this

background is described by the following hyperbolic system of conservation laws:

1

α

∂D
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+
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r2
∂
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Fig. 4.1.— Newtonian gravitational potential of BH plus star (solid line), of the BH alone

(M(r) = Mbh = 3.763M¯; dotted-dashed line), and of the star alone (dashed line). The

potential has been calculated assuming that the mass distribution is spherically symmetric

(i.e.,M(r) is the mass enclosed by an sphere of radius r), which is a good approximation to

the real distribution.
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with Ai = Si −Dvi.

In order to derive these equations, we have redefined the 3-velocity (and con-

sistently the momentum) according to

vj = ṽj
√
gjj (4.13)

Sj = S̃j
√
gjj ,

where ṽj and S̃j are the velocities and momenta defined in §2.2 (note the change of

notation). By this change the metric dependence is “hidden” in the contravariant

components of the vectors. One has the relation

v · v =
3∑

i=1

giiṽ
iṽi =

3∑

i=1

vivi, (4.14)

because the metric is diagonal. As all velocities are transformed into locally Minkows-

kian velocities, one can use Riemann solvers developed for Special Relativity without

modification in General Relativity. Our approach only works for diagonal metrics.

For a general metric the method Pons et al. (1998) must be applied, where a similar

variable transformation is performed before calling the Riemann solver (and a cor-

responding back-transformation afterwards). We simply use the redefined variables.

Energy deposition by neutrinos is incorporated by an additional source term in

the energy equation (4.13) of the form ėdt, where ė is the deposition rate per unit

volume, i.e., ė = Ė/Vdep (here Vdep is the volume of the deposition region). The

energy is deposited uniformly within the deposition region. Both a constant and a

variable deposition rate was considered (see Table 4.1).

4.3.3. Equation of State

The EOS is an approximation to the one used in Witti, Janka & Takahashi

(1994) –they used a more accurate treatement of the pairs e+e−–. It includes the

contribution of non-relativistic nucleons which behave as an arbitrary mixture of

Boltzman gases, and the contribution of radiation together with an approximate
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correction due to pairs e+e−, i.e., relativistic particles (photons, e+ and e−).10 Com-

plete ionization is assumed and the effects due to degeneracy are not included.

In order to calculate pressure, temperature (T ), specific enthalpy, sound speed

and ∂P
∂ε

∣∣∣
ρ
the local (baryonic) rest-mass density (ρ) and the energy density (e = ρε)

have to be given. The expression for the pressure then reads:

p(ρ, T ) =
R
µ
ρT +

1

3
aT 4 +

7

12
aT 4 − 7

6
ab(T 2 − b ln(1 + T 2/b)), (4.15)

where R is the universal gas constant, a is the radiation constant, b is a combination

of fundamental constants (b = 5.3 × 1018K2), and µ is the mean molecular weight

per free particle (Cox & Giuli 1968)

1

µ
=
∑

i

Xi(Zi + 1)

Ai
. (4.16)

Here Xi are the mass fractions, Zi the atomic numbers, and Ai the atomic masses

of the ideal Boltzmann gases. The pair correction term accounts for the fact that

electrons become non–relativistic (at sufficiently small densities) below T ∼ 5 ×
109K, and do not contribute much to the pressure ( 7

12aT
4 − 7

6ab(T
2 − b ln(1 +

T 2/b))→ 0 if T 2 → 0 hence explicitly canceling the other correction term).

We have not considered nuclear reactions, i.e., the initial composition at each

point is only advected using the same technique as in Sect. 3.2.2 for the beam particle

fraction. We advect nine nuclear species which are present in the initial model: C12,

O16, Ne20, Mg24, Si28, Ni56, He4, neutrons and protons.

Expression (4.15) gives the pressure as a function of ρ and T , while the hy-

drocode advances ρ and e. Hence, it is necessary to solve for the temperature

iteratively (using a Newton–Raphson procedure) starting from an initial guess value

for T :

eg + er − e = 0, (4.17)

eg and er being the energy densities of the gas and the radiation (including pair

correction), respectively. Both values are computed using the iterated value of the

10The approximate expressions for the pressure and energy density of the pairs was derived by

Janka & Takahashi (private communication). The corresponding entropy equation is given in Witti,

Janka & Takahashi (1994).
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temperature, T∗:

eg =
3

2

R

µ
ρT∗ ,

er = aT 4
∗

(
1 +

7

12
(

4T 2
∗

b+ T 2
∗

− 1) +
7

6
ab(T 2

∗ − b ln(1 + T 2
∗ /b))

)
.

Once equation (4.17) has been solved for T up to a prescribed tolerance, the

value of p can be computed from (4.15) using the density. Next the specific enthalpy

(h = 1 + ε+ p/ρ) is calculated, and finally the sound speed is obtained by

cs =

√
pγ

ρh
,

γ =
d ln p

d ln ρ

∣∣∣∣
s

=

p2

e
+ pg

p
,

where pg is the pressure contribution of the nucleons (pg = (R/µ)ρT ), and s is the

specific entropy.

Finally, for the Riemann solver one needs the value of the derivative
∂p

∂ε

∣∣∣∣
ρ
, which

is obtained from

∂p
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T 3
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.

4.3.4. Constant and moderate energy deposition rate

The first case we have considered has a constant energy deposition rate of

1050 erg/s. Although this rate is only moderate, concerning collapsar models, a

relativistic jet forms within a fraction of a second and starts to propagate along the

rotation axis. In Figs. 4.2 and 4.5 the evolution of the rest-mass density and the

Lorentz factor are plotted in eight snapshots from the initial state (panel (a)) to

the last computed model (panel (h)). From these figures one can notice that all
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the morphological elements of the BR74 jet model are present: the terminal bow

shock, a narrow cocoon, a contact discontinuity between the star and the jet itself,

a faint hot spot (noticeable in Fig. 4.3), etc. The propagation of the jet is unsteady,

because of density inhomogeneities in the star, particularly along the axis. For

example, Fig. 4.2c shows the combined effect of matter being piled up (in front of

the jet) and of a locally increasing stellar density. This gives rise to a “split” of the

head of the jet along with a head deceleration and a cleaning of the central channel.

The density inside the jet flow drops considerably with time reaching values as low

as ∼ 10−6 g/cm3 (Fig. 4.4). The density profile within the jet (Fig. 4.4) shows large

variations (up to a factor of 100) due to internal shock waves, which can be identified

when comparing density and pressure distributions at the same time (Figs. 4.2 and

4.3). Some of the internal shocks are of biconical nature recollimating the beam.

These shocks develop during the jets propagation through the star. Additional

shocks may appear in the subsequent jet evolution playing the rôle theoretically

assigned to the “internal shocks” in the emission processes (see Sect. 4.1.1).

Fig. 4.2 shows that the density structure of the star does not change noticeably

during the whole evolution. This statement also holds for other variables (Figs. 4.2

– 4.6), and hence proves that the evolution time scale of the jet is short compared

to the (dynamical) time scale required to change the mass distribution within the

star. This result, a posteriori, justifies our treatment of the gravity of the star (see

Sect. 4.3.2).

The Lorentz factor of the jet continuously increases with time, but it grows

non-monotonically (Fig. 4.7). The maximum Lorentz factor is not reached in the

head of the jet (which propagates at a mean speed of 7.8× 109 cm/s, or W ∼ 1.04),

but in the rarefaction waves that form behind the biconical shocks. A particularly

strong recollimation shock wave forms during the early stages of the evolution (after

the initial transient state). This shock moves outwards, and reaches a distance of

∼ 1010 cm in the final model (Fig. 4.2h). A very strong rarefaction wave behind this

recollimation shock causes the largest local acceleration of the beam material.

Due to the energy deposition and the dropping density, the specific internal

energy becomes extremely large within certain parts of the jet, reaching 1028 erg/g

in some small regions near the rotation axis at radii less than 108 cm. The mean
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Fig. 4.2.— Color contour maps of the logarithm of the rest–mass density distribution at

different evolution times (model e50c100). All the units are given in CGS system. Snapshots

are arranged by rows and from left to right corresponding to different evolutionary times

(marked in the top left corner of each panel). The panels in the top row have been zoomed

by a factor five compared to those in the bottom row to exhibit more details. The two white

isocontours correspond to the “limits” of the jet considering two different criteria: the inner

contour assumes that the jet is formed by material with ε ≥ 5 × 1019 erg/g and vr ≥ 0.3c;

the outer contour represents the part of the system with ε ≥ 5× 1019 erg/g and vr ≥ 0.1c.
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Fig. 4.3.— Same as Fig. 4.2, but showing the logarithm of the pressure distribution.
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Fig. 4.4.— Evolution of the rest–mass density along the polar axis for several epochs of

model e50c100. From top to bottom the different line styles are associated to the times:

0.00, 0.03, 0.13, 0.50, 1.5, and 3.35 s, respectively.

value of ε is ∼ 1020 − 1021 erg/g, or ∼ O(c2) (Fig. 4.8), i.e., the jet is very hot. A

mean temperature of ∼ 5 × 108K can be estimated from Fig 4.6 implying that its

pressure is radiation dominated, in accordance with the simplified EOS used in our

simulations. Clearly, the EOS used in MW99 is more realistic, particularly in the

denser regions of the torus. But as the jet does not propagate through such regions

and as the torus does not evolve significantly from its initial state, the usage of a

simplified EOS should not be problematic.

The relativistic treatment of the hydrodynamics leads to a overall qualitatively

quite similar (formation of a jet), but quantitatively very different evolution than

in MW99, although the energy deposition rate of MW99 is the same than ours. As

one can read off from their Fig. 27, the jet has propagated 7,000 km within the first

0.824 s. Using the jet’s energy density, MW99 infer from this fact a Lorentz factor
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Fig. 4.5.— Same as Fig. 4.2, but showing the distribution of the Lorentz factor.

139



Fig. 4.6.— Same as Fig. 4.2, but showing the logarithm of the temperature distribution.
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W

Fig. 4.7.— Evolution of the Lorentz Factor along the polar axis for several epochs of model

e50c100. From top to bottom the different line styles are associated to the times: 0.00, 0.03,

0.13, 0.50, 1.50 and 3.35 s.

of the matter of ∼ 10. Furthermore, they find a half opening angle for their jet of

10◦. In our simulation, at the same time for the same angular resolution (∼ 2◦)

and the same energy deposition rate (1050 erg/s) the head has reached a radius of

30,000 km (4.3 times farther out than in MW99), but its maximum Lorentz factor is

only 4.62 (less than half than in MW99) located in a blob at ∼ 12, 200 km. Moreover,

in our model another blob of matter moves with a speed of W ' 3 at a radius of

' 20, 000 km. Our half opening angle is 6◦, i.e., it is roughly half of that of MW99.

