
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND
THEIR NORMAL SUBGROUPS
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Abstract. We study the finite groups G for which the set cd(G) of irreducible

complex character degrees consists of the two most extreme possible values,
that is, 1 and |G : Z(G)|1/2. We are easily reduced to finite p-groups, for

which we derive the following group theoretical characterization: they are the

p-groups such that |G : Z(G)| is a square and whose only normal subgroups
are those containing G′ or contained in Z(G). By analogy, we also deal with p-

groups such that |G : Z(G)| = p2n+1 is not a square and we prove that cd(G) =
{1, pn} if and only if a similar property holds: for any N E G, either G′ ≤ N

or |NZ(G) : Z(G)| ≤ p. The proof of these results requires a detailed analysis

of the structure of the p-groups with any of the conditions above on normal
subgroups, which is interesting for its own sake. It is especially remarkable

that these groups have small nilpotency class and that, if the nilpotency class

is greater than 2, then the index of the centre is small and in some cases we
may even bound the order of G.

1. Introduction

The study of the structure of a finite group G by imposing conditions on the
set cd(G) of the degrees of its complex irreducible characters (henceforth, referred
to simply as character degrees) has been considered in many research papers in
the last decades. For example, groups having just two different character degrees
are solvable and these groups have been thoroughly investigated: see the results
by Isaacs and Passman in [13, 14], Isaacs’ book [12, Chapter 12] or Bannuscher’s
papers [1, 2]. On the other hand, it is well-known that the degree of an irreducible
character cannot exceed |G : Z(G)|1/2. Groups for which this bound is attained
are called of central type. In 1982 Howlett and Isaacs [9] proved that a group of
central type must be solvable, but not necessarily nilpotent.

In this paper, we begin by studying the groups satisfying both conditions above,
that is, groups for which cd(G) = {1, |G : Z(G)|1/2}. Since cd(G/Z(G)) ⊆ cd(G)
and the order of G/Z(G) is the sum of the squares of the degrees of its irreducible
characters, it follows that G/Z(G) is abelian and so G is nilpotent of class 2. But
G has only two character degrees, hence all the Sylow subgroups of G but one are
abelian, and this one is also of central type with two character degrees. This allows
us to reduce ourselves to the case of p-groups and we will do so in the sequel. Thus
our problem can also be related to the investigation of the non-linear irreducible
characters of minimum degree (also called minimal characters) in a finite p-group,
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initiated by Mann in his recent paper [17]: we deal with the groups whose minimal
characters have maximum possible degree.

Some partial results are known about the p-groups under consideration. For
example, the case when all the non-linear characters are faithful is treated in [5,
Lemma 1]: these p-groups are characterized by the conditions that Z(G) is cyclic
and |G′| = p (the result is due to Huppert). Also, Theorem 7.5 in Huppert’s book
[11] shows that cd(G) = {1, |G : Z(G)|1/2} for any finite group of class 2 such that
[x,G] = G′ for all non-central elements x. In [18, Lemma 5.4] Noritzsch proves that
the p-groups of central type with two character degrees such that Z(G) = G′ are
precisely the semiextraspecial p-groups, that is, p-groups for which the factor group
over any maximal subgroup of the centre is extraspecial. These groups are also the
Camina p-groups of class 2. (Following [4], we say that G is a Camina group when
{[x, g] : g ∈ G} = G′ for any x ∈ G \G′. Camina groups have been widely studied
in the literature: see [4] and the references there.)

Our first theorem, of an elementary nature, aims at extending some of the re-
sults above to arbitrary p-groups of central type with two character degrees, thus
obtaining several characterizations of these groups.

Theorem A. For a non-abelian p-group G, the following conditions are equivalent:
(i) cd(G) = {1, |G : Z(G)|1/2}.
(ii) ClG(x) = xG′ for all x ∈ G \ Z(G), that is, the set of conjugacy class

lengths of G is {1, |G′|}.
(iii) G′ = [x,G] for all x ∈ G \ Z(G).
(iv) G is isoclinic to a semiextraspecial p-group, i.e. to a Camina p-group of

class 2.
(v) Z(G/N) = Z(G)/N for any normal subgroup N of G such that G′ 6≤ N .

We note that the equivalence between (i) and (ii) can also be deduced from
Bannuscher’s paper [1, Part I] by combining his theorems 1.2 and 2.8, where he
characterizes the nilpotent groups G with the following property: if χ, ψ are distinct
non-linear irreducible characters of G and χZ(G) = χ(1)λ, ψZ(G) = ψ(1)µ with λ, µ
linear characters of Z(G), then λ 6= µ. Also, this equivalence is another example of
the “duality” between results about character degrees and conjugacy class lengths:
groups with two extreme character degrees are exactly the groups with two extreme
class lengths. On the other hand, Verardi [20, Theorem 1.2] proves that (i) and (ii)
are equivalent under the additional assumption that G′ = Z(G), that is, he gives a
characterization of semiextraspecial groups.

Our next goal is to show that the p-groups G such that cd(G) = {1, |G :
Z(G)|1/2} may be characterized by the position of their normal subgroups. Observe
that, for any N E G, either G′ ≤ N or cd(G/N) = {1, |G : Z(G)|1/2}. In the latter
case

(1) |G : Z(G)| ≤ |G/N : Z(G/N)| ≤ |G/N : Z(G)N/N | = |G : Z(G)N |,
whence N ≤ Z(G). So in some sense these groups have no “non-trivial” normal
subgroups. The following result shows that the converse also holds, under the
natural condition that |G : Z(G)| is a square.

Theorem B. Let G be a p-group such that |G : Z(G)| = p2n is a square. Then the
following statements are equivalent:

(i) cd(G) = {1, pn}.
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(ii) The normal subgroups of G either contain G′ or are contained in Z(G).

We have mentioned before that there was no need of dealing with finite nilpotent
groups in general and that we could reduce ourselves to p-groups. If we want to
trace back the information in Theorems A and B in order to get results about
arbitrary finite nilpotent groups, it turns out that these theorems continue holding
after performing the obvious modifications in the couple of statements where the
prime p is involved.

Within the context of p-groups it seems natural to consider also the case when
|G : Z(G)| = p2n+1 is not a square and cd(G) = {1, pn}. These groups are easily
seen to have class at most 3 and Theorem B suggests trying to characterize them
in terms of their normal subgroups, which we do in the following theorem.

Theorem C. Let G be a p-group such that |G : Z(G)| = p2n+1 is not a square.
Then the following statements are equivalent:

(i) cd(G) = {1, pn}.
(ii) For any N E G either G′ ≤ N or |NZ(G) : Z(G)| ≤ p.

However, the duality between character degrees and conjugacy class lengths that
was observed after Theorem A does not hold any more for the p-groups in Theorem
C: for instance, any p-group of maximal class of order p4 has character degrees 1
and p, but the conjugacy class lengths are 1, p and p2.

The previous theorems lead us to the following definition.

Definition. We say that a p-group G satisfies the strong condition on normal
subgroups provided that, for any N E G, either G′ ≤ N or N ≤ Z(G). Similarly,
G satisfies the weak condition on normal subgroups when, for any N E G, either
G′ ≤ N or |NZ(G) : Z(G)| ≤ p.

Thus Theorems B and C concern p-groups with the strong or weak condition on
normal subgroups, respectively. The difficulty in the proof of these theorems lies in
showing that (ii) implies (i), which is performed by means of a thorough analysis
of the structure of the groups in question. We summarize the information we have
obtained about these groups in the next theorems.

Theorem D. Let G be a p-group of class 2.
(i) If G satisfies the strong condition on normal subgroups then expG/Z(G) =

expG′ = p.
(ii) If G satisfies the weak condition on normal subgroups then expG/Z(G) =

expG′ = p or p2. Moreover, in the latter case G/Z(G) ∼= Cp2 × Cp2 and
G′ ∼= Cp2 .

Theorem E. Let G be a p-group of class 3 satisfying the weak condition on normal
subgroups. Then |Z2(G) : Z(G)| ≤ p2 and if |G : Z(G)| is not a square then
|Z2(G) : Z(G)| = p.

The following theorem shows that the p-groups with either the strong or weak
condition on normal subgroups have small nilpotency class and, when it is greater
than 2, the index of the centre is small. In other words, we could say that “most”
of these groups have class 2. Of course, as extraspecial groups show, the index of
the centre cannot be bounded when the class is 2.

Theorem F. Let G be a p-group.
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(i) If G satisfies the strong condition on normal subgroups then it has nilpo-
tency class c ≤ 3 and if c = 3 then |G : Z(G)| = p3.

