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1 Introduction

The aim of this note is to present some problems and also partial results in some
cases, mainly on characters of p-groups. (In the last section we deal with a problem
that consists in obtaining information about characters of a Sylow p-subgroup of an
arbitrary group from information about the characters of the whole group.) This
survey is far from being exhaustive. The topics included are strongly influenced
by the author’s interests in the last few years. There seems to be an increasing
interest in the character theory of p-groups and we hope that this expository paper
will encourage more research in the area. In the sixties I. M. Isaacs and D. S.
Passman [17, 18] wrote two important papers that initiated the study of the degrees
of the irreducible complex characters of finite groups (henceforth referred to as
character degrees). The study of the influence of the set of character degrees on
the structure of a group was taken up again in the eighties, in large part due to
B. Huppert and his school. In particular, this has led to several papers dealing
with the character degrees of important families of p-groups since the nineties (see
[6, 8, 12, 28, 30, 32, 33, 34, 35, 36, 37]). Here we are mostly concerned with character
degrees, but instead of studying particular families of p-groups, we intend to obtain
general structural properties of groups according to their character degrees. Other
problems on characters of p-groups appear in [25].

The notation is standard. All the groups considered are finite. We write cd(G)
to denote the set of character degrees of a group G, b(G) the maximum of the char-
acter degrees of G, cs(G) the set of conjugacy class sizes, and c(G) and dl(G) the
nilpotence class and derived length of G, respectively. The terms of the ascending
Fitting series of a group G will be denoted Fi(G) and the Fitting subgroup F (G).
If P is a p-group we write Ωi(P ) to denote the subgroup of P generated by the
elements of order ≤ pi.

2 Bounding the derived length and the nilpotence class

Taketa proved that if G is a monomial group (in particular, a p-group) then dl(G) ≤
| cd(G)|. An important problem in character theory of finite solvable groups is the
Isaacs-Seitz conjecture, which asserts that the derived length of any solvable group
G is bounded by | cd(G)|. Despite the fact that this conjecture is not proved
yet, it is widely believed that the “right” bound for dl(G) in terms of | cd(G)|
is logarithmic. This is the case for several families of p-groups, like the Sylow
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Moretó: Characters of p-groups and Sylow p-subgroups 2

subgroups of the symmetric groups or the Sylow p-subgroups of the general linear
groups in characteristic p.

A related problem was studied by Isaacs and Knutson in [15]. If N is a normal
subgroup of G, we write cd(G|N) to denote the set of character degrees of G whose
kernel does not contain N , i.e., the set of degrees of the irreducible characters of
G that “‘say something about N”. With this notation, they obtained bounds for
dl(N) in terms of | cd(G|N)|.

In an impressive series of papers, T. M. Keller (see [21, 22, 23]) has reduced the
problem of finding a logarithmic bound for the derived length of a solvable group in
terms of the cardinality of the set of character degrees to the following conjecture.

Conjecture 1 Let G be a solvable group. Then there exist constants C1 and C2

such that
dl(F (G)) ≤ C1 log | cd(G|F (G))|+ C2.

The reason for the inclusion of this conjecture in this survey is that its proof
should not be much harder than that of the following conjecture.

Conjecture 2 Let P be a p-group. Then dl(P ) is bounded logarithmically in
terms of | cd(P )|.

In other words, Keller’s work comes close to reducing to p-groups the problem
of replacing Taketa’s bound by a logarithmic one. Unfortunately, the p-group case
seems to be extremely hard. For instance, it is not known the answer to the
following well-known question.

Question 2.1 Does there exist a p-group of derived length 4 with 4 character
degrees?