Another important issue, that was not analyzed by MW99, is the dependence

of the results on the grid resolution. We have investigated the dependence of the

results on the angular resolution (for a fixed radial grid). Table 4.2 shows that we

find significant changes with resolution. For instance, the radius reached by the
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Fig. 4.8.— Same as Fig. 4.2, but showing the distribution of the logarithm of the specific

internal energy density.
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head of the jet after 0.82 s varies by about 30% when increasing the angular resolu-

tion by roughly a factor of four. The propagation speed tends (non-monotonically)

towards a value Wmax ≈ 4.4 as the angular grid resolution is increased. A similar

comment holds for all hydrodynamic variables. Generally speaking, models e50c100

and e50c180 are very similar globally, even though the local values of the maximum

specific internal energy or the minimum density are quite different. This result is

not unexpected, because the resolution of both models is the same near the axis

(along which the jet is propagating).

Thus, we need an angular resolution four times larger than that of MW99 to

reach acceptable numerical convergence. When comparing our results with those of

MW99 the question arises to what extent are their results dominated by numerical

resolution and to what extent by their different input physics (realistic EOS, New-

tonian self-gravity of stellar matter, etc). This problem should be kept in mind in

the following discussion.

We are going to discuss now some general trends that can be inferred from

the dependence of the results on the resolution (considering the simulations up to

3.35 s).

Model Distance (km) Wmax θ (deg) ρmin (g/cm3) εmax (erg/g)

e50c043 30,000 6.03 8 2.35× 100 3.38× 1023

e50c090 27,000 3.92 8 2.37× 10−3 1.53× 1027

e50c100 26,000 4.62 6 4.33× 10−4 1.36× 1027

e50c180 22,000 4.40 7 1.38× 10−4 6.14× 1027

Table 4.2: Some characteristic quantities obtained for models with an energy deposition

rate of Ė = 1050 erg/s for different grid resolution at time 0.820 s. Distance gives the radius

of the head of the jet, and Wmax and εmax are the maximum Lorentz factor and specific

internal energy at this time. ρmin is the absolute minimum value of the density. The values

of θ are measured with an accuracy of 1◦.

The highest specific internal energy is concentrated in small blobs at radii less
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than 5×108 cm. These blobs are connected by a narrow central channel (which gets

narrower when the resolution is increased). The average specific internal energy

within the jet is ∼ 1021 erg/g in almost all models. The presence of the central

channel could be a numerical artifact (e.g., a wall heating effect like that mentioned

in Chapter 2, Sect. 2.4.2) related to the reflecting boundary condition along the axis.

At the beginning of the simulations the half opening angle lies in the range 6◦−8◦
which is smaller than 10◦ (MW99 value). Moreover, the opening angle shrinks from

8◦ to 6◦ − 7◦ when the resolution is increased. Later in the evolution (at ∼ 1.5s)

a strong recollimation shock reduces the opening angle to less than 1◦. This effect

is most remarkable in those models having the best resolution. Consequently, the

strong collimation found by us cannot be definitely ascribed to relativistic effects

alone, because insufficient grid resolution might play some rôle.

During the late stages of the jet propagation the distance reached by the head

of the jet tends to differ slightly (Fig. 4.9), while during the initial stages of the

evolution, all models follow very similar evolutionary tracks. This can be explained

by the non-linearity of the hydrodynamic equations, which may amplify differences

present in the initial models (produced by the interpolation of the initial model of

MW99 onto our different computational grids).

When the resolution is increased and becomes sufficiently good, Wmax ap-

proaches a value of ∼ 15 − 20 (at shock break out), the maximum value being

reached at a radius ∼ 8 × 109 cm. The value of ρmin is quite sensitive to the reso-

lution. It drops to a value of about 5 × 10−6 g/cm3 in the highest resolution run.

However, as the density minima are located near the axis (in the first θ-zone), they

may be affected by numerical errors. Another much better indicator of the conver-

gence behavior of the code is the mean density in the jet11 which always lies in the

range 10−2 − 1 g/cm3. In addition, the final maximum density (∼ 5 × 108 g/cm3)

is always obtained at a radius of ∼ 3× 107 cm within the torus. Hence, even if the

point values are not exactly the same, the global maximums and minimums can be

found in the same regions. This result also confirms that outside the axial cone

resolution does not play an important rôle. Nevertheless, if one wants to include

11This indicator is better because it refers to a global property.
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Fig. 4.9.— Evolution of the head position for models with a constant energy deposition rate

equal to 1050 erg/g. For model e50c090 the available data only cover the interval [0.7, 3.35] s.

neutrino generation and transport processes from the torus into the simulations, and

wants to model the accretion from the torus, a better resolution near the equator is

crucial (because this region has the highest accretion rate, see below).

The structure of the jet is characterized by shocks and knots with a varying

number of blobs of high W and low density. As one expects, the morphology of the

jet is richer at better resolution. It shows a narrow spine of low density connecting

the various blobs.

The mean temperature in the jet, T̄ , is (in all models) ∼ 5 × 108K. The max-
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imum temperature in the computational domain, Tmax ∼ 2.3 × 1010K, is always

attained at the central part of the torus. This temperature value implies that our

calculations are self-consistent, because even when we deposit energy to heat up

the matter, its temperature does never exceed the temperature of the emission re-

gion (i.e., the walls of the torus). Moreover, the temperature is well below the pair

creation threshold and is compatible with the assumed temperature of the GRB

emitting region (a few keV, see Sect. 4.1.1).

The baryon mass enclosed by the jet and its cocoon is about 10−4M¯. This value

is large compared with the expected mass of the ejecta in a typical GRB (∼ 10−6M¯;

Rees 1997). It does prevent the formation of a GRB, mainly because in later stages

of the evolution new mass will be piled up in front of the expanding jet. Our results

show an alternative to the standard model, which is that instead of having a thin

shell of matter expanding ultrarelativistically (what requires a low enclosed mass),

one has an expanding bubble with an inner jet-like ultrarelativistic core that would

be the responsible of the gamma-ray emission (once the bubble becomes optically

thin). Such a picture is similar to what is assumed valid for extragalactic jets, in the

sense that the head propagation speed (and the sideways expansion) is subrelativistic

or mildly relativistic, while the beam itself is relativistic (even at kpc scale) and the

main responsible for the synchrotron emission. Actually that situation might even

allow for interesting observational implications; for instance, one can imagine that

the dense slow matter is iron group matter irradiated by gammas from the beam

behind it. This may produce iron lines as indicative in some jet sources (which

do not make a GRB because of the orientation of the source relative to an Earth

observer.

Mass accretion is slowed down or even stopped by the deposition of energy. The

flow of stellar matter across the inner boundary (i.e., the flow of mass that eventually

ends up in the black hole) is almost stopped after ∼ 0.15 s when ∼ 1M¯ has been

passed the inner boundary (see Fig. 4.10). The accretion rate is highly variable on

time and depends on latitude too. The largest accretion rate is observed in the

equatorial layers of the star (between 60◦ and 90◦), because they are the most dense

ones (due to the presence of the torus with densities above 108 g/cm3). The accretion

rate decreases with angle, and reaches a minimum in a cone of ∼ 10◦ around the
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axis, because the polar regions initially have the smallest density and the energy

deposition promptly stops the accretion there. One can notice from Fig. 4.10 that

there is a change in the slope of the accreted mass around ∼ 1.2ms, which must

be a result of (1) the numerical relaxation of the initial model and (2) the energy

deposition itself. The effect (1) is due to the interpolation necessary to produce our

initial model from data which have been produced by a different code using other

EOS and that includes effects such as α-viscosity of the accretion disk. The effect (2)

is produced because, initially, the energy deposited is used to heat up the innermost

region of the star increasing its pressure, and thereby preventing fast accretion. This

effect is smaller and delayed in equatorial regions (see the dotted line in Fig. 4.10

up to a latitude of 63.8◦ − 90.0◦), which contributes to the accreted mass up to

∼ 0.15 s because it is farther from the deposition volume. The outermost shells of

Fig. 4.10.— Time evolution of the cumulative mass that is lost across the inner boundary

at different latitudes for models e50c100 (left) and e51c100 (right), respectively.

the star are falling with velocities as small as 10−6c, i.e., a negligible amount of mass
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(1.7×10−4M¯) is entering the computational grid through the outer boundary. From

an analysis of the radial velocity field at the end of the simulations (see Fig. 4.11

which corresponds to model e50c180, but it is representative of the other models,

too) we have found that there exists an extended torus-like region centered around

the equator having a velocity ≈ 0. In Fig. 4.11 this region is surrounded by the

isocontour where the velocity is equal to zero. Note that the region is not connected

to the central torus, because in between (and around the jet cavity –like in MW99–)

a layer of infalling material is present. The maximum infall velocity depends on

resolution, and lies, in the best resolution run, in the interval 0.357c - 0.398c, while

for the lowest resolution the value is 0.097c. These maximum velocities are found

around the central torus.

The baryon load of the jet has been calculated for each model (see Table 4.1)

as the ratio of (the approximate value of) the jet mass to the energy deposited.

The extraction of the values involves some uncertainty, because there exists some

arbitrariness in measuring the jet mass accurately.12 The baryon load is very similar

for the four cases we have studied. It seems to decrease with increasing resolution,

although the uncertainties are so large that all models with a deposition rate of

1050 erg/s show a baryon load consistent with that of the highest resolution run

of η−1 ' 1.3. The explanation is simple. Models with the a worse resolution have

larger computational cells. Hence, the determination of the jet shape is less accurate,

i.e., some cells may include material that does not belong to the jet. This happens

for those cells located at the jet boundary.

The value of the baryon contamination found in the simulations is not com-

patible with that assumed in the standard model (see Sect. 4.1.1). However, such a

model considers an isotropic relativistic expansion into a uniform external medium.

In our case, neither the expansion is isotropic nor the external medium is uniform.

In fact, depending on the criteria employed to define the jet, there are regions inside

the beam where η−1<∼10−3 − 10−5 (precisely where the Lorentz factor is larger).

Additionally, the mass entrained into the jet increases slower with time than the

12The jet is not well defined, because we do not have a conserved variable that unanimously

identifies jet matter. This situation is different in the case of extragalactic jets, where the beam

mass fraction allows us to properly locate the jet boundary (neglecting effects of numerical diffusion).
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Fig. 4.11.— Snapshot of the radial velocity of model e50c18 at the end of the simulation

(at t=3.35 s). Isocontours correspond to velocity values -0.05c, -0.01c and 0, respectively.

Numbers at the X and Y axes give the distance in centimeters.

energy released, because once the funnel is evacuated mass entrainment across the

jet boundary almost seizes (of course this argument depend on resolving the KH

instabilities on the jet funnel). In fact, considering the evolution of η−1 for model

e50c100 after jet breakout (Sect. 4.3.7), we find a decrease of the baryon load by

a factor of four in less than 1.8 s. If this decrease continues in time, a value of

η−1 ∼ 10−3 is reached in less than 9 s.
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4.3.5. Constant large energy deposition rate

In order to investigate the effect of the deposition rate on the overall evolution

two runs have been made with a tenfold increased energy deposition rate, e51c090

and e51c100, which differ in grid resolution (Table 4.1). We find that a resolution of

90 θ-zones is insufficient to capture accurately all relevant features. In addition, some

numerical problems were encountered in model e51c100. The main reason for these

problems is the artificial way in which the energy is released in the computational

domain. In reality, the energy deposition of the neutrinos is smoothly distributed

over the whole star, but it is strongly peaked near the axis and close to the star’s

core. In the previous simulations the region where the energy was deposited had a

sharp boundary (see Sect. 4.3.1) generating an extremely large jump (in energy) that

made the code crash after several ten milliseconds. This initial jump is ten times

smaller for the models with an energy deposition rate of 1050 erg/s. Therefore, the

effect of the artificial deposition had not caused numerical problems in those cases.