(ii) If G satisfies the weak condition on normal subgroups then it has nilpotency
class c ≤ 4. If c = 4 then |G : Z(G)| = p4, whereas for c = 3 we have
|G : Z(G)| = p3, p4 or p6 for odd p and |G : Z(G)| = 23 or 24 when p = 2.

We will provide examples showing that all the distinct possibilities for |G : Z(G)|
listed in Theorem F actually occur. Surprisingly, for odd p there is a gap at p5

among the values that the index of the centre can take in a p-group with the weak
condition on normal subgroups and class greater than 2. Observe also the different
behaviour of the prime 2 in this same case.

Now Theorems B and C follow easily from these results. As we have already
pointed out in the abstract, we think that the p-groups with either of the conditions
on normal subgroups introduced above deserve study for their own sake and, for this
reason, we consider Theorems D, E and F among the main theorems in this paper.
Also, we have developed our study of these groups a little further than necessary
for our initial purpose and have obtained the following important theorem, which
shows that in many of the cases in Theorem F it is not only the index of the centre
of G that is small, but even the order of G.

Theorem G. Let G be a p-group.

(i) If G satisfies the strong condition on normal subgroups and has nilpotency
class 3 then |G| ≤ p5. Furthermore, if p = 2 then |G| = 24, that is, G has
maximal class.

(ii) If G satisfies the weak condition on normal subgroups and has nilpotency
class 4 then |G| ≤ p6. Furthermore, if p = 2 then |G| = 25, that is, G has
maximal class.

(iii) If G satisfies the weak condition on normal subgroups, has nilpotency class
3 and |G : Z(G)| = p6 then G has bounded order. In fact, |G| ≤ p18.

Since the p-groups of order at most p6 are completely determined up to isomor-
phism (see [6, 15]), a routine task would allow us to classify the groups in either
(i) or (ii) above. On the other hand, we will give examples showing that the order
of G cannot be bounded if G has the weak condition on normal subgroups, class 3
and |G : Z(G)| = p3 or p4.

We want to emphasize that the proofs of Theorems D to G that we present
in this paper are purely group theoretical, even though some parts could also be
proved by using characters.

Now we explain the distribution of the results in the paper. First of all, in
Section 2 we collect some well-known facts which will be frequently used in the rest
of the article. After that we prove Theorem A in Section 3. We begin to study
the structure of the groups with the strong or weak condition on normal subgroups
in Section 4, where besides some elementary results we obtain Theorem D. Then
we devote Section 5 to tackling the hardest case, namely that of the groups with
the weak condition and class 3, and prove Theorem E. Once this is accomplished,
it is not particularly difficult to derive Theorems F and G in Sections 6 and 7,
respectively, except for the different behaviour of the prime 2 in Theorem F, which
requires a close reasoning. Finally, in Section 8 we come back to our original
character theoretical problem and end the paper by proving Theorems B and C.
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We close this introduction with some words about the notation we will use
throughout the paper. All groups considered will be finite. For any group G,
d(G) denotes the minimal number of generators of G. On the other hand, k(G)
will stand for the number of conjugacy classes of G and Irr(G) for the set of its
irreducible characters. If G is nilpotent, we write c(G) for its nilpotency class. Also,
Zi(G) denotes the i-th center of G and γi(G) = [G, i. . ., G] is the i-th term of the
lower central series of G. If x ∈ G we define [x,G] as the subgroup generated by all
commutators [x, g] with g ∈ G. Finally, if G is a p-group then Ωi(G) denotes the
subgroup generated by the elements of order ≤ pi and fi(G) = 〈xpi | x ∈ G〉.

Acknowledgements. We are very much indebted to Professors I. Martin Isaacs
and Avinoam Mann for their helpful suggestions, which have helped us improve
the results in this paper. We would also like to thank Prof. Isaacs for his remarks
about the organization of the paper, which have made us rewrite it in a, we hope,
clearer way.

2. Preliminary lemmas

The aim of this section is to collect several well-known facts that will be widely
applied in the rest of the paper. We begin by recalling some commutator identities.

Lemma 2.1. Let G be a group and x, y, z ∈ G.

(i) If one of the elements x, y, z belongs to Z2(G) then [xy, z] = [x, z][y, z].
(ii) If x or y lie in Z2(G) then [xn, y] = [x, y]n for any n ∈ Z.
(iii) If x ∈ Z2(G) then [x,G] = {[x, g] | g ∈ G}.

In particular, all these conclusions hold when G is a group of class 2.

The following lemma is an immediate consequence of the previous one.

Lemma 2.2. Let G be a p-group and H ≤ Z2(G). Then we have that [fn(H), G] =
fn([H,G]) = [H,fn(G)] for any n ∈ N and, as a consequence, exp[H,G] =
expHZ(G)/Z(G). In particular, if G has class 2 then expG′ = expG/Z(G).

The following commutator identity will be important in Section 5, where we deal
with groups of class 3.

Lemma 2.3. If G is a nilpotent group of class ≤ 3 then

(2) [xn, y] = [x, y]n[x, y, x]n(n−1)/2

holds for any x, y ∈ G and n ∈ Z.

The next lemma is simply a consequence of the dimension of any symplectic
space being even.

Lemma 2.4. If G is a p-group such that |G′| = p then |G : Z(G)| is a square.

We have not been able to find any reference to the following result in the liter-
ature, even if it seems to be well-known. The proof we present here is due to I.M.
Isaacs and A. Mann.

Lemma 2.5. Let P be a p-group such that |P ′| = p and |P : Z(P )| > p2. Then P
is not capable, that is, P cannot be written as G/Z(G) for any group G.
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Proof. Suppose by way of contradiction that P = G/Z(G). Since |P ′| = p, we can
view P/Z(P ) as a symplectic space over Fp, where the symplectic form is induced
from commutation in P . By considering a symplectic basis in P/Z(P ) and lifting
its elements back to P , we can decompose P as a central product of two non-
abelian subgroups (take into account here that |P : Z(P )| > p2). We can thus
write G = XY , where [X,Y ] ≤ Z(G) and X ′Z(G) = Y ′Z(G) = G′Z(G). Since
[X,Y, Y ] = 1, P. Hall’s three subgroup lemma yields that [Y ′, X] = 1 and it follows
that [G′, X] = 1. We have similarly that [G′, Y ] = 1. Consequently G′ ≤ Z(G),
which is clearly a contradiction. �

3. Proof of Theorem A

In this section we prove Theorem A, which gives several elementary character-
izations of the p-groups G such that cd(G) = {1, |G : Z(G)|1/2}. This theorem
appears as Theorem 3.1 below. The characterization provided by part (iv) of the
theorem in terms of isoclinism is due to A. Mann. Before proceeding to the proof of
the theorem, let us recall the concept of isoclinic groups. This idea, that generalizes
that of isomorphic groups, was introduced by P. Hall in the second of his famous
papers on p-groups [7]. It is of great importance in the classification of p-groups of
low order: instead of classifying them directly, one arranges them in the first place
in families of isoclinic groups.

Definition. Let G and H be two groups. We say that G and H are isoclinic if
there exist isomorphisms α : G/Z(G) → H/Z(H) and β : G′ → H ′ such that the
diagram

(3)

G/Z(G)×G/Z(G) −−−−→ G′

α×α

y yβ

H/Z(H)×H/Z(H) −−−−→ H ′

is commutative, where the horizontal arrows denote the maps induced from com-
mutation in G and H, respectively.

Among the results that Hall proves in [7], we point out the following two:

(i) Two isoclinic nilpotent groups have the same nilpotency class.
(ii) For any group G there exists at least a group H isoclinic to G such that

Z(H) ≤ H ′. Furthermore, if G is a p-group then H is also a p-group.

By combining these properties we deduce in particular that any p-group of class 2
is isoclinic to a p-group H such that Z(H) = H ′.

Theorem 3.1. For a non-abelian p-group G, the following conditions are equiva-
lent:

(i) cd(G) = {1, |G : Z(G)|1/2}.
(ii) ClG(x) = xG′ for all x ∈ G \ Z(G), that is, the set of conjugacy class

lengths of G is {1, |G′|}.
(iii) G′ = [x,G] for all x ∈ G \ Z(G).
(iv) G is isoclinic to a semiextraspecial p-group, i.e. to a Camina p-group of

class 2.
(v) Z(G/N) = Z(G)/N for any normal subgroup N of G such that G′ 6≤ N .
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Proof. We start by proving that (i) implies (ii). Let t be the number of non-
linear irreducible characters of G. Since cd(G) = {1, |G : Z(G)|1/2}, we have
that |G| = |G/G′| + t|G/Z(G)|, that is, t = |Z(G)| − |Z(G)/G′|. It follows that
k(G) = | Irr(G)| = |G/G′|+ |Z(G)|−|Z(G)/G′| and G has |G/G′|−|Z(G)/G′| non-
central classes. As each of these classes has at most |G′| elements and the union of
them is G \ Z(G), we necessarily have that ClG(x) = xG′ for any non-central x.