M. C. Slattery has proved that the set of degrees of such a p-group cannot be
{1, p, p2, p3} [38].

Of course, one cannot hope to obtain any bounds for the nilpotence class of
a p-group in terms of the number of character degrees. (It is well-known that
there exist p-groups P of maximal class of arbitrarily large order with an abelian
subgroup of index p and, therefore, cd(P ) = {1, p}.) However, if we fix the set S of
character degrees then, sometimes, we can obtain bounds for the nilpotence class.
In the following, S denotes a finite set of powers of p containing 1. We say that S
is class bounding if there exists a constant C (depending on S) such that c(P ) ≤ C
for any p-group P with cd(P ) = S. In 1968 Isaacs and Passman [18] proved that
if |S| = 2 then S is class bounding if and only if p does not belong to S. Later,
in 1994, Slattery [39] found sets of arbitrarily large size that are class bounding
within the class of metabelian groups. However, apart from the result of Isaacs
and Passman on sets of cardinality 2, there were no more theorems asserting that
a given set S is class bounding (or non-class-bounding) until 2001. In [16] Isaacs
and the present author proved, among other results, that if S ⊆ {1, pa, . . . , p2a}
then S is class bounding. All the class bounding sets S found in that paper have
the property that p 6∈ S. In [19] Isaacs and Slattery prove that this a necessary
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condition for a set S to be class bounding. However, an example constructed in [20]
shows that this is not a sufficient condition. In [20] Jaikin-Zapirain and the author
also find more class bounding sets. We refer the reader to [16, 19] and [20] for the
detailed results and to [20] for some specific questions related to this problem.

Question 2.2 Which are the class bounding sets?

A complete answer to this question seems to be out of the scope of the known
methods. We do not know even what to conjecture. I am inclined to think that
the probability that a set is class bounding is 0, in the sense that

lim
n→∞

#{S | S is class bounding and max(S) ≤ pn}
#{S | max(S) ≤ pn}

= 0,

but there is little evidence for this.
We close this section with a question that relates the two problems discussed

here.

Question 2.3 Is it true that if cd(P ) = S, |S| = 3 and p 6∈ S, then P is
metabelian?

On the one hand, an affirmative answer to this question would give a new proof
of part of Theorem D of [16]. On the other hand, it would provide another situation
where Taketa’s bound is not best possible.

3 Minimal characters and normal subgroups

We write m(P ) to denote the minimal degree of the non-linear irreducible characters
of P (for convenience, we write m(P ) = 1 if P is abelian). It is well-known that this
number has a strong influence on the structure of the group P (see, for instance,
Problem 5.14 of [11] and [26]). In particular, we want to stress the influence of m(P )
in the last problem discussed in the previous section (see [20]). We introduce a new
invariant associated to any p-group. Write |G : Z(G)| = p2n+e, where e ∈ {0, 1}.
We define m1(P ) = n− logp m(P ), i.e., m(P ) = pn−m1(P ).

With this notation, the groups studied in [4] are exactly those that satisfy
m1(P ) = 0. One of the main results of that paper characterizes such groups
in terms of their normal subgroups. More precisely, we prove the following. (See
Theorems B and C of [4].)

Theorem 3.1 1. Assume that e = 0. Then m1(P ) = 0 if and only if P satisfies
the strong condition on normal subgroups.

2. Assume that e = 1. Then m1(P ) = 0 if and only if P satisfies the weak
condition on normal subgroups.

We recall from [4] the definition of the strong (weak) condition. We say that a
p-group P satisfies the strong (weak) condition on normal subgroups if for every
N E P , either P ′ ≤ N or N ≤ Z(P ) (either P ′ ≤ N or |NZ(P ) : Z(P )| ≤ p).
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The proof of Theorem 3.1 requires a careful study of the groups satisfying these
properties. This analysis leads G. A. Fernández-Alcober and the author to group-
theoretical properties of the groups under consideration which, we think, have some
interest by themselves. For instance, in Theorem F of [4] we obtain a bound for
the index of the center of the groups with any of these properties and class ≥ 3.