For model e51c090, the situation was not as critical as for model e51c100. The

former one has been computed with a two times smaller angular resolution, and its

increased numerical diffusion obviously helped to avoid the problem. However, in

order to get model e51c100 to run, we had to include a time dependent deposition

rate of the form:

Ė =

{
1051 exp(− (t−t0)

t0
) for t < t0;

1051 for t ≥ t0.
(4.18)

where t0 = 200ms. Hence, the deposition of energy proceeds in two stages: (1)

exponential growth from 1051/e erg/s to 1051 erg/s up to 200ms, and (2) constant

rate of 1051 erg/s afterwards. In addition, the edge of the deposition region was

linearly smoothed over 3 cells in radial and angular direction (to decrease the jump

between adjacent zones).

Model e51c090

The jet propagates faster than in any model with a deposition rate of 1050 erg/s.

The time needed to reach the star surface is about 1.68 s (to be compared to 3.35 s for

the previous models). Wmax = 20.686, which is almost equal to the value obtained

for model e50c180 (but almost twice the value found for model e50c090, which has

the same resolution). As before, Wmax is located behind the largest (in size) recolli-
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mation shock. This shock is similar to the one in the previous models (Sect. 4.3.4).

The half opening angle (in front of the shock) is ∼ 10◦, a bit larger than before,

but the recollimation in the strongest shock is larger too. Behind the shock the

half opening angle is ∼ 16◦, which then decreases about 6◦. The maximum spe-

cific internal energy is 3× 1028 erg/g, which is about the same as in model e50c180.

The central spine of high specific energy connecting blobs with high energy is also

present. The baryon load is more than twice as large as that of models with a smaller

deposition rate (see Table 4.1). A plausible explanation is that as the deposition rate

is ten times larger much more material from the torus is pushed into the jet and,

therefore, as this matter is very dense, the ejected mass is higher.

Model e51c100

With this better resolution we get larger Lorentz factors than those obtained

with a deposition rate of 1050erg/s. The maximum Lorentz factor is highly time

dependent, and there are transients in which it can reach a value of 40, although

after 1.2 s some kind of monotonic evolution is obtained, and the Lorentz factor

increases non–uniformly from 22 to 33.3 (Fig. 4.12). The morphology is reacher than

in the worst resolved model e51c090. It propagates faster than the corresponding

1050erg/s model (see Fig. 4.9), but it is slower than model e51c090, because the time

to reach the surface is 2.27 s. As mentioned in the previous section, this is a problem

of resolution which was detected in the simulations of extragalactic jets too. In the

present case, the lack of resolution near the axis has induced a ballistic propagation

of model e51c090, which leads to a very high speed of the head (0.6c), preventing

very high Lorentz factors within the beam (most of the material impinges against

the terminal shock producing an efficient head propagation). The opening angle

(∼ 10◦) almost duplicates that of model e50c100 and it is much wider, roughly a

factor of two, than the former (compare, e.g.,Fig. 4.7g with Fig. 4.12h), i.e., the jet

is less collimated.

The strong recollimation shock present in model e50c100 is not so evident here.

Instead, several biconical shocks are observed within a very knotty beam. In ad-

dition, the Lorentz factor near the head of the jet is higher and, in the last model

(Fig. 4.12h), a beam Lorentz factor as higher as 22 is reached very near the head.

The high values of the Lorentz factor are produced by the fact that with this de-
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Fig. 4.12.— Same as Fig. 4.2, but for model e51c100 and showing the distribution of the

Lorentz factor.

position rate, the central funnel is evacuated faster, and the mean density within

the jet is about a factor 5 smaller than in model e50c100 (Fig. 4.13). Moreover, the

largest deposition rate explains why, around the axial innermost region (near the

limit of the deposition area), the density is as small as 3.5× 10−13 gr/cm3, because
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Fig. 4.13.— Same as Fig. 4.12, but showing the distribution of the rest–mass density.

the system has no time to feed the funnel with material coming from the lateral

boundaries of the jet.

Models e51c090 and e51c100 have baryon loads (Table 4.1) that are twice larger

than in models with a 1050 erg/s deposition rate. This is due to the fact that models
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with a deposition rate of 1051 erg/s develop an extended cocoon of mildly relativistic

velocities (see the extension of such layer comparing the white contours in Figs. 4.2

and 4.13) and relatively high mean density (∼ 1 g/cm3), which increases consider-

ably the jet mass. However, looking at the whole evolution of the model e51c100

(including the post-breakout), the mass entrained into the jet increases slower with

time than the energy released (similarly to model e50c100; see Sect. 4.3.4), so that

η−1 decreases by a factor of two in less than 1.8 s.

In Fig. 4.10, the mass that crosses the innermost boundary as a function of time

for different adjacent angular regions is presented for model e51c100. Comparing

with the same figure for model e50c100 (left panel), one can notice that the behavior

is similar, i.e., , the total accreted mass is roughly the same. However, the largest

energy deposition affects to the time at which the largest change of the slope of

the curves happens: for model e50c100 it is ∼ 1.2ms, while for e51c100 is ∼ 1ms.

Moreover, due to the fact that for e51c100 the deposition rate is not constant (and

larger than that of model e50c100) at the beginning the slope of the curves is steeper.

Additionally, the behavior of the curves up to ∼ 45◦, from 0.1 s to the end, is different

in both models (steeper in e51c100). Another remarkable feature is that the the

equatorial region contribute approximately the same to the total mass accreted

because they are farther from the deposition volume (i.e., it is less influenced by the

details of the energy deposition).

4.3.6. Rapidly varying energy deposition rate

The model e50v100 includes a random varying energy deposition rate with

average equal to 1050erg/s. It has been produced in order to check if temporal

variations make any significant difference for focusing, propagation or internal jet

structure with respect to models with the same deposition rate but constant. Let

us remain that the process of energy deposition by the neutrinos is dynamically

variable because the region that produces them (the innermost part of the torus),

may change with dynamical times of the order of several milliseconds. Consistently,

we have imposed a varying energy deposition rate with the same time-variability (of

the order of some milliseconds) and energy-variability (the energy deposition rate
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may change by more than one order of magnitude around the average rate) than

that of a collapsar scenario (see MW99). Hence, the varying deposition rate mimics

much better the phenomenon that is expected to happen in nature. Concerning the

time variation of the deposition rate, we have to consider that 1ms corresponds to

a typical size of 1ms×c = 3×107 cm. Nevertheless, our smaller cells (near the inner

boundary) have sizes larger than 2 × 107 cm, what means that we cannot capture

properly the smallest time variations. However, as we are not interested right now

in producing a realistic spectrum, and we are imposing a random pattern energy

deposition (instead of being the result of a calculation involving energy transport

and detailed microphysics), such detail is not relevant for the conclusions of the

present work.

Fig. 4.14 shows the Lorentz factor evolution for this model. Compared with

model e50c100 (Fig. 4.5), the structure is more knotty and rich in shocks, particularly

in the firsts 109cm. Behind the largest recollimation shock (which is also present

at roughly the same distance as in model e50c100) a noticeable blob-like structure

is evident. Another remarkable difference is the maximum Lorentz factor reached,

which is almost twice than the previous model (Wmax = 26.81), in spite of the fact

that the energy deposited is, in average, the same. This means that a variable

deposition rate is more efficient to convert internal energy into kinetic energy. We

explain the highest efficiency in terms of the internal shocks, which are stronger and

more numerous in model e50v100. As an example of this line of reasoning, let us

consider the panels (f), (g) and (h) of Figs. 4.5 and 4.14. In Fig. 4.5g, at a distance

∼ 109cm, a biconical shock is present (which is not in the previous panel, but has

been generated between these two epochs). This shock is stronger in Fig. 4.14g, and

when it collides with the precedent shock (the second shock is faster because it is

moving into a channel of minor density than the medium that the first shock finds

in its way) and evolves up to ∼ 7× 109cm, accelerates much more the fluid than in

the model e50c100 (the resulting Lorentz factor is more than twice).

The mean propagation speed is very similar in both cases (both models reach the

surface in ∼ 3.3s), although the instantaneous velocity of the jet’s head is clearly

different (comparing panel to panel in Figs. 4.5 and 4.14, the head is not at the

same position, and the differences are even larger in other intermediate evolutionary
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Fig. 4.14.— Same as Fig. 4.2 but for model e50v100 and showing the Lorentz factor distri-

bution.

states). Logically, this happens because the energy input varies in one case and not

in the other, but since the mean deposition rate is the same, the mean velocity of the

head is the same too. Moreover, the logarithmic grid in radial direction produces a

decrement in resolution that tends to average the variations of model e50v100 and,
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therefore, this numerical effect makes more similar the latest stages of the evolution

of both models.

The jet width is usually a bit larger in e50v100 than in e50c100 and the opening

angle behind the largest recollimation shock is pretty small in both cases, although

in Fig. 4.14h the model e50v100 seems to refocus after 1.7× 1010cm. However, this

could be a transient effect.

4.3.7. Evolution after shock breakout

After reaching the star’s surface, the relativistic jet should continue its propa-

gation through a decreasing atmosphere. The situation then is such that an almost

continuous release of energy (that of the jet) is put into a medium whose pressure is

negligible compared with the one into the jet cavity, and whose density is of the same

order (although as the jet will eventually move outwards in the ISM, density will

decrease). This picture corresponds roughly to the propagation of a strong shock

wave resulting from a strong explosion, that is, the instantaneous release of a large

amount of energy in a relatively small volume. This problem has been studied, ana-

lytically by many authors, both in the Newtonian case (e.g.,Sedov 1959; Zel’dovich

& Raizer 1966) and in the relativistic case (e.g.,Colgate & Johnson 1960; Johnson

& McKee 1971; Elgroth 1971, 1972; Vitello & Salvati 1976; Blandford & McKee

1976; Shapiro 1979, 1980; Königl 1980). The main results of such works are: (i) the

propagation of a planar explosion through a uniform medium follows a self-similar

solution both in the classical (Zel’dovich & Raizer 1966) and in the relativistic case

(Vitello & Salvati 1976), (ii) it leads to an increasing Lorentz factor with time, and

(iii) a rapid decreasing of the post-shock density.

The finite light speed in RHD introduces a characteristic length scale, ct, into

all initial value problems which, unlike the Newtonian case, precludes –in general–

self-similar solutions. Colgate & Johnson (1960) calculated the relativistic Riemann

invariants for the ultrarelativistic limit of a radiation dominated EOS, allowing to

Johnson & McKee (1971) to obtain the solution of a planar, strong, ultrarelativistic

shock into a cold gas of decreasing density. The method of characteristics used in

the one-dimensional planar case could not be directly applied to spherical or cylin-
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drical shocks. In these cases, only approximate solutions for strong, ultrarelativistic

(spherical or cylindrical) expanding shocks were found by Elgroth (1972) assuming

density gradients proportional to the radius. Blandford & McKee (1976) found an

approximate similarity variable for the problem of spherically symmetric relativistic

shocks (generated by a point explosion, or by a power supply varying as a power

of time) moving into a uniform or decreasing atmosphere, which enabled them to

find approximate similarity solutions (accurate to the lowest order in W−2) and to

conclude that the scale height of the shocked fluid in the extreme relativistic limit is

of the of the order of Rs/W
2
s , where Rs is the radius of the shock andWs its Lorentz

factor.