It is clear that (iii) follows from (ii), and (iii) implies (i) according to the result
in Huppert’s book mentioned in the introduction. (Just note that a non-abelian
nilpotent group G such that [x,G] = G′ for all x ∈ G \ Z(G) has necessarily class
2: if g ∈ G′ then [g,G] ≤ [G′, G] < G′ and so g ∈ Z(G).)

Let us see now that (iii) and (iv) are equivalent. For this purpose, observe that
the property that [x,G] = G′ for all x ∈ G \ Z(G) is preserved when passing to
an isoclinic group: this follows easily from the commutativity of the diagram (3).
Thus G satisfies (iii) if and only if some group isoclinic to G does. This already
proves that (iv) implies (iii) by the very definition of Camina groups (note that
H ′ = Z(H) in any Camina group of class 2). On the other hand, if (iii) holds then
G has class 2 and, as argued just before the statement of the theorem, G is isoclinic
to a p-group H such that H ′ = Z(H). Then H also satisfies property (iii) and is
consequently a Camina group of class 2.

Finally, we prove that (i) and (v) are equivalent. Suppose (i) holds and let N
be a normal subgroup of G. As already said in the introduction, if G′ 6≤ N then
N ≤ Z(G) and it follows from formula (1) that Z(G/N) = Z(G)/N . Conversely,
suppose (v) holds. Observe that this implies that c(G) = 2. Let χ be a non-linear
irreducible character of G. Then G′ 6≤ Kerχ and consequently Z(χ)/Kerχ =
Z(G/Kerχ) = Z(G)/Kerχ, that is, Z(χ) = Z(G). Since G/Z(χ) is abelian, we
conclude from [12, Theorem 2.31] that χ(1)2 = |G : Z(χ)| = |G : Z(G)|. �

4. Proof of Theorem D

In this section we begin to study the p-groups with either the strong or the
weak condition on normal subgroups. First of all, observe that both conditions are
obviously hereditary for quotients. This is a fact that we will use freely in the sequel.
However, the behaviour of these conditions with respect to direct products is not
so smooth. In fact, if P and Q are non-abelian p-groups such that both satisfy the
same condition on normal subgroups then P×Q does not, since either of the factors
is a normal subgroup which does not fulfill the required property. Even the direct
product by a non-trivial abelian p-group A does not preserve these conditions. For
example, a p-group of maximal class P of order p4 satisfies the strong condition,
but P ×A never does: choose elements x ∈ P ′ \ γ3(P ) and 1 6= a ∈ A and consider
the subgroup N = 〈xa〉γ3(P ) of P × A. In the case of the weak condition we
may reason similarly with a p-group of maximal class of order p5. In particular,
these conditions are not preserved under isoclinism. However, as a consequence of
Theorems B and C we will be able to prove that there are many cases in which
these conditions are preserved by forming a direct product with an abelian p-group.

The class of a p-group with the strong or weak condition on normal subgroups
is very small, as we see in our next result. Observe that this statement is included
in Theorem F in the introduction.

Proposition 4.1. Let G be a p-group. If G satisfies the strong condition on normal
subgroups then c(G) ≤ 3, and if G satisfies the weak condition then c(G) ≤ 4.
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Proof. Let us assume first that G satisfies the strong condition on normal sub-
groups. If c(G) ≥ 2 then |Z2(G) : Z(G)| ≥ p and it follows that G′ ≤ Z2(G).
Hence γ4(G) = [G′, G,G] = 1 and c(G) ≤ 3. The proof when G satisfies the
weak condition goes along the same argument, by observing that if c(G) ≥ 3 then
|Z3(G) : Z(G)| ≥ p2. �

These bounds for the nilpotency class are sharp, as is shown by the p-groups of
maximal class and order p4 and p5, respectively.

Since the class of the p-groups with either of the conditions on normal subgroups
is very small, it makes sense to study them in separate cases by fixing the class. In
the next theorem, which corresponds to Theorem D in the introduction, we consider
the case when the class is 2 and see that, although it is not possible to bound the
index of the centre in these groups, we may control the exponent of G/Z(G), which
is p or p2. The proof of this fact presented here is a simplification due to I.M.
Isaacs of a previous proof by the authors. We also owe him the idea of studying
the structure of G/Z(G) when expG/Z(G) = p2, a problem which is also solved in
Theorem D.

Before the theorem we need a very simple result, which we state apart as a
lemma since it will be also used in two other proofs in this paper.

Lemma 4.2. Let G be a p-group and M a maximal subgroup of G′ which is normal
in G. Choose a normal subgroup N of G which is maximal with respect to the
condition N ∩ G′ = M and let K/N = Z(G/N). Then the following properties
hold:

(i) G/K is elementary abelian and has square order.
(ii) K/N is cyclic.

Proof. Since the derived subgroup of G/N has order p, it follows from Lemma 2.2
that G/K is elementary abelian and from Lemma 2.4 it has square order. On the
other hand, suppose K/N is not cyclic. Then K/N has more than one subgroup of
order p, one of which is G′N/N . If we choose a different one, say L/N , then L E G
and L ∩G′ = M . This contradicts the choice of N . �

Theorem 4.3. Let G be a p-group of class 2.
(i) If G satisfies the strong condition on normal subgroups then expG/Z(G) =

expG′ = p.
(ii) If G satisfies the weak condition on normal subgroups then expG/Z(G) =

expG′ = p or p2. Moreover, in the latter case G/Z(G) ∼= Cp2 × Cp2 and
G′ ∼= Cp2 .

Proof. Let e be the common exponent of G/Z(G) and G′. If we decompose the
abelian group G/Z(G) as a direct product of cyclic subgroups, G/Z(G) = 〈x1〉 ×
· · ·× 〈xk〉, then we have that G′ = 〈[xi, xj ] | i, j = 1, . . . , k〉. The following observa-
tion will be essential in the proof: G/Z(G) has at least two cyclic factors of order
e. (Just note that if we choose a commutator [xi, xj ] of order e then both xi and
xj have order e in G/Z(G).)

Let M be any maximal subgroup of G′. Since G has class 2, M is normal in G
and we may apply Lemma 4.2. Thus if we choose N normal in G and maximal with
the property that G′ ∩ N = M and let K/N = Z(G/N) then G/K is elementary
abelian and K/N is cyclic.
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Suppose now that G satisfies the strong condition on normal subgroups. Then
N ≤ Z(G) and consequently K/Z(G) is cyclic. Since G/K is elementary abelian,
G/Z(G) cannot have two cyclic factors of order greater than p. Hence e = p and
we have proved (i).

If G satisfies the weak condition then |NZ(G) : Z(G)| ≤ p and we derive that
K/Z(G) has rank at most 2 and that it has at most one cyclic factor of order
exceeding p. By taking into account again that G/K is elementary and the above-
mentioned observation that G/Z(G) has at least two cyclic factors of order e, we
deduce that either e = p or else e = p2 and G/Z(G) has exactly two cyclic factors
of order p2. In the latter case, G′ has just one factor of order p2 and thus we may
choose M = Ω1(G′). Let T/Z(G) = Ω1(G/Z(G)). Then Lemma 2.2 yields that
exp[T,G] = expT/Z(G) = p and consequently [T,G] ≤ M . Hence T ≤ K and,
since K/Z(G) has rank at most 2, we obtain that |Ω1(G/Z(G))| ≤ p2. It follows
that G/Z(G) ∼= Cp2 × Cp2 and G′ ∼= Cp2 . �

Observe that the group H = 〈a, b | ap4
= b p2

= 1, ab = a1+p2〉 yields an
example of a p-group of class 2 with the weak condition on normal subgroups such
that expH/Z(H) = expH ′ = p2. Furthermore, it is clear that any p-group G
of class 2 such that G/Z(G) ∼= Cp2 × Cp2 and G′ ∼= Cp2 is isoclinic to H. In
particular, all the p-groups of class 2 with the weak condition on normal subgroups
and expG/Z(G) = expG′ = p2 are isoclinic to H. Nevertheless, not all groups
isoclinic to H satisfy the weak condition: consider the group 〈a, b, c | ap2

= bp
2

=
cp

2
= 1, [a, b] = c, [a, c] = [b, c] = 1〉 and note that 〈ap, bp, cp〉 is a normal subgroup.

5. Proof of Theorem E

The proof of Theorem E is quite elaborate and for this reason we divide it into
Theorems 5.2 and 5.3 below. First we need the following lemma.