These definitions and part of Theorem F of [4] have been generalized by Isaacs
[14]. Isaacs defines an invariant a(P ) associated to any finite p-group P as follows:
a(P ) = a is the minimum integer such that if N is a normal subgroup of P and
|NZ(P ) : Z(P )| ≥ pa then P ′ ≤ N . Observe that a(P ) = 0 if and only if P is
abelian, a(P ) = 1 if and only if P satisfies the strong condition and is not abelian
and a(P ) = 2 if and only if P satisfies the weak condition but not the strong
condition. Therefore, Theorem 3.1 says that if e = 0, then m1(P ) = 0 if and only
if a(P ) ≤ 1, while if e = 1, then m1(P ) = 0 if and only if a(P ) ≤ 2. We think that
it should be possible to generalize this result too. Our aim now is to present some
results that suggest this.

We begin by proving that if m1(P ) is small then a(P ) is also small.

Proposition 3.2 With the notation above, if m1(P ) ≤ m for some a ∈ N, then
a(P ) ≤ 2m + 1 + e.

Proof Let N be a normal subgroup of P such that P ′ 6≤ N . Since P/N is not
abelian and cd(P/N) ⊆ cd(P ), we have that

p2(n−m) ≤ |P/N : Z(P/N)| ≤ |P : NZ(P )| ≤ |P : Z(P )| = p2n+e,

and it follows that |NZ(P ) : Z(P )| ≤ p2m+e. Therefore a(P ) ≤ 2m + 1 + e. 2

The bound obtained here is best possible, as direct products of p-groups of
maximal class with non-trivial abelian p-groups show. This result generalizes the
easy part of Theorem 3.1. However, in this general setting the converse is not true,
as the following example shows.

Example 3.3 Let P = 〈x, y | xpn
= yp2n

= 1, yx = y1+pn〉 for n ∈ N. Then
P ′ = Z(P ) = 〈ypn〉, |P : Z(P )| = p2n and N = 〈xp, ypn+1〉 is a normal subgroup of
P such that P ′ 6≤ N and |NZ(P ) : Z(P )| = pn−1. Now it is possible to prove that
a(P ) = n and m1(P ) = n− 1.

Now we prove that if P is a group of class 2 and a(P ) is small, then m1(P ) is
small. We first need a lemma, which is a generalization of [4, Theorem D]. In order
to prove it it is enough to mimic the proof of Theorem D of [4], so we will just give
a sketch of it.

Lemma 3.4 Let P be a p-group of class 2. If a(P ) > 1, then expP/Z(P ) ≤ pa(P ).
Furthermore, if expP/Z(P ) = pa(P ) then P/Z(P ) ∼= Cpa(P ) × Cpa(P ) and P ′ ∼=
Cpa(P ).
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Proof Let M be a maximal subgroup of P ′ and let N be a normal subgroup of P
maximal with respect to the property P ′ ∩ N = M . Let K/N = Z(P/N). Since
the derived subgroup of P/N is of order p, P/K is elementary abelian. By the
choice of N , we have that K/N is cyclic, so K/NZ(P ) is cyclic. Since P ′ 6≤ N ,
|NZ(P ) : Z(P )| ≤ pa(P )−1. Now the bound for the exponent of P/Z(P ) follows
from the fact that this abelian group has at least two cyclic factors of maximal
order.

If expP/Z(P ) = pa(P ) the previous argument shows that P/Z(P ) is a direct
product of two cyclic groups of order pa(P ) and, perhaps, some cyclic factors of
smaller order. We want to prove that in fact all the cyclic factors are of order pa(P ).
In this case, we can choose M = Ωa(P )−1(P ′). Let T/Z(P ) = Ωa(P )−1(P/Z(P )).
Then exp[T, P ] = exp T/Z(P ) = pa(P )−1 and consequently [T, P ] ≤ M . Hence T ≤
K. We know that K/NZ(P ) is cyclic and |NZ(P ) : Z(P )| ≤ pa(P )−1. Therefore,

|Ωa(P )−1(P/Z(P ))| ≤ p2a(P )−2.