The external density gradient determines whether the shock will accelerate or

decelerate with time, both in the case of adiabatic shocks (Shapiro 1979) or radia-

tive ones (Shapiro 1980). According to Shapiro (1979), the spherically symmetric

solutions for relativistic shocks are inherently non-accelerating. The fact that they

are self-similar solutions precludes the treatment of density profiles steep enough to

produce shock acceleration. Only power laws ρ ∼ r−k, k < 3, are allowed, while

the numerical two-dimensional simulations of Shapiro (1979), established that adi-

abatic point explosion requires k > 3. However, power laws as steep as k > 3 are

unphysical, since they imply an infinite mass enclosed by the shock13. Actually, any

physically meaningful density profile which is steep enough to accelerate the shock

must contain a characteristic radius within which the profile is less steep than r−3.

Consistently, at early times, and up to such characteristic radius, the accelerating

shock must be a decelerating shock, which prevents self-similar solutions.

The practical conclusion that we can extract for the collapsar model that we

are proving is that the structure of the external medium surrounding the central

engine will finally determinate the characteristics of the GRB shape (and those of the

subsequent afterglow). As no exact analytic solution has been found in the arbitrary

relativistic two-dimensional case, numerical simulations are crucial to clarify the

outcome of the proto-GRB14 after the breakout.

13If k > 3, M ∝
∫ R

R0

r−kdV ∝ 1/(3− k)(R3−k −R3−k
0 ), and when R0 → 0⇒M →∞.

14We call proto-GRB to our relativistic jet because, actually, the Lorentz factor of the relativistic
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Along the previous sections we have analyzed the possibility of formation of

a GRB in a collapsar model. The values of the Lorentz factor at the end of the

simulation are still far from the ones requested in the fireball model (Sect. 4.1.1).

However, according to PI99, internal shocks would be efficient at Rint ∼ 1013cm,

because if the shocks arise earlier the radiation does not escape (the fireball is op-

tically thick). In our case, the relativistic jet has reached at most 3× 1010 cm, 100

times smaller than the distance for the system to be optically thin. This means

that if we want to produce a real GRB, a longer evolution should be considered.

With this aim, we have extended our computations to a larger domain including an

atmosphere for the Wolf-Rayet star.

In order to satisfy the conditions to get an accelerating shock, we have generated

a Gaussian atmosphere matching an external uniform medium of the form:

ρ(r) =




ρ(R) exp[−b(r −Ra)

2] with b = − ln

(
ρ(R)

ρe

)
for R < r < Ra;

ρe for Ra < r < Rt.
(4.19)

ρe is the value of the external density outside the atmosphere. The atmosphere

extends from r = R (the star’s surface) to r = Ra. For the pressure, the same

profile is used to join the star’s surface (p = p(R) dyn/cm2) with the ISM (p =

10−8p(R) dyn/cm2). The rest of thermodynamical variables are got from the EOS.

The velocities outside the star have been taken to match that of the surface and

decaying radially with r1/2, so they are very close to zero in the whole external

domain.

The values of the parameters of the atmosphere are: Ra = 1.8R, Rt = 2.54R,

ρe = 10−5g/cm3. Such a election of p(R) and ρe is somewhat arbitrary and, there-

fore, it does not emulate exactly the expected values for the medium surrounding a

Wolf-Rayet star (which most probably show a decay of the thermodynamical vari-

ables as r−2). However, with a structure like this we can explore the effects of the

proto-GRB propagation on a uniform and non-uniform medium. Additionally, the

jet is between a factor of 3 to 5 bellow the assumed theoretical values, the baryon load is still larger

than the expected in a GRB, etc. In addition, we are considering the formation phase in which the

proto-fireball is still optically thick, hence, we cannot observe directly such stage of evolution but a

later one (if, at the end, the proto-GRB becomes a GRB).

159



Gaussian profile of the innermost part of the atmosphere is steepest than any ra-

dial power-law gradient, thus, satisfying qualitatively the requests of Shapiro (1979)

concerning the ambient stratification (see above), in order to produce relativistic

expanding shocks that accelerate.

The evolution after the surface breakout has been followed for the models

e50c100 and e51c100 (however, the analysis of e51c100 is still under progress, and is

not going to be presented here). The numerical domain has been extended with 70

additional radial cells. A picture of the whole evolution (after the jet breakout) is

shown in Fig. 4.15. The time needed for the jet to reach Rt, from the star’s surface,

is ∼ 1.8s. Hence, the mean propagation velocity of the frontal bow shock in this pe-

riod is ∼ 0.85c, which is almost three times faster than the velocity of the head into

the star (0.3c). Furthermore, after the breakout it is possible to distinguish several

epochs characterized by different axial propagation speeds and sideways expansion

velocities15:

1. The first phase lasts 0.25 s during which both, the lateral expansion and the

axial distance grow proportionally to t1.6 (lateral expansion) and t1.7 (axial

distance) (see Fig. 4.16). This epoch is dominated by the inertia of the jet

(that remains highly collimated) coming from the star interior Fig. 4.15a). The

head’s velocity during this phase is 0.48c. The ram pressure near the terminal

contact discontinuity (F̄S)
16 increases as ∼ t0.7, while the mean pressure grows

as ∼ t0.4. Moreover F̄S is larger than the mean pressure, which supports the

jet-shaped expansion.

2. The second phase (of ∼ 0.56 s) is characterized by a large acceleration of the

head of the jet up to a velocity of 0.91c. The reason of such acceleration is

15The sideways expansion velocity is calculated as the maximum of the lateral displacements of

the pressure bubble for each time. Hence, such velocity does not correspond to a physical point

because, for different times, the maximal expansion can take place at different points.

16The precise definition of this quantity is F̄S = (
∫

M
SzvzdV )/(

∫
M

dV ), where M is a volume

around the terminal contact discontinuity. The quantity is an indicator of how important is the

axial momentum, in the morphology of the bubble, compared with the mean pressure within the

bubble. If this flux is larger than the mean pressure a “cylindrical” or “jet-shaped” morphology is

expected. If pressure dominates the bubble expansion will be spherical.
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Fig. 4.15.— Nine colored-contour maps of the Lorentz Factor at different evolution times

for the model e50c100 after the breakout. X and Y axis measure distance in centimeters.

From top to bottom and left to right the corresponding snapshot times are: 3.39, 3.65, 3.91,

4.17, 4.34, 4.43, 4.69, 4.95 and 5.21 s.
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the steepest external density gradient along with the F̄S dominance (over the

pressure). The sideways expansion is subrelativistic (the expansion velocity

being ∼ 0.19c) and during this stage it grows slower than in the previous

phase (∼ t1.0). The opening angle increases up to roughly 10◦. In this stage

the sideways growth is due to the finite radius of the jet which penetrates the

atmosphere (not to a lateral expansion of the beam).

3. The last part of the evolution is marked by the moment in which the bow-

shock reaches the homogeneous part of the atmosphere. Here the resistance

to the axial advance does not decrease any more while it still does it sideways,

leading to a rapid lateral spreading. In fact, one can notice from Fig. 4.16 that

the axial growth rate slightly decreases (now it only increases as t1.3). The

lateral expansion rate changes drastically (see the slope change in dashed line

of Fig. 4.16), and the velocity of expansion arrives to be (1.4 ± 0.42)c, i.e., ,

it grows faster than the axial expansion (solid line). The error that we have

assigned to this measure comes from the uncertainty in the determination of

the position of the bubble boundary associated to the numerical diffusion of the

algorithm (that may spread over 2 or 3 cells the bubble–to–external medium

blast wave) and the fact that the radial mesh is logarithmic and some of the

external cells may have a relatively large size (the maximum mesh spacing is

1.07 × 109 cm). This behavior in the lateral direction is due to the external

density gradient, because the point of maximal expansion coincides with the

uniform/non-uniform atmosphere interphase, which means that the material

expanding sideways is still sensitive the density gradient, while the axial part

of the jet is propagating through a uniform medium. The expansion velocity

in the last stage tends rapidly to become relativistic, although in most of the

evolution it is subrelativistic or mildly relativistic. This effect produces a more

symmetric expansion, tending to be spherical instead of jet-like. Furthermore,

both the mean pressure and F̄S decay very fast with time as ∼ t−4.8 and ∼ t4.0,

respectively.

The evolution of the maximum value of the Lorentz factor is similar to that in

the pre-breakout epoch. As before, it is reached behind the first large recollimation

shock, which in its turn moves from ∼ 1010 cm (Fig. 4.15a) to ∼ 1.5 × 1010 cm
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Phase 3

Phase 2 Phase 1

Fig. 4.16.— Evolution of the axial (solid line) and lateral (dashed line) expansions after

the jet break out. The axial expansion is calculated detecting the head of the jet and

subtracting from it the radius of the star (the breakout point). The lateral expansion is

calculated according to footnote 15. Additionally, note that from the sideways expansion

distance we subtract the initial radius of the beam.

(Fig. 4.15i) during the post-breakout evolution. At the end of the simulation, the

maximum Lorentz factor is 29.35, and the beam material just behind the terminal

contact discontinuity (between the head and the external medium) has increased its

mean Lorentz factor from ∼ 4 (at the breakout) to ∼ 9. This values are consistent

with an adiabatic expansion because we have checked that along the axis (which

is actually a fluid line) the product hW is constant and approximately equal to
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15. Around the head the fluid moves mainly along the axis (Fig. 4.17), and near

the lateral boundaries of the expanding bubble a strong velocity in the θ direction

appears soon after the breakout. The Lorentz factor near the boundaries of the jet

cavity grows from ∼ 1 (at the beginning of the breakout) to ∼ 2.5− 5 (values in the

maximal expansion region and in the axis, respectively).

The shape of the expanding bubble is longer than wider (see Fig. 4.18) during

the whole post-breakout evolution and, therefore, we can continue referring to it

as a “jet” (see Sect. 4.1.4). However, when the jet reaches the uniform part of the

atmosphere, as the sideways expansion is faster, the shape is appreciably widen.

We have not followed the evolution long enough to see what happens when most

of the bubble propagates outside the declining atmosphere. Nevertheless, we can

infer from Fig. 4.16 that the trend is to decrease the widening rate in a way similar

to what has happened with the axial expansion. The reason is that being most of

the bubble inside an homogeneous medium, and considering that at larger distances

the bubble will be pressure driven (which would be particularly true if the energy

deposition is switched-off), it should tend to expand isotropically.

Over and above all these considerations, it remains true that the evolution has

been followed only up to a distance 100 times smaller than Rint, and our results

are still far to establish whether we can produce a “real” GRB or not. Anyway,

the total energy deposited near the inner boundary, is only 5.2 × 1050 erg, and the

total evolution time is 5.2 s. Both values are in agreement with the energetics and

duration of a generic cosmological GRB (see Sect. 4.1).