Lemma 5.1. Let G be a p-group that satisfies the weak condition on normal sub-
groups and define L by means of L/Z(G) = Ω1(Z2(G)/Z(G)). Then the following
holds:

(i) If [L,G] ≤ K E G then G/K has the strong condition on normal sub-
groups. In particular G/Z(G) satisfies the strong condition.

Moreover, if G has class 3 then:
(ii) The groups G/Z2(G), G′Z(G)/Z(G) and G′/(G′∩Z(G)) have exponent p.
(iii) γ3(G) ≤ [L,G] and these two groups have exponent p.
(iv) G′ and Z2(G)/Z(G) have exponent at most p2.

Proof. (i) Suppose N/K E G/K and (G/K)′ 6≤ N/K. Since G has the weak condi-
tion on normal subgroups, we deduce that |NZ(G) : Z(G)| ≤ p andNZ(G)/Z(G) ≤
L/Z(G). Then [N,G] ≤ [L,G] ≤ K and N/K ≤ Z(G/K), as desired.

(ii) It suffices to apply part (i) of Theorem D to G/Z(G).
(iii) We have from part (ii) that G′Z(G) ≤ L and consequently γ3(G) ≤ [L,G].

On the other hand, exp[L,G] = expL/Z(G) = p by Lemma 2.2.
(iv) It follows from (i) and (iii) that G/[L,G] is a group of class 2 with the

strong condition on normal subgroups. Then expG′/[L,G] = p by Theorem D.
Since also exp[L,G] = p, we deduce that expG′ ≤ p2. Therefore expZ2(G)/Z(G) =
exp[Z2(G), G] ≤ p2. �
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In the remainder, L will denote the subgroup introduced in the previous lemma
and the results there will be used sometimes without further reference.

Theorem 5.2. Let G be a p-group of class 3 that satisfies the weak condition on
normal subgroups. Then Z2(G)/Z(G) ∼= Cp or Cp ×Cp. In particular, L = Z2(G).

Proof. Let us see, first of all, that Z2(G)/Z(G) can only be cyclic when it has order
p. Indeed, if Z2(G)/Z(G) = 〈a〉 then Z2(G) = 〈a, Z(G)〉 is abelian. According to
Lemma 5.1, xp ∈ Z2(G) for any x ∈ G and consequently Lemma 2.1 yields that
1 = [xp, a] = [x, a]p = [x, ap]. It follows that ap ∈ Z(G) and |Z2(G)/Z(G)| = p.

If |Z2(G)/Z(G)| ≤ p2 then it follows that Z2(G)/Z(G) ∼= Cp or Cp×Cp. Suppose
now that |Z2(G) : Z(G)| > p2. For any subgroup N such that Z(G) ≤ N ≤ Z2(G)
and |N : Z(G)| = p2, we have that G′ ≤ N . In other words, any subgroup of
Z2(G)/Z(G) of order p2 contains G′Z(G)/Z(G). Since Z2(G)/Z(G) is not cyclic,
it has more than one subgroup of order p2 and they all intersect in G′Z(G)/Z(G),
which must have order p. Recalling from Lemma 5.1 that expZ2(G)/Z(G) ≤
p2, it necessarily follows that Z2(G)/Z(G) ∼= Cp2 × Cp and G′Z(G)/Z(G) =
f1(Z2(G)/Z(G)). Now we have to prove that, in fact, this possibility does not
hold.

Let T = [Z2(G), G] and observe that T is abelian and that, according to Lemma
2.2, expT = expZ2(G)/Z(G) = p2. Note also that f1(G) ≤ Z2(G), by Lemma 5.1,
part (ii). Consequently, by using again Lemma 2.2 we get that

(4) f1(T ) = [Z2(G),f1(G)] ≤ Z2(G)′

and, in particular, Z2(G) is not abelian.
Now we divide the proof into several steps in order to make it clearer.

Step 1. Z(Z2(G)) = G′Z(G).

Since [Z2(G), G′Z(G)] = 1 , we have that G′Z(G) ≤ Z(Z2(G)). If the equality
does not hold then |Z2(G) : Z(Z2(G))| ≤ p and Z2(G) is abelian, a contradiction.

Step 2. |T : Ω1(T )| = p.

If we write Z2(G) = 〈x, y, Z(Z2(G))〉 then Z2(G)′ = 〈[x, y]〉 is cyclic. Since the
abelian group T has exponent p2, it follows from (4) that |f1(T )| = p. Hence
|T : Ω1(T )| = p.

Step 3. If G = G/Ω1(G′) then there exists a maximal subgroup M of G′ such that
G
′
= T ×M . Furthermore, M is a normal subgroup of G.

Since G′ is abelian, we have that Ω1(T ) = T ∩ Ω1(G′). Then

|T | = |TΩ1(G′) : Ω1(G′)| = |T : T ∩ Ω1(G′)| = |T : Ω1(T )| = p,

according to the previous step. Hence we can write G
′
= T ×M with M maxG′,

since G
′
is elementary abelian by Lemma 5.1. Finally, we also know from Lemma

5.1 that exp γ3(G) = p and consequently G has class 2. This explains the normality
of M in G.

Step 4. Let N be normal in G and maximal with respect to the condition that
N ∩G′ = M . If K/N = Z(G/N) then |K : G′Z(G)| = p.

We know from Lemma 4.2 that K/N is cyclic. Also, G′ 6≤ N implies that
|NZ(G) : Z(G)| ≤ p. Since G′Z(G) = MTZ(G) = MZ(G) ≤ NZ(G), it follows
that G′Z(G) = NZ(G). In particular K/G′Z(G) is cyclic.
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On the other hand, by the definition of K we have that [K,G] ≤ N ∩G′ = M .
Consequently [K,Z2(G)] ≤M ∩T ≤ Ω1(G′) and, by Lemma 2.2, [f1(K), Z2(G)] =
f1([K,Z2(G)]) = 1. Since f1(K) ≤ Z2(G), we derive from Step 1 that f1(K) ≤
G′Z(G). Hence expK/G′Z(G) = p and we conclude that |K : G′Z(G)| = p.

Step 5. Final contradiction.

We then have that

|G : Z(G)| = |G : K||K : G′Z(G)||G′Z(G) : Z(G)| = p2|G : K|

is a square, according to Lemma 4.2. Since |Z2(G) : Z(G)| = p3, we deduce that
|G : Z2(G)| is not a square. This is a contradiction, since Lemma 2.4 applied to
G/Z(G) yields that |G : Z2(G)| is a square. �

Theorem 5.3. Let G be a p-group of class 3 such that |G : Z(G)| is not a square.
If G satisfies the weak condition on normal subgroups then |Z2(G) : Z(G)| = p.

Proof. Suppose that |Z2(G) : Z(G)| ≥ p2. Bearing in mind Theorem 5.2, it follows
that Z2(G)/Z(G) ∼= Cp × Cp. We will see how this leads to a contradiction under
the hypothesis that |G : Z(G)| is not a square.

Let us write G = G/Z(G) all throughout the proof. We first observe that
Z2(G) = G′Z(G), since otherwise |G′| = p and |G : Z(G)| = |G : Z2(G)| is a
square, a contradiction. Recall that G satisfies the strong condition on normal
subgroups and that expG/Z2(G) = p by Lemma 5.1. In particular gp ∈ Z2(G) for
all g ∈ G. Again we split the proof into several steps.

Step 1. There exist a, b ∈ G such that G
′
= 〈ap〉 × 〈bp〉 and 〈a, b〉 is abelian.

Let N be a subgroup of G
′

of order p and put Z(G/N) = H/N . Then the
derived subgroup of G/N has order p and, by Lemma 2.4, |G : H| is a square. Since
Z(G) ≤ H and |G : Z(G)| is not a square, there exists an element a ∈ H \ Z(G).
Therefore [a,G] = N and 〈a〉N is a normal subgroup of G not contained in the
centre. It follows that G

′ ≤ 〈a〉N and, consequently,

G
′
= G

′ ∩ 〈a〉N = (G
′ ∩ 〈a〉)N = 〈ap〉N = 〈ap〉 ×N,

by Dedekind’s Law and taking into account that ap ∈ Z(G) = G
′
. Now we can

argue analogously with 〈ap〉 in place of N to obtain that

G
′
= 〈ap〉 × 〈bp〉

for some b such that [b,G] = 〈ap〉. Since [a, b] ∈ [a,G] ∩ [b,G] ≤ N ∩ 〈ap〉 = 1, we
also deduce that the subgroup 〈a, b〉 is abelian.

Step 2. d(G′) ≤ 2.
If we see that K = 〈ap, bp〉f1(G′) is a normal subgroup of G then the weak

condition on normal subgroups yields that G′ ≤ 〈ap, bp〉, since f1(G′) ≤ Φ(G′). By
observing that 〈ap, bp〉 ≤ G′Z(G) is abelian, we conclude that d(G′) ≤ 2.