It follows that P/Z(P ) ∼= Cpa(P ) × Cpa(P ) and P ′ ∼= Cpa(P ) . 2

The previous example shows that the bound obtained in this lemma cannot be
improved. Of course, the order of P/Z(P ) cannot be bounded in terms of a(P )
when c(P ) = 2. This lemma proves that, at least, it is possible to bound the
exponent.

Theorem 3.5 Let P be a p-group of class 2. If a(P ) = a > 1 then m1(P ) ≤
a− 1− e.

Proof Since c(P ) = 2, χ(1)2 = |P : Z(χ)| for any χ ∈ Irr(P ), by Theorem 2.31
of [11]. Let K = Kerχ. If χ is non-linear, then |KZ(P ) : Z(P )| ≤ pa−1. We also
know that Z(χ)/K is cyclic and exp P/Z(P ) ≤ pa−e by the previous lemma. It
follows that |Z(χ) : Z(P )| ≤ p2a−1−e, so

|P : Z(χ)| ≥ p2n−2a+1+2e.

Since this index is a square, we have that |P : Z(χ)| ≥ p2(n−a+1+e), and we deduce
that χ(1) ≥ pn−a+1+e, as we wanted to prove. 2

The bound in this theorem cannot be improved, as Example 3.3 shows. However,
I think that the hypothesis on the class can be removed.

Conjecture 3 Let P be a p-group. Then m1(P ) ≤ a(P )−1−e whenever a(P ) > 1.

4 Miscellaneous questions

In the last years a number of similar results for character degrees and conjugacy
class sizes have been obtained. However, the reason for the existence of this par-
allelism, if any, is still unknown. Isaacs [10] proved that any set of powers of
p containing 1 occurs as the set of character degrees of a p-group of class ≤ 2.



Moretó: Characters of p-groups and Sylow p-subgroups 6

The analog result for conjugacy class sizes has been obtained by J. Cossey and T.
Hawkes [2]. Although it is easy to find sets of character degrees (resp. conjugacy
class sizes) that impose restrictions on the class sizes (resp. character degrees),
Fernández-Alcober and the author [5] proved that there is not any relation be-
tween the cardinalities of these sets, i.e., given any two integers m and n greater
than 1, there exists a p-group with m character degrees and n conjugacy class sizes.
A complete answer to the following question, which was first raised in [5], seems to
be very difficult.

Question 4.1 Determine the pairs (A,B) of sets of powers of p containing 1 such
that there exists a p-group P with cd(P ) = A and cs(P ) = B.

The particular case |A| = |B| = 2 is being studied by Cossey and Hawkes [7].
We recall that a group G is normally monomial if any irreducible character

of G is induced from a linear character of a normal subgroup. It was thought
that, perhaps, the derived length of normally monomial groups was bounded by
some constant. However, in [24] L. Kovacs and C. R. Leedham-Green constructed
normally monomial p-groups of derived length the integer part of log2(p + 1). As
far as I know, the answer to the following question is still unknown.

Question 4.2 Does there exist a function f such that if P is a normally monomial
p-group then dl(P ) ≤ f(p)?

A classical problem in character theory is to determine what kind of group
theoretical information can be determined from the knowledge of the character
table. For instance, R. Brauer [1] asked whether or not the derived length of a
solvable group can be read off from the character table. This question was answered
negatively even for p-groups by S. Mattarei [29], but the following question remains
open.

Question 4.3 Do there exist p-groups P1 and P2 with the same character table
and dl(P1) ≥ dl(P2) + 2?

5 Character degrees of Sylow p-subgroups

There are some known results that give information on the structure of a finite
group in terms of the p-parts of the irreducible complex (or Brauer) characters
(see, for instance, [27]). In this section we deal with the following problem.

Conjecture 4 Let G be a finite group and write ep(G) to denote the exponent
of the largest p-part of the irreducible complex characters of G. Then ep(P ) is
bounded by some function of ep(G), where P ∈ Sylp(G).