Another important remark is that our expansion corresponds to a mildly rel-

ativistic bow-shock propagation. However, the fireball model (Sect. 4.1.1) assumes

an ultrarelativistic expansion to overcome the compactness problem. Such a prob-

lem stems from the assumption that the size of the sources emitting the observed

radiation is determined by the observed variability time scale. In addition, the non-

thermal spectra of GRBs indicate with certainty that the sources must be optically

thin. This has been taken as an indication of the fact that the emission of the GRBs

comes from very large distances (compared with the bursters). Thus our breakout

simulation corresponds to a previous stage of the GRB evolution: the formation and

acceleration of the fireball. Obviously, in order to reach the ultrarelativistic regime,
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Fig. 4.17.— Same as Fig. 4.15 but for the radial velocity.
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Fig. 4.18.— Same as Fig. 4.15 but for the logarithm of the rest–mass density.
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Fig. 4.19.— Evolution of the mean pressure into the jet cavity after the jet breakout

(dashed line) and mean axial momentum flux in the neighborhood of the jet’s head (solid

line) versus time.

first the plasma has to be accelerated, and in the initial part of the evolution, the

propagation must include a subrelativistic to mildly relativistic regime. Such regime

can not be studied analytically and, hence, the numerical simulations become neces-

sary. Our results show that the pre-breakout relativistic jet evolves getting a mildly

relativistic propagation speed (the head moves in the final stages at 0.91c), and it

seems that the trend is to accelerate. Additionally, the lateral spreading is present

and the expansion velocity tends to the light speed, in agreement with the esti-

mate of Sari, Piran & Halpern (1999), and being less consistent with the estimate

of Rhoads (1999) (who assumes a lateral spreading velocity of cs = c/
√
3 in the
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comoving fluid frame).

4.4. Conclusions and outlook

Using a collapsar progenitor model of MW99 we have simulated the process of

energy deposition that may happen in a realistic Wolf-Rayet star. The result of the

deposition has been the formation and propagation of an axisymmetric jet through

the mantle and envelope of a collapsing massive star. We have studied two deposition

rates (1050 and 1051 erg/s) which bracket the current estimates for the GRBs energies

assuming a cosmological distance. Highly relativistic and collimated outflows have

been found. The maximum (final) Lorentz factor reached has happened in the model

e51c100 (Wmax = 33), and it has occurred at the end of the pre-breakout phase

(i.e., just before the jet reaches the surface of the star).17 For the largest energy

deposition rate, the jet and in particular the cocoon are less collimated, because

when the jet is driven harder it also expands stronger laterally.

The rest-mass density and the internal energy show strong spatial and temporal

variations within the jet giving rise to a very inhomogeneous baryon loading. The

average baryon load of the jet is η̄−1 ∼ 1, but some parts of the jet have a baryon

load ∼ 10−5 or even less. After jet breakout η̄−1 decreases by a factor of four in less

than 1.8 s. If this trend continues η̄−1 ∼ 10−3 is reached in less than 9 s.

We have studied the influence of the grid resolution on the results and we have

seen that very poor resolutions can underestimate the values of the Lorentz factor

and overestimate the mean density inside the jet and the head’s velocity. We can

conclude that, at least an angular zoning of 0.5◦ around the axis and covering 3

beam radii is the minimum resolution to obtain a convergent result.

The results of a varying energy deposition (which emulates more accurately the

real process) indicate that the formation of a large number of internal shocks helps

in the beam fluid acceleration. As the mean energy released in models e50c100 and

e50v100 is the same, the mean head speed is roughly the same although the beam

17During the post-breakout phase of e51c100 (not shown here) the maximum Lorentz factor in

the final model is ∼ 46, with some transients in which Wmax ∼ 50.
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maximum Lorentz factor is higher (by a factor of two) in the non constant case.

The evolution after the jet breakout is clearly influenced by thermodynamical

gradients in the external medium and the final value of the external density ρe.

Using an atmosphere with a Gaussian profile near the star surface and a constant

value afterwards, we have found several evolutionary stages. The different phases are

correlated with the times at which the jet reaches the points of change of gradient in

the atmosphere and the relative importance of the axial momentum flux compared

with the mean pressure in the material surrounded by the bow shock. Anyway,

considering the whole evolution, the maximum Lorentz factor grows up to almost

30 in some parts of the beam, and the external shock expands sideways faster than

he head advances. However, for this particular election of atmosphere (and ρe) the

propagation of the bow shock is only mildly relativistic and the main characteristics

of our simulations cannot still account for the observational properties of the GRBs

or their afterglows.

From the preliminar analysis of the post-breakout evolution of the model e51c100

it comes out that at the end of the simulation, ∼ 2M¯ have a Lorentz factor of less

than three, 3 × 10−4M¯ move with 3 ≤ W < 10, and for 2 10−6M¯ the Lorentz

factor W ≥ 10 (the latter two masses reduce to 2 × 10−5M¯ and 2 × 10−7M¯ for

model e50c100). Except for the very early evolution (t < 1 s) the amount of mat-

ter moving at moderate (3 ≤ W < 10) and highly (W ≥ 10) relativistic velocities

increases by a factor ∼ 3 every second, i.e.,when the central engine is active for

another 5 s at the assumed energy deposition rate an amount of matter with mass

∼ 10−4M¯ will move with W ≥ 10. As the maximum Lorentz factor is also rapidly

increasing, it is not unlikely that maximal Lorentz factors of several hundreds can

be reached before the central engine is shut off.

We may regard our set of numerical models as simulations of a proto-GRB,

because the scales involved in the problem (r<∼8×1011 cm) are still far by more than

one order of magnitude from the typical distances at which the fireball becomes

optically thin (Rint ∼ 1013 cm). Consistently, if a GRB would result from some of

them, further material acceleration is required.

Concerning the future work, a prompt improvement of the method applied

here would include the deposition of momentum along with energy, because, the
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real process of νν̄–annihilation does not only release energy into the system but

also momentum. Taking into account the particular configuration of the torus, this

momentum will help in pushing the matter outwards and, hence, in getting larger

Lorentz factors for the relativistic proto-fireball.

Another line of work may be to study the influence on the final ejecta of varia-

tions in the initial model. For example, following MW99 work, we can try to apply

GENESIS to initial models containing an inner boundary closer to the even hori-

zon of the BH. Releasing energy at shorter distances to the BH emulates better

the energy deposition by neutrinos because the into the inner parts of the star the

temperature is higher and, therefore, the neutrino fluxes are larger (i.e., the number

of neutrinos that could interact releasing energy is larger).

In the above mentioned direction we can consider different astrophysical sce-

narios like, e.g.,NS/NS mergers (similar study than that of Ruffert & Janka (1999a)

could be done using a relativistic hydro-code like GENESIS) or, NS/BH mergers

(like in Ruffert & Janka 1999b). However, such merging scenarios would require a

more accurate treatment of the gravitational force. Actually, in order to be fully

consistent, a dynamical space-time will be necessary to address properly if these

scenarios are suitable to produce GRBs. We have future plans to use the null for-

mulation of the Einstein equations to evolve the space-time metric in the NS/BH

merger scenario that the Newtonian studies (Ruffert & Janka 1999b) have pointed

out as the most favorable to be GRB progenitor.

More realistic EOS and an feasible transport scheme are necessary to improve

the micro-physics. An improved EOS would provide to the code realistic values for

the neutrinos’ production and will handle more properly with the denser parts of

the star (or the merger). In addition, the transport scheme will allow us to include

the right energy deposition rate at every point of our domain.

The propagation of the jet into the circumstellar medium depends on its stratifi-

cation. Thus, further simulations with different environments are planned. It would

be interesting and more realistic to consider (outside of the star) stellar winds with

a declining density falling as r−2, because this environments are the ones expected

around collapsars. We also want to examine progenitors of different size and dif-

ferent internal structure. Larger stars provide longer inertial confinement of the jet
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probably leading to larger Lorentz factors, if the central engine works at least until

the jet reaches the stellar surface. Stars with a less pronounced or even no central

torus will provide less initial collimation. As our simulations have not been pushed

far enough in time yet, they can (at the present stage) neither account for the ob-

servational properties of GRBs nor their afterglows. Hence, we plan to extend them

to later times and larger radii (∼ 1013 cm) using adaptive mesh refinement (AMR)

or multi-resolution techniques.
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A. Characteristic fields of the RHD equations

Analytical expressions for the spectral decomposition of the three 5× 5 (in 3D)

Jacobian matrices Bi(U) associated to the fluxes Fi(U) of system (2.7),

Bi(U) =
∂Fi(U)

∂U
(A1)

have been given by Donat et al. (1998).

In this Appendix, we explicitly show the eigenvalues and the right and left

eigenvectors coresponding to matrix Bx, whereas the cases y and z easily follows

from symmetry. The eigenvalues are:

λ± =
1

1− v2c2s

{
vx(1− c2s)±cs

√
(1− v2)[1− vxvx − (v2 − vxvx)c2s]

}
(A2)

λ0 = vx (triple) (A3)

The following expressions define auxiliary quantities:

K ≡ κ̃

κ̃− c2s
, κ̃ =

1

ρ

∂p

∂ε

∣∣∣∣
ρ
, A± ≡

1− vxvx
1− vxλ±

(A4)

A complete set of right–eigenvectors is,

r0,1 =

( K
hW

, vx, vy, vz, 1− K
hW

)
(A5)

r0,2 =
(
Wvy, 2hW 2vxvy, h(1 + 2W 2vyvy), 2hW 2vyvz, 2hW 2vy −Wvy

)
(A6)

r0,3 =
(
Wvz, 2hW 2vxvz, 2hW 2vyvz, h(1 + 2W 2vzvz), 2hW 2vz −Wvz

)
(A7)

r± = (1, hWA±λ±, hWvy, hWvz, hWA± − 1) (A8)

The corresponding complete set of left–eigenvectors is

l0,1 =
W

K − 1
(h−W,Wvx,Wvy,Wvz,−W )

l0,2 =
1

h(1− vxvx)
(−vy, vxvy, 1− vxvx, 0,−vy)
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l0,3 =
1

h(1− vxvx)
(−vz, vxvz, 0, 1− vxvx,−vz)

l∓ = (±1)h
2

∆




hWA±(vx − λ±) + ℵ±

1 +W 2(v2 − vxvx)(2K − 1)(1−A±)−KA±

W 2vy(2K − 1)A±(vx − λ±)

W 2vz(2K − 1)A±(vx − λ±)

ℵ±




where ∆ is the determinant of the matrix of right-eigenvectors

∆ = h3W (K − 1)(1− vxvx)(A+λ+ −A−λ−), (A9)

and,

ℵ± = −
{
−vx −W 2(v2 − vxvx)(2K − 1)(vx −A±λ±) +KA±λ±

}
(A10)

For an ideal gas equation of state it can be proven that K is always greater than one

(in fact K = h), and ∆ is different from zero (| vx |< 1).
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B. An Efficient Implementation of Flux Formulae

in Multidimensional Relativistic Hydrodynamical Codes

This appendix is an adaptation of Aloy, Pons & Ibáñez (1999) to derive and

analyze a simplified formulation of the numerical viscosity terms appearing in the ex-

pression of the numerical fluxes associated not only to the modified Marquina’s flux

formula but also, being more general, to several High-Resolution Shock-Capturing

schemes. After some algebraic pre-processing, we give explicit expressions for the

numerical viscosity terms of two of the most widely used flux formulae, which imple-

mentation saves computational time in multidimensional simulations of relativistic

flows. Additionally, such treatment explicitely cancells and factorizes a number of

terms helping to amortiguate the growing of round-off errors. We have checked

the performance of our formulation running GENESIS to solve a standard test-bed

problem and found that the improvement in efficiency is of high practical interest

in numerical simulations of relativistic flows in Astrophysics.