Thus it is enough to prove that [ap, G], [bp, G] ≤ f1(G′). According to formula
(2), it suffices to check that [G′, a], [G′, b] ≤ f1(G′). Since G′ ≤ 〈ap, bp〉Z(G), we
only need to consider the commutators [bp, a] and [ap, b]. Now it follows from the
previous step that the subgroup 〈a, b〉 has class ≤ 2 and, consequently, both

(5) [ap, b] = [a, b]p and [bp, a] = [b, a]p
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lie in f1(G′).

Step 3. exp(G′ ∩ Z(G)) = p.
According to Lemma 5.1, it is enough to see that G′ ∩ Z(G) = γ3(G). We

have that L = G′Z(G) and therefore G/γ3(G) satisfies the strong condition on
normal subgroups. It follows from Theorem D that expG′/γ3(G) = p and we
deduce from Step 2 that |G′/γ3(G)| ≤ p2. On the other hand we have that |G′ :
G′∩Z(G)| = |G′Z(G) : Z(G)| = p2. Thus the desired equality follows by observing
that γ3(G) ≤ G′ ∩ Z(G).

Step 4. Z2(G) centralizes both a and b.
Since [a, b] ∈ G′ ∩ Z(G), by applying the previous step to (5) we deduce that

[ap, b] = [bp, a] = 1. Now the assertion follows from the fact that Z2(G) =
〈ap, bp〉Z(G).

Step 5. Contradiction for p > 2.
Consider any x ∈ G. Then xp ∈ Z2(G) commutes with a, so that Lemma 2.3

yields
1 = [xp, a] = [x, a]p[x, a, x](

p
2) = [x, a]p,

since p > 2. On the other hand, for any value of p we have that

(6) [ap, x] = [a, x]p[a, x, a](
p
2) = [a, x]p

and we derive that [ap, x] = 1 for any x ∈ G. Hence ap ∈ Z(G) and ap = 1, which
is impossible.

Step 6. Contradiction for p = 2.
Since the equality in (6) holds in this case, it suffices to show that either [a, x]2 =

1 for any x ∈ G or that [b, x]2 = 1 for any x ∈ G, and then finish the proof as
in the previous step. We begin by proving that CG(a) = CG(b). Let us write
CG(a) = M/Z(G), where M is a maximal subgroup of G, since the commutator
subgroup [a,G] has order 2. We claim that M = CG(G′). Indeed, if u ∈ M then
[a, u] ∈ G′∩Z(G) and we derive that [a2, u] = [a, u]2[a, u, a] = 1, by Lemma 2.3 and
Step 3. On the other hand [b, u] = 1 or a2 and, in any case, [b, u, u] = 1. It follows
that [b2, u] = [b, u]2 = [b, u2] = 1, since u2 ∈ Z2(G) commutes with b according to
Step 4. We have thus shown that u centralizes both a2 and b2, whence u ∈ CG(G′).
Since M is maximal in G and CG(G′) < G, we derive that M = CG(G′). Although
the role of a and b is not symmetric, we can find for b another element c such
that G

′
= 〈b2〉 × 〈c2〉 and [c,G] = 〈b2〉. Arguing as above, it follows that CG(G′)

coincides with the inverse image of CG(b) in G. We conclude that CG(a) = CG(b).
Now, if x ∈ M we have that [a, x], [b, x] ∈ G′ ∩ Z(G) and [a, x]2 = [b, x]2 = 1.

Suppose otherwise that x ∈ G \M . Since G
′
= 〈a2〉 × [a,G] and [b,G] = 〈a2〉, it

follows that [b, x] = a2 and [a, x] = b
2

or (ab)2. In the former case we have that
[ab, x] = (ab)2. Since G = 〈x〉CG(ab), we deduce that 〈ab〉 E G, contradicting that
G satisfies the strong condition on normal subgroups. It follows that [a, x] = (ab)2.
Consequently,

1 = [a, x2] = [a, x]2[a, x, x] = [a, x]2[a2b2, x] = [a, x]4[b, x]2 = [b, x]2,

since expG′ ≤ 4. We have thus proved that [b, x]2 = 1 for any x ∈ G, which
completes the proof. �
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Example. The condition that the index of the centre is not a square cannot be
dropped from the hypotheses in the previous theorem. Indeed, there are examples
of p-groups of class 3 and arbitrarily high order satisfying the weak condition on
normal subgroups for which |Z2(G) : Z(G)| = p2. For odd p, it suffices to consider
the group Gn = 〈a, b | ap3

= bp
n

= 1, ab = a1+p〉 and, for p = 2, Gn = 〈a, b, c |
a8 = b2

n−1
= c2 = 1, ab = a5, ac = a−1, bc = b〉, where n ≥ 2 in both cases.

6. Proof of Theorem F

Our aim now is to prove Theorem F. To this end, the structural information
about the p-groups with the weak condition on normal subgroups and class 3 ob-
tained in the previous section will be of fundamental importance.

Since Theorem F deals with several different cases, we split its proof into a
number of results. We begin by studying groups with the strong or weak condition
on normal subgroups with maximum nilpotency class. Recall that we have already
proved in Proposition 4.1 that this maximum class is 3 or 4, respectively.

Proposition 6.1. Let G be a p-group.
(i) If G satisfies the strong condition on normal subgroups and c(G) = 3 then

|G : Z(G)| = p3.
(ii) If G satisfies the weak condition on normal subgroups and c(G) = 4 then

|G : Z(G)| = p4.

Proof. (i) Since G′ is contained in any subgroup N such that Z(G) < N ≤ Z2(G)
and G′ 6≤ Z(G), we derive that G′Z(G)/Z(G) has order p and is in fact the only
subgroup of order p of Z2(G)/Z(G). It follows that Z2(G)/Z(G) is cyclic and
Theorem 5.2 yields that |Z2(G) : Z(G)| = p. On the other hand, the derived
subgroup of G/Z(G) has order p and we obtain from Lemma 2.5 that |G : Z2(G)| =
p2. The result follows.

(ii) According to Lemma 5.1, G/Z(G) satisfies the strong condition on normal
subgroups. It then follows from (i) that |G : Z2(G)| = p3. On the other hand, if
|Z2(G) : Z(G)| ≥ p2 then G′ ≤ Z2(G) and G has class ≤ 3, a contradiction. Hence
|Z2(G) : Z(G)| = p and |G : Z(G)| = p4. �

Again, the p-groups of maximal class of order p4 and p5 show that the bounds
for |G : Z(G)| in the previous proposition cannot be improved. The following
straightforward corollary will be useful.

Corollary 6.2. Let G be a p-group that satisfies the strong condition on normal
subgroups. If |G : Z(G)| is a square then G has class ≤ 2.

In order to prove Theorem F, it only remains to bound |G : Z(G)| when G is
a p-group of class 3 satisfying the weak condition on normal subgroups. We first
need a couple of lemmas.

Lemma 6.3. Let G be a p-group that satisfies the strong condition on normal
subgroups. If |G : Z(G)| is a square then Z(G/N) = Z(G)/N for any normal
subgroup N of G not containing G′.

Proof. First of all, we may assume that G has class 2 by Corollary 6.2. Let T be
any normal subgroup of G. Since [x,G] ≤ T if and only if [x,G] ≤ T ∩ G′, we
deduce that Z(G/T ) and Z(G/(T ∩G′)) have the same inverse image in G. Thus it
suffices to prove the property when T is properly contained in G′. Clearly, we may
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also assume that T is maximal in G′. If we choose N to be a normal subgroup of
G maximal with respect to N ∩G′ = T then again Z(G/N) and Z(G/T ) have the
same inverse image in G. So we only need to prove the lemma for this N .

Let K/N = Z(G/N). Then Lemma 4.2 yields that K/N is cyclic. Since G
satisfies the strong condition on normal subgroups, we have that N ≤ Z(G) and
K/Z(G) is also cyclic. We know from Theorem D that expG/Z(G) = p and
consequently |K/Z(G)| ≤ p. But |G : Z(G)| is a square by hypothesis and |G : K|
is also a square by Lemma 4.2. Hence K = Z(G), as we wanted to prove. �

The following lemma generalizes Lemma 2.5 from Section 1, since any p-group
P whose derived subgroup has order p necessarily satisfies the strong condition
on normal subgroups: indeed, if N E P and P ′ 6≤ N then P ′ ∩ N = 1 and thus
N ≤ Z(P ).

Lemma 6.4. Let P be a p-group that satisfies the strong condition on normal
subgroups and such that P/Z(P ) has square order. If |P ′| = pn and P is capable
then |P : Z(P )| ≤ p2n.

Proof. The proof is partly inspired in the proof of Lemma 2.5. We may assume
that G has class 2 by Corollary 6.2. Since P is capable, there is a group G such
that P = G/Z(G). Let us use the bar notation in P . For a ∈ P \ Z(P ), that is,
a ∈ G \ Z2(G), let Ca denote the inverse image in G of CP (a).

Suppose first that CP (a)′ = P ′ for all a ∈ G \ Z2(G). From the definition
of Ca we have that [〈a〉G′, Ca] ≤ Z(G). Consequently [〈a〉G′, Ca, Ca] = 1 and
it follows from P. Hall’s three subgroup lemma that C ′a commutes with a. Since
C ′aZ(G) = G′Z(G), also G′ commutes with a. But a is any element in G \ Z2(G),
so we conclude that G′ ≤ Z(G), a contradiction.

So we may assume that CP (a)′ is a proper subgroup of P ′ for some a. We can
then embed CP (a)′ in a maximal subgroupN of P ′. PutK = P/N and letD denote
the image of CP (a) in this quotient. Since |K : D| = |P : CP (a)| ≤ |P ′| = pn,
we can find x1, . . . , xn ∈ K such that K = 〈x1, . . . , xn, D〉. Now D is abelian and
consequently the subgroup E = D ∩ (∩n

i=1CK(xi)) is central in K. It follows that

|K : Z(K)| ≤ |K : E| ≤ |K : D|
n∏

i=1

|K : CK(xi)| ≤ p2n,

by using that |K : CK(xi)| ≤ |K ′| = p for all i. Finally, since P satisfies the strong
condition on normal subgroups and |P/Z(P )| is a square, Lemma 6.3 shows that
Z(K) = Z(P/N) = Z(P )/N . It then follows that |P : Z(P )| = |K : Z(K)| ≤ p2n,
as desired. �

The condition that P satisfies the strong condition on normal subgroups is es-
sential in the previous lemma, since Heineken [8] has constructed for any n ≥ 2 a
capable p-group P of class 2 such that |P ′| = pn and |P : Z(P )| = p2n+(n

2).

Proposition 6.5. Let G be a p-group of class 3 satisfying the weak condition on
normal subgroups. Then the following statements hold:

(i) If |Z2(G) : Z(G)| = p then |G : Z(G)| = p3.
(ii) If |Z2(G) : Z(G)| = p2 then |G : Z(G)| = p4 or p6, according as |G′Z(G) :

Z(G)| = p or p2.
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Proof. Set P = G/Z(G). We know from Theorem 5.2 that Z(P ) ∼= Cp or Cp ×
Cp. Also, recall from Lemma 5.1 that P satisfies the strong condition on normal
subgroups.

If |Z(P )| = p then |P ′| = p and Lemma 2.5 shows that |P : Z(P )| = p2. Hence
|G : Z(G)| = |P | = p3 in this case. Suppose then that |Z(P )| = p2. This yields,
according to Theorem 5.3, that |P | is a square or, what is the same in this case,
that |P : Z(P )| is a square. If |P ′| = p then |P : Z(P )| = p2 by Lemma 2.5 and
therefore |G : Z(G)| = p4. Otherwise |P ′| = p2 and we deduce that |P : Z(P )| = p2

or p4, by applying Lemma 6.4. But we cannot have |P : Z(P )| = p2, since it implies
that |P ′| = p. Consequently |P : Z(P )| = p4 and |G : Z(G)| = p6 in this case. �

Examples. (i) The groups given after Theorem 5.3 provide examples of groups of
class 3 satisfying the weak condition on normal subgroups for which |G : Z(G)| = p4.
(ii) Let p be an odd prime and let us consider the group G = 〈a1, . . . , a7〉, where the
generators have order p and satisfy the following non-trivial commutator relations:

[a3, a1] = a5, [a4, a1] = a6, [a5, a1] = a7

and
[a3, a2] = a6, [a4, a2] = ai

5, [a6, a2] = ai
7,

with i a non-quadratic residue modulo p. Then G has class 3 and satisfies the weak
condition on normal subgroups, whereas Z(G) = 〈a7〉 has index p6 in G.

Next we see that unlike for the odd primes, there are no 2-groups of class 3
satisfying the weak condition and such that the index of the centre equals 26. This
completes the proof of Theorem F.

Theorem 6.6. Let G be a 2-group of class 3 satisfying the weak condition on
normal subgroups. Then |G : Z(G)| = 23 or 24.

Proof. Assume G is a counterexample to the theorem and let Q = G/Z(G). For
ease of notation, we will write the elements of Q without bars. Then Proposition
6.5 yields that |Q| = 26 and that Z(Q) = Q′ has order 4. Thus Z2(G) = G′Z(G).
On the other hand, Q has the strong condition on normal subgroups according
to Lemma 5.1. Hence we may apply Lemma 6.3 and Theorem A to obtain that
[x,Q] = Q′ for any x ∈ Q \ Z(Q).

After these preliminary considerations, we split the proof into a number of steps.

Step 1. exp(G′ ∩ Z(G)) = 2.
From Theorem 5.2 we have that L = Z2(G) and thus [L,G] = γ3(G) andG/γ3(G)

has the strong condition on normal subgroups by Lemma 5.1. It follows from
Theorem D that expG′/γ3(G) = 2.

On the other hand, if we choose elements u, v ∈ G such that Z2(G) = 〈u, v〉Z(G)
then N = 〈u, v〉γ3(G) is a normal subgroup of G. Since G has the weak condition,
we derive that G′ ≤ N and d(G′/γ3(G)) ≤ 2. Hence |G′ : γ3(G)| ≤ 4. But
γ3(G) ≤ G′ ∩ Z(G) and |G′ : G′ ∩ Z(G)| = |G′Z(G) : Z(G)| = 4, therefore
G′ ∩ Z(G) = γ3(G). We conclude from Lemma 5.1 that exp(G′ ∩ Z(G)) = 2.

Step 2. Q has five maximal abelian subgroups, all of which have order 24. Besides,
the product of any two different of them is the whole of Q.

For any x ∈ Q\Z(Q) we have seen that [x,Q] = Q′ and consequently CQ(x) has
order 24. Then CQ(x) = 〈x, y〉Z(Q) for some y and this subgroup is abelian. In
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fact, it is obviously a maximal abelian subgroup of Q. Conversely, suppose A is a
maximal abelian subgroup of Q. If we choose x ∈ A\Z(Q) then clearly A = CQ(x).
Thus we have proved that the maximal abelian subgroups of Q are the centralizers
of the non-central elements. Now an easy counting argument shows that Q has five
different maximal abelian subgroups. Finally, if A and B are two different maximal
abelian subgroups of Q then they cannot have a common non-central element.
Consequently A ∩B = Z(Q) and it is immediate that Q = AB.

Step 3. If A and B are two different maximal abelian subgroups of Q then f1(A)∩
f1(B) = 1.

Write A = X/Z(G), B = Y/Z(G) and f1(A) ∩ f1(B) = T/Z(G). We have to
see that T = Z(G).

Since A is abelian, we have that X ′ ≤ Z(G) and X has class ≤ 2. Then we
derive from Lemma 2.2 that [f1(X), X] = f1(X ′) = 1, since X ′ ≤ G′ ∩ Z(G) has
exponent 2 by Step 1. Now by the definition of T we have that T ≤ f1(X)Z(G)
and consequently [T,X] = 1. Similarly [T, Y ] = 1. Finally, since A and B are
different we deduce from the previous step that Q = AB, that is, G = XY . Thus
T ≤ Z(G).

Step 4. Final contradiction.
Since Q satisfies the strong condition on normal subgroups, we know from The-

orem D that expQ/Z(Q) = 2 and consequently f1(Q) ≤ Z(Q) ∼= C2 × C2. So if
A is any of the maximal abelian subgroups of Q, f1(A) has to be one of the five
subgroups of Z(Q). But we know from Step 2 that Q has five maximal abelian sub-
groups, so the only way to avoid a contradiction with Step 3 is that there exist two
different maximal abelian subgroups A and B of Q such that f1(A) = f1(B) = 1.

Write A = 〈x, y〉Z(Q). Since Q = AB we have that Q′ = [x,Q] = [x,B] and
also Q′ = [y,B]. Thus we may choose z, t ∈ B such that [x, z] = [y, t] 6= 1. Let
C = CQ(xz) and D = CQ(yt), which are maximal abelian subgroups of Q. Observe
that

(xz)2 = x2z2[z, x] = [z, x] and (yt)2 = y2t2[t, y] = [t, y]

are equal, so according to the previous step we have that C = D. But then xz
and yt commute and therefore 1 = [xz, yt] = [x, t][z, y]. Consequently [xy, zt] =
[x, z][x, t][y, z][y, t] = 1, which is a contradiction, since CQ(xy) = A. �

We have remarked in the introduction that the proofs we provide for Theorems
D to G on groups with either of the conditions on normal subgroups are character-
free. This seems not to be true for Theorem 6.6, since at the beginning of its proof
we appeal to Theorem A. Nevertheless, we only need that (v) implies (iii) in that
theorem, which is completely straightforward and does not require the character
theoretical part (i) at all.