The numerical study of the evolution of multidimensional relativistic flows turns

out to be a topic of crucial interest in, at least, two different scientific fields: Nu-

clear Physics (studies of the properties of the equation of state for nuclear matter via

comparison of simulations and experiments of heavy ion collisions) and Relativistic

Astrophysics. The field of Numerical Relativistic Astrophysics is recently undergo-

ing an extraordinary developement after the important efforts of people working in

building up robust codes able to describe many different astrophysical scenarios, such

that relativistic jets in quasars and microquasars, accretion onto compact objects,

collision of compact objects, stellar core collapse and recent models of Gamma-Ray

bursts (see, e.g., the recent review in Ibáñez & Mart́ı, 1998, and references therein).

Thus, the improvement in the efficiency of multidimensional hydro-codes becomes a

necessity.

It is well known the performance ofmodern high-resolution shock-capturing tech-

niques (HRSC) in simulations of complex classical flows. Most of the HRSC methods

are based on the solution of local Riemann problems (i.e., initial value problems with

discontiuous initial data) and since 1991 (see Mart́ı, Ibáñez & Miralles 1991) several

Riemann Solvers or Flux Formulae have been specifically designed in relativistic fluid

dynamics (see, e.g., Mart́ı, 1997, Ibáñez & Mart́ı, 1998, for a review on Riemann
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solvers in Relativistic Astrophysics). In addition, in Pons et al. (1998) it is showed

the way for applying special relativistic Riemann solvers in General Relativistic Hy-

drodynamics, hence any future new Riemann solver, exhaustively analyzed in Special

Relativistic Hydrodynamics (SRH), could be applied to get the numerical solution

of local Riemann problems in General Relativistic Hydrodynamics. Consequently,

the interest of the results we obtain in this note goes beyond the domain of SRH

and can be easily extended to General Relativistic Hydrodynamics.

For consistency, we start by summarizing the basics of the HRSC techniques.

A system of conservation laws (see LeVeque 1991) is a set of partial differential

equations of the form (2.7), where U∈ <d is the vector of unknowns and Fi(U) is

the flux in the i-direction. In the above system (2.7) we can define a d× d-Jacobian
matrix Bi(U) associated to the flux in the i-direction as:

Bi = ∂Fi(U)

∂U
. (B1)

The system is said to be hyperbolic if the Jacobian matrices have real eigenvalues.

The main ingredients of a HRSC algorithm are:

i) A finite discretization of the equations in conservation form (2.7). Using a

method of lines, this discretization reads:

dUi,j,k(t)

dt
= −

F̂i+ 1
2
,j,k − F̂i− 1

2
,j,k

∆x
−
Ĝi,j+ 1

2
,k − Ĝi,j− 1

2
,k

∆y
−
Ĥi,j,k+ 1

2
− Ĥi,j,k− 1

2

∆z
(B2)

where subscripts i, j, k are related, respectively, with x, y and z-discretizations, and

refer to cell-centered quantities. The cell width, in the three coordinate directions

are, respectively, ∆x, ∆y and ∆z.

ii) Quantities F̂i+ 1
2
,j,k, Ĝi,j+ 1

2
,k and Ĥi,j,k+ 1

2
are called the numerical fluxes at

the cell interfaces. These numerical fluxes are, in general, functions of the states of

the system at each side of the cell interface. Some HRSC methods derive expressions

for the numerical fluxes by giving a consistent flux formulae or solving local Riemann

problems, with an exact (Mart́ı & E. Müller, 1994) or approximate Riemann solver,

after a cell reconstruction procedure that gives the state at both sides of the interface,

denoted by L (left state) and R (right state). Several monotonic cell reconstruction
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prescriptions have been given in the scientific literature to achieve different orders

of spatial accuracy (van Leer 1979, Woodward & Colella 1984, Marquina 1994).

For clarity, from now on we will omit the indexes relative to the grid and restrict

our study to the x1-splitting of the above system (2.7), assuming that the vector of

unknowns satisfies U = U(x1, t).

We have focussed our analysis to some of the most popular HRSC algorithms,

and analyzed their expressions for the numerical fluxes. Hence, the sample consid-

ered is: HLLE (Harten, Lax, & van Leer 1983, Einfeldt, 1998), Roe (Roe 1981),

Marquina (M) (Donat et al. 1998), and a modified Marquina’s flux formula (MM)

(Aloy et al. 1999). The above selection gathers the most fundamental differences

among the large sample of HRSC flux formulae. HLLE is the simplest one, it does

not need the full spectral decomposition of the Jacobian matrices. Roe’s solver

linearizes the information contained in the spectral decomposition into an average

state. Marquina’s (and its modified version) flux formula considers the information

coming from each side of a given interface (it is not a Riemann solver) and, in some

astrophysical applications, has produced better results in modelling complex flows.

After some algebraic work, all these flux formulae can be cast into the following

general form:

F̂(UL,UR) =
1

2

(
(I + ĨL)FL + (I − ĨR)FR + (QLUL −QRUR)

)
(B3)

where FL,R stands for the fluxes evaluated at the states UL,R and I is the unit

matrix. Following Harten (1983), the QL,R terms in the above equation will be

referred as the numerical viscosity matrix.

Matrices ĨL,R and QL,R can be expressed as linear combinations of the projec-

tors onto each eigenspace, i.e., the direct product of the corresponding left and right

eigenvectors lp, rp associated to the p-th characteristic field (p=1,...,d),

ĨL,R =
d∑

p=1

bpl
L,R
p rL,Rp (B4)

QL,R =
d∑

p=1

cpl
L,R
p rL,Rp (B5)
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where superscripts L,R indicate that the eigenvectors are evaluated at the state

UL,R. The values of the coefficients bp and cp appearing in the above definitions of

matrices ĨL,R and QL,R depend on the eigenvalues λp as shown in Table I, for the

four flux formulae analyzed.

TABLE I

Parameters in the numerical fluxes.

Flux bp cp

Formulae

HLLE
Ψ+ +Ψ−

Ψ+ −Ψ−

2Ψ+Ψ−

Ψ+ −Ψ−

Roe 0 | λp(Ũ) |
M βp αp(1− β2p)
MM 0 αp

Table 4.3: In the above table we have introduced the quantities Ψ+ = max(0, λR
+, λ

L
+)

and Ψ− = min(0, λR
−, λ

L
−), λ+ and λ− are, respectively, the maximum and minimum of λp,

αp = max
(
| λL

p |, | λR
p |
)
and βp = 1

2

(
sgn(λL

p ) + sgn(λR
p )
)
. We denote by Ũ the state of the

system according to Roe’s average.

Several comments concerning Table I are in order:

i) If we take into account the orthonormality relations between the right and

left eigenvectors
d∑

p=1

lprp = I (B6)

and the fact that the coefficients bp and cp are, in the case of HLLE, independents

of p, then matrices ĨL,R and QL,R are, trivially, the unit matrix multiplied by the

corresponding factors.

ii) For HLLE’s and Roe’s flux formulae their corresponding matrices ĨL,R and

QL,R satisfy the relations: ĨL = ĨR, QL = QR

iii) As it is well known, the knowledge of the spectral decomposition of the

Jacobian matrices is a basic ingredient to build up Riemann solvers or many flux
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formulae. Nevertheless, while HLLE’s flux formula only needs the values of the max-

imum and minimum speeds of propagation of the signals, Roe’s and Marquina’s flux

formulae need explicitly the full knowledge of the spectral decomposition, including

right and left eigenvectors.

The system governing the evolution of multidimensional relativistic perfect flu-

ids can be written in Cartesian coordinates in the form (2.7), with d = 5, where, in

units such that the speed of light c = 1, the vector of unknowns U is given by (2.8),

and the fluxes Fi are defined by (2.9)

A very worthy simplification on the calculation of matrices Q arises when some

eigenvalue is degenerate, i.e., when the system is not strictly hyperbolic. In SRH,

like in multidimensional Newtonian hydrodynamics, there is a linearly degenerate

field, p = 0, such that the corresponding eigenvalue λ0 is triple (the system in

the j-direction splitting is not strictly hyperbolic, although the set of eigenvectors

is complete). According to equation (B5), and using the orthonormality relations

between the right and left eigenvectors

3∑

k=1

rm0,kl
n
0,k = δmn − rm+ ln+ − rm− ln− (B7)

wherem,n = 1, . . . 5 denote the components of the 5-vector, it is possible to eliminate

the three eigenvectors associated to the degenerate field and to write down the

following simplified expression (omitting L,R superscripts)

Qmn = c0δ
mn + (c+ − c0)rm+ ln+ + (c− − c0)rm− ln−. (B8)

Notice that only r± and l± are needed to evaluate the numerical viscosity. The

same procedure can be applied to any system of conservation laws where one of the

eigenvectors has multiple degeneracy, because orthogonality relations always allow

us to skip the explicit dependence on one of the vector subspaces of the spectral

decomposition. In particular, it could be of great interest in the case of the equations

of relativistic magnetohydrodynamics where, in the ansatz of a directional splitting,

similar degeneracy arises in the structure of the characteristic fields associated to

each one of the fluxes.

The explicit formulae for the numerical viscosity term corresponding to the

system of equations of special relativistic hydrodynamics are:
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HLLE’s flux formulae. Since the numerical viscosity matrix is proportional to

the identity, the application of the above recipes is obvious.