7. Proof of Theorem G

In this section we prove Theorem G, that is, that the order of a group G with the
strong or weak condition on normal subgroups and class greater than 2 is bounded
unless G has the weak condition and |G : Z(G)| = p3 or p4. Observe that Theorem
G cannot be extended to these two cases. On the one hand, given any p-group P
of maximal class and order p4 and any abelian p-group A, G = P × A has class 3,
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satisfies the weak condition and |G : Z(G)| = p3. On the other hand, the examples
after Theorem 5.3 show that the order can be arbitrarily high when |G : Z(G)| = p4.

We split the proof of Theorem G into the two theorems below. The first of them
considers the case where the class of G is maximum with respect to the condition
it satisfies, that is, c(G) = 3 if G satisfies the strong condition and c(G) = 4 if it
satisfies the weak condition. The possibility of getting a bound for |G| in this case
was pointed out to us by A. Mann. The second theorem deals with the remaining
case, where G satisfies the weak condition, has class 3 and |G : Z(G)| = p6.

We already know that the p-groups of maximal class and order p4 and p5 are
examples of groups with the strong and weak condition, respectively, for which the
nilpotency class is as large as possible. Note also that Proposition 6.1 tells us that
for a group G of that kind G/Z(G) has maximal class. Our next result then shows
that G itself is almost of maximal class. In fact, if p = 2 then G has necessarily
maximal class.

Theorem 7.1. Let G be a p-group.
(i) If G satisfies the strong condition on normal subgroups and c(G) = 3 then

|G| ≤ p5. Furthermore, if p = 2 then |G| = 24, that is, G has maximal
class.

(ii) If G satisfies the weak condition on normal subgroups and c(G) = 4 then
|G| ≤ p6. Furthermore, if p = 2 then |G| = 25, that is, G has maximal
class.

Proof. Recall that, as explained before the theorem, G/Z(G) is a p-group of maxi-
mal class in any case.

(i) Since |Z2(G) : Z(G)| = p we may write Z2(G) = 〈x,Z(G)〉 for some x such
that xp ∈ Z(G). Then N = 〈x〉[x,G] is normal in G and by hypothesis G′ ≤ N . It
follows that

G′ = G′ ∩N = (G′ ∩ 〈x〉)[x,G],

by Dedekind’s Law. But xp and [x,G] are central whileG′ is not, thereforeG′∩〈x〉 =
〈x〉, that is, x ∈ G′. Since x can be any element of Z2(G) \ Z(G), we get that
G′ = Z2(G).

Hence we have that |G : G′| = p2. If p = 2 this implies that G has maximal class
(see [10, Theorem III.11.9]) and |G| = 24. In general, if G = 〈a, b,G′〉 then by [10,
Lemma III.1.11] we have that G′ = 〈[a, b], γ3(G)〉 and γ3(G) = 〈[a, b, a], [a, b, b]〉.
Consequently |G′ : γ3(G)| = p and |γ3(G)| ≤ p2, which proves that |G| ≤ p5.

(ii) Choose x ∈ G such that Z3(G) = 〈x,Z2(G)〉. Let T be the normal closure
of [x,G] in G and N = 〈x〉T , which is normal in G. Since G/Z(G) has maximal
class, we have that [x,G]Z(G) = Z2(G) and consequently NZ(G) = Z3(G). Thus
|NZ(G) : Z(G)| = p2 and by hypothesis G′ ≤ N . Since T is contained in both G′

and Z2(G), we can argue as in part (i) to derive that x ∈ G′. Hence G′ = Z3(G)
and |G : G′| = p2.

If p = 2 we deduce again that G has maximal class. In the general case, we
have as in the proof of (i) that |G′ : γ3(G)| = p and |γ3(G) : γ4(G)| ≤ p2. Since
G/Z(G) is a group of maximal class of order p4, it has an abelian maximal subgroup
(consider the centralizer of its second centre). Consequently, G has a maximal
subgroup M such that M ′ ≤ Z(G) and, in particular, [M,G′, G] = 1. On the
other hand, [G,M,G′] ≤ [G′, G′] = [G′, γ3(G)] ≤ γ5(G) = 1, where the equality
follows from G′/γ3(G) being cyclic. Now the three subgroup lemma yields that
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[G′, G,M ] = 1, that is, [γ3(G),M ] = 1. By taking into account again that G/Z(G)
has maximal class, we derive that γ3(G/Z(G)) = γ3(G)Z(G)/Z(G) has order p
and hence |G : γ3(G)Z(G)| = p3. Since |G : γ3(G)| = p3, it follows that Z(G) ≤
γ3(G) and |γ3(G) : Z(G)| = p. Thus we may write γ3(G) = 〈y, Z(G)〉 and also
G = 〈a,M〉, since M is maximal in G. As we have proved that γ3(G) and M
commute elementwise, we deduce that γ4(G) = 〈[y, a]〉 has order p. We conclude
that |G| ≤ p6. �

As is well-known, a 2-group of maximal class is a dihedral, semidihedral or
generalized quaternion group. Thus these are the only 2-groups that appear in the
previous theorem. Next we see that the bounds obtained for p > 2 are sharp.

Examples. (i) Let p > 2 be a prime and let Zp denote the ring of p-adic integers.
Consider the subgroup G of SL2(Zp) formed by the matrices

(
a b
c d

)
such that a ≡

d ≡ 1 (mod p) and c ≡ 0 (mod p). In other words, G is the inverse image, under
the natural homomorphism from SL2(Zp) onto SL2(Fp), of the Sylow p-subgroup
of SL2(Fp) formed by the upper unitriangular matrices. This group is called the
binary p-adic group and is studied in detail in [10, Chapter III.17]. We only need to
use here that ai = |γi(G) : γi+1(G)| is finite for all i and that the sequence {ai}i≥1

is periodic with the following pattern: p2, p, p2, p, p2, p, . . .. It is easy to deduce
from this fact that the upper and lower central series of K = G/γ4(G) coincide.
This in turn implies that the group K, that has class 3 and order p5, satisfies the
strong condition on normal subgroups. Alternatively, one can take for p > 3 the
free nilpotent group of class 3 and exponent p in two generators.

(ii) Let p > 3 be a prime and consider a vector space L = 〈a1, . . . , a6〉 of dimen-
sion 6 over Fp. Let us define a multiplication [ , ] on the basis elements for which
the non-trivial products are given by:

[a1, a2] = a3, [a1, a3] = a4, [a2, a3] = a5, [a1, a4] = a6.

Then [ , ] extends by bilinearity to an alternating product in L and it is easy
to check that (L, [ , ]) is in fact a Lie algebra. Furthermore, L′ = 〈a3, . . . , a6〉,
L3 = 〈a4, a5, a6〉, L4 = 〈a6〉 and L5 = 0, so that L is nilpotent of class 4. Also,
Z(L) = 〈a5, a6〉. Then we may apply Lazard’s correspondence, which enables
us to transform the underlying set of L in a p-group G thanks to the Baker-
Hausdorff formula. (For a detailed account of both the Baker-Hausdorff formula
and Lazard’s correspondence, see [16].) Then G has order p6 and class 4, and
|G : G′| = |γ3(G) : γ4(G)| = p2, |G′ : γ3(G)| = |γ4(G)| = p. On the other hand,
Z(G) is contained in γ3(G) and has order p2. It is not difficult to derive from all
this information that G has the weak condition on normal subgroups. A similar
construction works to give an example for p > 3 in the case of the strong condition,
as in (i): it suffices to apply Lazard’s correspondence to the Lie algebra L/L4.
Nevertheless, the group we obtain in this way is again the free nilpotent group of
class 3 and exponent p in two generators.

(iii) A search in the database of groups of order 36 available in the algebra system
GAP [19] shows that there are groups among them of class 4 and satisfying the weak
condition on normal subgroups.

In the second theorem we have contented ourselves with showing that the order
of the group is bounded and have not tried to obtain a sharp bound.
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Theorem 7.2. Let G be a p-group of class 3 satisfying the weak condition on
normal subgroups. If |G : Z(G)| = p6 then G has bounded order. In fact, |G| ≤ p18.