Roe’s flux formulae. The numerical flux across some given interface can be

written

F̂(UL,UR) =
1

2
[FL + FR + q] (B9)

q being the five–vector calculated from the corresponding numerical viscosity ma-

trices of Table I:

q = Q(UL −UR) ≡ Q∆U (B10)

In Roe’s Riemann solver the quantities relative to the spectral decomposition are

evaluated using the corresponding Roe-averages of the left and right states, denoted

by Ũ (see Roe 1981, for the Newtonian case and Eulderink & Mellema, 1995, for the

relativistic case). In practice, other particular averaging (e.g., arithmetic means)

have also been used. Note that in the following expressions (B11) all quantities are

evaluated using Roe’s average, except for ∆um. After some algebra, the viscosity

vector associated to the numerical flux in the j-direction is

q1 = | λ0 | ∆u1 + χa

q2 = | λ0 | ∆u2 + hW (vxχa + χbδjx)

q3 = | λ0 | ∆u3 + hW (vyχa + χbδjy)

q4 = | λ0 | ∆u4 + hW (vzχa + χbδjz)

q5 = | λ0 | ∆u5 + hW (χa + vjχb)− χa (B11)

where

χa =
5∑

m=1

[
(| λ+ | − | λ0 |)lm+ + (| λ− | − | λ0 |)lm−

]
∆um (B12)

χb =
5∑

m=1

[
(| λ+ | − | λ0 |)V j

+l
m
+ + (| λ− | − | λ0 |)V j

−l
m
−

]
∆um (B13)

V j
± =

λ± − vj
1− vjλ±

(B14)
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M and MM- flux formulae. The numerical flux across a given interface can be

written like equation (B9) with

q = qL − qR (B15)

qL,R = QL,RUL,R (B16)

Omitting the superscripts L,R and taken into account the expressions in Table I for

MM and the results in Donat el al. (1998), the viscosity vector in the x-splitting is:

qL,R1 =
h2

∆
{M [A−Ω+ −A+Ω−] + p(c+ℵ+ − c−ℵ−)}+

c0p
W

h

{
K
K − 1

+
v2y + v2z
1− v2x

}

qL,R2 =
h3W

∆
{MA+A− [Ω+λ+ − Ω−λ−] + p(c+λ+A+ℵ+ − c−λ−A−ℵ−)}+

c0pW
2vx

{
1

K − 1
+ 2

v2y + v2z
1− v2x

}

qL,R3 =
h2W

∆
vy {M [Ω+A− − Ω−A+] + p(c+ℵ+ − c−ℵ−)}+

c0p

{
W 2

K − 1
+

1 + 2W 2(v2y + v2z)

1− v2x

}

qL,R4 =
h2W

∆
vz {M [Ω+A− − Ω−A+] + p(c+ℵ+ − c−ℵ−)}+

c0p

{
W 2

K − 1
+

1 + 2W 2(v2y + v2z)

1− v2x

}

qL,R5 =
h2

∆
{M [A−Ω+D+ −A+Ω−D−] + p[c+ℵ+D+ − c−ℵ−D−]}+

c0p
W

h

{
hW −K
K − 1

+
(2hW − 1)(v2y + v2z)

1− v2x

}
, (B17)

with the following auxiliary quantities

M = ρhW 2(K − 1), Ω± = c±(vx − λ∓), D± = hWA± − 1, (B18)

where quantities c±,0 are given in Table I and ∆ is the determinant of the matrix of

right-eigenvectors.

The corresponding viscosity vectors in the other directions are trivially obtained

by a cyclic permutation of subindices x, y, z.
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We have tested the efficiency of our numerical proposal, for Roe’s and MM’s

flux formulae, running GENESIS, without any optimization at compilation level, in

a SGI Origin 2000. A standard initial value problem has been chosen: ρL = 10,

εL = 2, vL = 0, γL = 5/3, ρR = 1, εR = 10−6, vR = 0 and γR = 5/3, where the

subscript L (R) denotes the state to the left (right) of the initial discontinuity. This

test problem has been considered by several authors in the past (see §2.4 for details

in 1D, 2D and 3D).

We have compared the performance of two different implementations of the

numerical flux subroutine:

i) Case A, stands for the results obtained using our analytical prescription. This

means to write down, in the numerical flux routine, just the expressions derived here

for the viscosity vector q.

ii) Case B, stands for the results obtained running the code with a standard

high-efficiency subroutine for inverting matrices (we use a LU decomposition plus an

implicit pivoting which is, for general matrices, O(N 3)). This subroutine is called

to get the left eigenvectors from the matrix of right eigenvectors and is adapted to

the particular dimensions of the matrices (3 × 3, in 1D, 4 × 4, in 2D and 5 × 5,

in 3D). Hence, unlike case A, now we have to calculate numerically the following

quantities: the matrix of left eigenvectors, the characteristic variables and, finally,

the components of the viscosity vector q.

TABLE II

CPU time (in microseconds).

TCI (µs)

Roe MM

Case # Zones Case A Case B Case A Case B

1D 100× 1× 1 12.2 53.8 23.8 118.9

2D 20× 20× 1 25.5 181.8 49.0 373.5

3D 14× 14× 14 39.4 431.9 75.7 879.0

Table 4.4: Time per numerical cell and iteration (TCI) in microseconds employed by the

numerical flux routine in our test-bed problem, for three different grids.
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Table II summarizes the results: the direct implementation of our numerical

viscosity formulae leads to an improvement of the efficiency (in terms of CPU time)

of the numerical fluxes subroutine in a factor which, in 3D calculations, ranges

between about eleven and twelve depending on the particular flux formula used.

When comparing Roe’s and MM’s cases a factor two –in favour of Roe– arises

due to the fact that MM’s flux formulae needs to compute two viscosity vectors

(one per each side of a given interface), unlike Roe’s flux formula which needs only

one viscosity vector evaluated at the average state. As it must be, the efficiency

increases with the number of spatial dimensions involved in the problem due to the

computationally expensive matrix inverting operations performed at each interface

to get the numerical fluxes. Since the numerical flux routine is, typically, one of

the most time-consuming, it translates into a speed up factor between two and four

in the total execution time, depending on the specific weight of the flux formulae

routine in each particular application.

Our formulation also gives a unified description of the numerical fluxes (B3),

permitting a unique implementation with the possibility of switching in cases when

the utilisation of a specific flux formula is more appropriate. In addition, due to

the fact that we have eliminated, in the generalized MM’s flux formula, all the

conditional clauses, the efficiency is ensured either for scalar or vectorial processors.

Another worthy by-products of our algebraic pre-processing concerns with the

significant reduction of round-off errors, as a consequence of the number of oper-

ations suppressed and factorization. One of the important issues in designing a

multidimensional hydro-code is the accurate preservation of any symmetries present

in a physical problem. A numerical violation of these symmetries could arise as a

consequence of accumulation of round-off errors in the calculation of the numerical

fluxes, as we have explained in §2.3.10. The algebraic simplifications, shown in the

present appendix, reduce the number of operations and cure such problem.

Two last additional consequences arise from our work. First is that similar

expressions can be worked out for any non-linear hyperbolic system of conservation

laws for which the full spectral decomposition is known. In particular, when some

of the vectorial subspaces has multiple degeneracy, a similar algebraic preprocessing

is very convenient. The other important consequence is that an appropriate combi-
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nation of a simplified formulation of the numerical viscosity together with the use

of special relativistic Riemann solvers in General Relativistic Hydrodynamics (Pons

et al. 1998), should allow a very easy and efficient extension to General Relativistic

Hydrodynamics.
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C. Explicit algorithm to recover primitive variables

In any RHD code evolving the conserved quantities Eq. (2.8) in time, the vari-

ables {p, v1, v2, v3, ρ, ε} have to be computed from the conserved quantities at least

once per time step. In GENESIS this is achieved using Eqs. (2.1)–(2.3) and the

equation of state. For an ideal gas equation of state with constant γ, this implies to

find the root of the function

f(p) = (γ − 1)ρ∗ε∗ − p (C1)

with ρ∗ and ε∗ given by

ρ∗ =
D

W∗
(C2)

and

ε∗ =
τ +D (1−W∗) + p (1−W 2

∗ )

DW∗
, (C3)

where

W∗ =
1√

1− v∗ · v∗
, (C4)

and

v∗ =
S

τ +D + p
. (C5)

The zero of f(p) in the physically allowed domain p ∈ ]pmin,∞[ determines the

pressure. The monotonicity of f(p) in that domain ensures the uniqueness of the

solution. The lower bound of the physically allowed domain, pmin, defined by

pmin = |S| − τ −D, (C6)

is obtained from Eq. (C5) taking into account that (in our units) |v| ≤ 1. Knowing

p, Eq. (C5) then directly gives v, while the remaining state quantities are straight-

forwardly computed from Eqs. (2.1)–(2.3) and the definition of the Lorentz factor.

In GENESIS, the solution of f(p) = 0 is obtained by means of a Newton–

Raphson iteration in which the derivative of f , f ′, is approximated by

f ′ = |v∗|2c2s∗ − 1, (C7)

where cs∗ is the sound speed given by

cs∗ =

√
(γ − 1)γε∗
1 + γε∗

. (C8)
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This approximation tends to the exact derivative when the solution is approached.

On the other hand, it easily allows one to extend the present algorithm to general

equations of state.
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D. Transfer equations for the synchrotron radiation

The presence of shock waves into the a jet fluid enhance the emission because a

shock is usually a very efficient converter of bulk kinetic energy into internal energy

of the electrons and energy associated to the magnetic field, and we know that the

total emitted power of a charged particle in the form of synchrotron emission is (see

e.g.,Pacholczyk 1970)
dE

dt
=

2e4

3m4c7
B2 sin2 αE2 (D1)

where e and m are the charge and the mass of the particle (electrons or positrons

in our case), B is the magnetic field strength, E is the energy of the particle and α

is the angle between the velocity and the magnetic field direction.18

In order to calculate the synchrotron emission that reaches us coming from a

high number of electrons in a relativistic jet, it is necessary (as mentioned before)

to solve the transfer equations along the line of sight. To do it we need to know

first the emission and absorption coefficients for a set of electrons (expressed in the

reference frame of the magnetic field (1,2), see below), which are respectively (see

Gómez 1993)

ε(i) =

√
3e3

8πmc2
B sinϑ

∫ Emax

Emin

N(E)[F (x)±G(x)]dE (D2)

κ(i) = −
√
3e3

8πmν2
B sinϑ

∫ Emax

Emin

E2 d

dE

(
N(E)

E2

)
[F (x)±G(x)]dE (D3)

where ν is the frequency, N(E) is the electron density with an energy between E

and E + dE, ϑ being the angle between the magnetic field and the line of sight, the

functions F and G are related with the second order Bessel functions as follows

F (x) = x

∫ ∞

x
K5/3(z)dz

G(x) = xK2/3(x)

with x = ν/νc, νc being the critical frequency, at which an electron of energy E

emits approximately the largest quantity of synchrotron emission, and corresponds

18Note that the synchrotron emission grows as the second power of the magnetic field and the

energy of the electrons.
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to

νc =
3e

4πm3c5
B sinϑE2.

In the equations (D2) and (D3) superindex (i) denotes polarization. The ’+’

sign corresponds to the polarization i = 1 (i.e., in the direction of the axis 1 –normal

to the projection of the magnetic field over the plane of the sky–), and the sign ’–’

to i = 2 (i.e., in the direction of the axis 2 –which is the direction of the projection

of the magnetic field over the plane of the sky). In general, as Emin and Emax may

have any value in the range [0,∞], there is no analytical expression of the emission

and absorption coefficients and they must be calculated numerically.

Another element that we need to establish is how the internal energy is dis-

tributed among the relativistic electrons. Given that observed radio spectra from

emission regions which are transparent to radiation are of the power law form

dE/dt ∝ ν−α, where α is a constant (Kembhavi & Narlikar 1999), and since the

electrons receive their random motions through shock-heating, usually it is assumed

(following the treatment of non-relativistic shocks) that they develop a power law

distribution of energies (see e.g.,Blandford 1990):

N(E)dE = N0E
−pdE, Emin ≤ E ≤ Emax (D4)

where p is the spectral index of the electrons, which usually takes values between one

and three. Neglecting radiative energy losses, the ratio CE between the maximum

and minimum energy can be considered constant along all the jet, which allows us

to treat this as a parameter of the model.

The power law is fully determined by the equations

N0 =

[
U(p− 2)

1− C2−p
E

]p−1 [
1− C1−p

E

N (p− 1)

]p−1

(D5)

and

Emin =
U
N
p− 2

p− 1

1− C1−p
E

1− C2−p
E

, (D6)

U and N being the electron energy density and the number density, respectively; the

values of these two parameters as a function of the position in the jet are calculated
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by the hydrodynamical code. The largest number of electrons is around Emin and

hence this is also the characteristic electron energy.

The next element that we have to consider in order to evaluate the synchrotron

emission is the strength and orientation of the magnetic field. As the hydro-code

is not able to calculate the magnetic field evolution we have to establish it in a

somewhat arbitrary way. Following Wilson & Scheuer (1983) and Gómez et al. (1995,

1997), we assume that the magnetic energy density remains a fixed fraction of the

particle energy density, which leads to a field with magnitude proportional to U 1/2.

The minimum value Emin plays an important role in the Faraday rotation and

depolarization of the polarized flux. The Faraday rotation is the rotation of the

polarization plane of a linearly polarized wave which is the result of the superposition

of two circularly polarized waves with the same amplitude but rotating in opposite

senses and with different initial phases.

The differential change in the polarization angle, dχF , (in rad) per unit of length

ds (in cm) due to Faraday rotation is determined by

dχF
ds

= 2.36× 10−17NeB||λ
2 (D7)

where λ is the wavelength (in cm), B|| is the projection of the magnetic field (in

Gauss) along the line of sight, and Ne is the electronic density (cm−3) (which is the

result of the integration of (D4) in the allowed range of energies).

Of course, different parts of the jet may present different Faraday rotations

(due e.g., to differences in the path length followed by the waves), being the global

effect of such variations a depolarization (Garrington et al. 1988; Laing 1988) or

decrease in the polarization degree of the synchrotron emission (hence, the inclusion

of this mechanism is necessary to calculate properly the polarization properties of

the radiation). The Faraday rotation or depolarization can take place everywhere

between the source and the observer, which makes very difficult to determinate

exactly the intrinsic polarization of the source.

The last elements that we need to know in order to write the transfer equations

are the Stokes parameters. The Stokes parameters are four quantities that express
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in a convenient form the radiation field. Their definition is (see e.g.,Gómez 1993):

I =
c

4π
[< (Ea0 )2 > + < (Eb0)2 >]

Q =
c

4π
[< (Ea0 )2 > − < (Eb0)2 >]

U =
c

4π
2 < Ea0 Eb0 cos δ >

V =
c

4π
2 < Ea0 Eb0 sin δ >

where δ = φa−φb is the phase shift, Ea,b being the electric vector of a monochromatic

electromagnetic wave, of frequency ν, which may be written as

Ea = Ea0 sin(2πν − φa)
Eb = Eb0 sin(2πν − φb)

Ea0 and Eb0 being the amplitudes in two perpendicular directions, namely (a, b), which

form, together with the wave propagation direction, the observer frame.

The physical meaning of the Stokes parameters is the following: I is the total

specific intensity, Q and U tell us the type of polarization, and V indicates if the po-

larization is left or right, and is zero if the polarization is linear. For the synchrotron

radiation, the polarization is always linear, so Vsyn = 0.

Two additional quantities related with the Stokes parameters are the degree

of polarization, Π = (Q2 + U2)1/2, and the polarization angle, χ = 1
2 arctan(U/Q).

Finally, the transfer equations for the synchrotron radiation in the observer frame

are (Gómez 1993)

dI(a)

ds
= I(a)

[
−κ(1) sin4 χB − κ(2) cos4 χB −

1

2
κ sin2 2χB

]

+U

[
1

4
(κ(1) − κ(2)) sin 2χB +

dχF
ds

]
(D8)

+ε(1) sin2 χB + ε(2) cos2 χB

dI(b)

ds
= I(b)

[
−κ(1) cos4 χB − κ(2) sin4 χB −

1

2
κ sin2 2χB

]

+U

[
1

4
(κ(1) − κ(2)) sin 2χB −

dχF
ds

]
(D9)

+ε(1) cos2 χB + ε(2) sin2 χB
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dU

ds
= I(a)

[
1

2
(κ(1) − κ(2)) sin 2χB − 2

dχF
ds

]

I(b)
[
1

2
(κ(1) − κ(2)) sin 2χB + 2

dχF
ds

]
(D10)

−κU − (ε(1) − ε(2)) sin 2χB

where κ = 1/2(κ(1) − κ(2)) is the mean value of the absorption coefficient; the

superscripts (a), (b) and (1), (2) refer respectively to the axes (a) and (b) of the

observer frame and the frame in which the axis (2) is parallel to the projection of

the magnetic vector in the plane perpendicular to the direction of propagation of the

electromagnetic field (axis (1) is perpendicular to this direction). χB is the angle that

the direction (2) (i.e., the projection of the magnetic field over the plane of the sky)

forms with the (a) axis. I(a) and I(b) are the specific intensities over the axis (a, b)

respectively, and are related with I by I = I (a)+ I(b) (I(a),(b) = (c/4π) < (Ea,b0 )2 >).

The emission is then calculated by integrating equations (D8) to (D10) while

accounting for relativistic effects such as Doppler boosting and light aberration.

The Doppler boosting affects the transfer equations by changing the emission and

absorption coefficients as follows

ε(ν) = D2ε
′

(ν
′

) (D11)

κ(ν) = D−1κ
′

(ν
′

) (D12)

where variables without primes are measured in the source rest frame and the primed

ones are measured in the comoving frame. D is the Doppler factor

D =W−1(1− v cosΘ)−1, (D13)

Θ being the angle between the fluid direction and the observer.

The light aberration changes the angle of the line of sight when a relative

movement between two inertial frames exists. This aberration has two effects in the

emission model (Gómez 1993): (1) in the calculus of the emission and absorption

coefficients (eqs. D2 and D3) by changing ϑ (the angle between the line of sight and

the magnetic field), because both coefficients where expressed in the fluid frame;

and (2) changing the polarization properties through the angle χB.

Let us remark, that if the magnetic field were completely random in direction,

both, ϑ and χB would be totally random too, and the light aberration would not
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cause any effect on the emission. Actually, the randomness degree of the magnetic

field determinates, with the Lorentz factor, the corrections due to the effect of light

aberration.

Another important effect in the emission time evolution is the light-travel time

delays, especially for small viewing angles (e.g.,Gómez et al. 1997). Such time delays

whithin the jet have been ignored assuming that the calculated emission corresponds

to that of a stationary jet. This is a plausible approximation for the case of the slow

evolving large scale structure in jets. We have not included such effect because

it introduces an enormous amount of computational resources and/or complexity.

The reason for this is that it involves computation of the emission and absorption

coefficients at different (source) times in order to compute a single image in the

observer frame. Considering that each 3D RHD model needs ∼ 225 Mb and we

need to save about 1000 models, about 225 Gb are requested in order to produce a

radio image. Although this represents a significant computational effort, it allows

the calculation of different emission models (i.e.,different viewing angles, observation

time and frequency, etc.) with a single hydrodynamical run. A different approach

that avoids the storage problems is to calculate the emission at run time. In this

alternative it is necessary to pre-select one or several viewing angles before executing

the hydrodynamical run. Then, only those data in the appropriate time intervals

and predefined directions are saved. The main advantage of the first approach is

that after the run it is possible to calculate the radio maps for any desired angle,

while in the second case, one needs to infer in advance which are going to be the

more interesting viewing angles (and experience shows us that this is usually a fine

tuning task).

REFERENCES

Abell, G.O. & Margon, B., 1999, Nature, 279, 701.

Akerlof, C.W., et al. 1999, Nature, 398, 400.

Akujor, C.E. 1992, A&A, 259, L61.
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523, L100.
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Donat, R., Font, J.A., Ibáñez, J.Ma., & Marquina, A. 1998, J. Comp. Phys., 146,

58.

Donat, R., & Marquina, A. 1996, JCP, 125, 42.

Duncan, G.C., & Hughes, P.A. 1994, ApJ, 436, L119.

Duncan, G.C., & Hughes, P.A., & Opperman, J., 1996, in ASP Conf. 100, Energy

Transport in Radio Galaxies and Quasars, ed. P.E. Hardee, A.H. Bridle, &

J.A. Zensus (San Francisco: ASP), p. 143.

Dubal, M.R., & Pantano, O. 1993, MNRAS, 261, 203.

Eichler, D., Livio, M., Piran, T. & Schramm, D.N., 1989, Nature, 340, 126.

Einfeldt, B. 1998,SIAM J. Numer. Anal., 25, 294.

Elgroth, P.G. 1971, Phys. Fluids, 14, 2631.

Elgroth, P.G. 1972, Phys. Fluids, 15, 2140.

Eulderink, F., & G. Mellema, G. 1994, A&A, 284, 652.

Eulderink, F., & G. Mellema, G. 1995, A&AS, 110, 587.

Fanti, C., Fanti, R., Parma, P., Schilizzi, R.T., & van Breugel, W.J.M., 1985, Astr.

Ap., 143, 292.

Fanti, C., Fanti, R. 1986, in Superluminal Radio Sources, eds. J.A. Zensus & T.J.

Pearson (Cambridge: Cambridge University Press), p. 174.

Fanti, C., Fanti, R., Schilizzi, R.T.,Spencer, R.E., Nanrendog, Parma, P., van

Breugel, W.J.M., & Venturi, T. 1990, A&A, 231, 333.

195



Falle, S.A.E.G., & Komissarov, S.S. 1996, MNRAS, 278, 586.

Faranoff, B.L.,& Riley, J.M. 1974, MNRAS, 167, 31.

Fenimore, E., Epstein, R.I., & Ho, C.H. 1993, A&AS, 97, 59.

Fenimore, E., Madras, C., & Nayakshin, S. 1996, ApJ, 473, 998.

Fenimore, E., Ramirez, E., & Summer, M.C. 1998, in Gamma-Ray Bursts, 4th

Huntsville Symposium, C. Meegan, R. Preece & T. Koshut, Eds. AIP Conf.

Proc. 428 (New York: AIP).

Fishman, G. & Meegan, C., 1995, ARA&A, 33, 415.
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Gómez, J.L., Mart́ı, J.Ma, Marscher, A.P., Ibáñez, J.Ma., & Alberdi, A. 1997, ApJ,
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Mart́ı, J.Ma., & Müller, E. 1996, JCP, 123, 1.
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Mart́ı, J.Ma., Müller, E. & Ibáñez, J.Ma. 1998, in Astrophysical jets: Open problems,

eds. S. Massaglia & G. Bodo, Gordon and Breach, p.149.

Massaglia, S., Bodo, G., & Ferrari, A. 1996, A&A, 307, 997.

Metzger, M.R., Djorgovski, S.G., Kulkarni, S.R., Steidel, C.C., Adelberger, K.L.,

Frail, D.A., Costa, E. and Frontera, F. (1997), Nature, 387, 878.

201
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