Proof. First of all, observe from Proposition 6.5 that |Z2(G) : Z(G)| = p2 and
Z2(G) = G′Z(G) is abelian. We are going to prove that G′ = Z2(G), whence
|G : G′| = p4. Then it follows from [10, Lemma III.1.11] that |G′ : γ3(G)| ≤ p6

and, since |G′ : Z(G)| = p2, also that |γ3(G) : γ4(G)| ≤ p8. But G has class 3, so
we conclude that |G| ≤ p18.

In order to see that G′ = Z2(G), it suffices to prove that any x ∈ Z2(G) \ Z(G)
belongs to G′. To this end, choose an element y such that Z2(G) = 〈x, y〉Z(G) and
consider the subgroup H = 〈x, y〉. We have that Φ(H) = 〈xp, yp〉 ≤ H ∩ Z(G).
Since |H : H ∩ Z(G)| = |HZ(G) : Z(G)| = p2 and d(H) = 2, we deduce that
Φ(H) = H ∩ Z(G).

Now N = H[H,G] is a normal subgroup of G such that |NZ(G) : Z(G)| = p2.
Since G satisfies the weak condition on normal subgroups, we derive that G′ ≤ N
and G′ = G′ ∩ N = (G′ ∩ H)[H,G] by Dedekind’s Law. Consequently HZ(G) =
G′Z(G) = (G′∩H)Z(G). It follows that H = (G′∩H)(Z(G)∩H) = (G′∩H)Φ(H)
and therefore H = G′ ∩H. In particular x ∈ G′, as desired. �

8. Proof of Theorems B and C

We are now in a position so as to return to our character theoretical problem and
prove Theorems B and C, which will follow easily by using the results in the previous
sections. Note that the statements in part (ii) of these two theorems correspond to
G satisfying the strong or weak condition on normal subgroups, respectively.

In the next proposition we prove that (ii) implies (i) in Theorem B. Recall that
the fact that (ii) follows from (i) was proved in the introduction.

Proposition 8.1. Let G be a p-group such that |G : Z(G)| = p2n is a square. If G
satisfies the strong condition on normal subgroups then cd(G) = {1, pn}.

Proof. It suffices to combine Lemma 6.3 with Theorem A. �

We want to remark that the previous simple proof eventually depends on Theo-
rem D and part of Theorem F, which were necessary to prove Lemma 6.3.

Example. It seems natural to ask whether the strong condition on normal sub-
groups in a p-group G of class 2 already implies that |G : Z(G)| is a square. This
is not the case, as the following examples show. For odd p, choose a non-quadratic
residue i modulo p and consider the group

G = 〈a, b, c | ap2
= bp

2
= cp = 1, [a, b] = 1, [a, c] = bp, [b, c] = aip〉,

and, for p = 2, take

G = 〈a, b, c | a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = b2, [b, c] = (ab)2〉.
(Note that in both cases the index of Z(G) = 〈ap, bp〉 is p3.)

One could perharps guess that, if the index of the centre of a p-group of class 2
satisfying the strong condition on normal subgroups is not a square, then that index
is bounded. We may see that this is not the case with the help of the following
proposition.

Proposition 8.2. Let H and K be two p-groups of class 2 such that:
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(i) H satisfies the strong condition on normal subgroups.
(ii) K is semiextraspecial.
(iii) H ′ and K ′ are isomorphic.

Then a central product of H and K with amalgamated derived subgroups also sat-
isfies the strong condition.

Proof. Let G be a central product of H and K with amalgamated derived sub-
groups. Suppose that N is a normal non-central subgroup of G and let us see that
G′ ≤ N . Choose x = hk ∈ N \ Z(G), where h ∈ H and k ∈ K.

If k 6∈ Z(K) then [k,K] = K ′, since K is semiextraspecial. But [k,K] = [x,K] ≤
N and K ′ = G′, whence G′ ≤ N follows in this case. So we may assume that
k ∈ Z(K) and h 6∈ Z(H). Since H satisfies the strong condition, we obtain that
H ′ ≤ 〈h〉[h,H] and H ′ = (〈h〉 ∩H ′)[h,H] ≤ 〈hp〉[h,H]. But K is semiextraspecial,
so we know that expZ(K) = expK ′ = p and consequently hp = hpkp = xp ∈ N .
On the other hand, [h,H] = [x,H] ≤ N and thus G′ = H ′ ≤ N also in this case. �

The previous proposition does not hold if we simply suppose in (ii) that K has
the strong condition on normal subgroups. Indeed, the central product of one of the
groups in the example above with itself, with the derived subgroup amalgamated
via the identity map, does not fulfill the strong condition.

If we now consider a semiextraspecial groupK such that |K ′| = p2 (for example a
Sylow p-subgroup of SL(3, p2), see [3, Lemma 4]), we may perform a central product
of the corresponding group in the example above with any number of copies of K,
amalgamating the derived subgroups. According to Proposition 8.2, the resultant
group satisfies the strong condition and it is clear that the index of the centre will
be an arbitrarily large non-square.

In [20, Proposition 1.3] Verardi proved that semiextraspecial p-groups have the
strong condition on normal subgroups and, as a partial converse, that any non-
abelian special group of exponent p satisfying the strong condition is necessarily
semiextraspecial. This can be viewed as a very particular case of Theorem B. In
fact, if we take into account the result of Noritzsch cited in the introduction, it is
obvious that Theorem B yields the following characterization of semiextraspecial
p-groups in terms of their normal subgroups.

Corollary 8.3. Let G be a p-group. Then the following conditions are equivalent:
(i) G is semiextraspecial (i.e. a Camina p-group of class 2).
(ii) |G : Z(G)| is a square, G′ = Z(G) and G satisfies the strong condition on

normal subgroups.

Note however that, unlike Verardi, we need to impose the condition that |G :
Z(G)| is a square to obtain that G is semiextraspecial: consider otherwise the same
examples above.

We may also apply Lemma 6.4 to semiextraspecial groups and generalize the
well-known fact that a capable extraspecial p-group has order p3.

Corollary 8.4. Any capable semiextraspecial p-group with derived subgroup of order
pn has order p3n.

Proof. We know that a semiextraspecial group G satisfies the strong condition on
normal subgroups and that |G : Z(G)| is a square. If |G′| = pn then Lemma 6.4
yields that |G : G′| = |G : Z(G)| ≤ p2n. But, as Beisiegel proved in [3, Theorem
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1], the reverse inequality holds in any extraspecial group with derived subgroup of
order pn. We conclude that |G : G′| = p2n and |G| = p3n. �

Our last objective is to confirm that Theorem C holds and we begin by proving
the straightforward part of it: that (ii) is a consequence of (i).

Proposition 8.5. Let G be a p-group such that |G : Z(G)| = p2n+1 is not a square.
If cd(G) = {1, pn} then c(G) = 2 or 3 and G satisfies the weak condition on normal
subgroups.

Proof. Since G/Z2(G) is a p-group of order ≤ p2n and cd(G/Z2(G)) ⊆ {1, pn}, we
deduce that G/Z2(G) is abelian and c(G) ≤ 3.

Let now N be any normal subgroup of G such that G′ 6≤ N . Then cd(G/N) =
{1, pn} and consequently

p2n ≤ |G/N : Z(G/N)| ≤ |G/N : NZ(G)/N |(7)

= |G : NZ(G)| ≤ |G : Z(G)| = p2n+1.

It follows that |NZ(G) : Z(G)| ≤ p and G satisfies the weak condition on normal
subgroups. �

The following proposition concludes the proof of Theorem C.

Proposition 8.6. Let G be a p-group such that |G : Z(G)| = p2n+1 is not a square.
If G satisfies the weak condition on normal subgroups then cd(G) = {1, pn}.

Proof. First of all, observe that Theorem F implies that either G has class 2 or it
has class 3 and |G : Z(G)| = p3. In the latter case it is clear that cd(G) = {1, p},
so we may assume that c(G) = 2. If χ ∈ Irr(G) is non-linear we know that
χ(1)2 = |G : Z(χ)|. Let us prove that |Z(χ) : Z(G)| = p, whence χ(1) = pn follows.

Put K = Kerχ. Since G′ 6≤ K we have |KZ(G) : Z(G)| ≤ p. On the other hand,
Z(χ)/K is cyclic and so also Z(χ)/KZ(G) is. As we know from Theorem D that
expG/Z(G) = p, we derive that |Z(χ) : KZ(G)| ≤ p. Thus |Z(χ) : Z(G)| ≤ p2

and, taking into account that |G : Z(χ)| is a square and |G : Z(G)| is not, we
necessarily have that |Z(χ) : Z(G)| = p. �

Now that Theorems B and C are already proved, we can show that if P is
a p-group satisfying either the strong or weak condition on normal subgroups and
|P : Z(P )| is a square or is not, respectively, then P×A satisfies the same condition
on normal subgroups for any abelian p-group A: it suffices to note that the condition
on the character degrees is preserved by that direct product.
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