If ep(G) = 0 then P is abelian (by Ito-Michler’s theorem), so we will assume
ep(G) > 0 in the remaining. This might lead one to think that, in fact, ep(P ) ≤
ep(G) but this is false even for solvable groups, as the following example of Isaacs
shows.
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Example 5.1 Let V be a row vector space of dimension 3 over the finite field with
two elements. Consider the natural action of the subgroup H of GL(3, 2) consisting
of the matrices (

GL(2, 2) 0
* * 1

)
on V . If G = V H then e2(G) = 1 and e2(P ) = 2, where P is a Sylow 2-subgroup
of G. There are similar examples for p = 3.

As far as I know, it might be true that ep(P ) ≤ ep(G) for p ≥ 5 and G solvable
and that ep(P ) ≤ 2ep(G) for any prime and any group. This would imply that if G
is solvable then dl(P ) ≤ 2ep(G) + 1, using Taketa’s theorem. This last inequality
is the main theorem of [9].

We are able to prove the bound ep(P ) ≤ ep(G) for metanilpotent groups (in
particular for supersolvable groups). However this bound does not hold for groups
of Fitting height 3 as Isaacs’ example shows. For solvable groups we obtain a bound
for ep(P ) in terms of ep(G) and the Fitting height of G.

We begin with an elementary lemma.

Lemma 5.2 Let N be a normal subgroup of G. Then ep(N) ≤ ep(G). In particu-
lar, if G has a normal Sylow p-subgroup P , then ep(P ) ≤ ep(G).

Proof This is an immediate consequence of Clifford theory. 2

Theorem 5.3 Let G be a solvable group and R the smallest normal subgroup of
G such that G/R is nilpotent. Assume that R is p-nilpotent. Then ep(P ) ≤ ep(G)
for any P ∈ Sylp(G).

Proof We may assume that PR > R (otherwise the result follows by induction
and Lemma 5.2). Since G/R is nilpotent and PR/R is a Sylow p-subgroup of G/R,
we have that PR E G and, again by induction and Lemma 5.2, we may assume
that G = PR. Then G is p-nilpotent, and the result follows. 2

Corollary 5.4 Let G be a metanilpotent group and P ∈ Sylp(G). Then ep(P ) ≤
ep(G).

Our next aim is to bound ep(P ) in terms of the Fitting height h(G) and ep(G).
The key is the following lemma, which gives a bound for the p-part of the order of
the quotient of two consecutive terms of the ascending Fitting series Fi+1(G)/Fi(G)
when Fi(G)/Fi−1(G) is a p′-group.

Lemma 5.5 Let G be a solvable group and assume that Op(G) = 1. Then

|F2(G)/F (G)|p ≤ p2ep(G)−1.

Proof By Gaschutz’s theorem (see [27, Theorem 1.12]) G/F (G) acts faithfully on
the abelian group F (G)/Φ(G). Therefore it also acts faithfully on Irr(F (G)/Φ(G)).
Let P1/F (G) ∈ Sylp(F2(G)/F (G)) and consider the faithful action of the p-group
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P1/F (G) on the p′-group Irr(F (G)/Φ(G)). We may assume that |P1/F (G)| > 1.
By [13], there exists λ ∈ Irr(F (G)/Φ(G)) such that |IP1/F (G)(λ)| < |P1/F (G)|1/2.
Since P1 E G,

pep(G) ≥ |P1/F (G) : IP1/F (G)(λ)| > |P1/F (G)|1/2

and the result follows. 2

Let G be a group such that Op(G) = 1. We define the following series

1 = P0 / N1 / P1 / N2 / P2 / · · · / G,

where Ni+1/Pi is the largest nilpotent subgroup of G/Pi and Pi/Ni is the largest
normal p-subgroup of G/Ni. Let sp(G) be the minimum integer such that G = Ns

or G = Ps. It is clear that lp(G) ≤ sp(G) ≤ h(G) ≤ 2sp(G). Observe that if there
are just two primes dividing |G|, then this series is exactly the ascending p′, p-series.

Corollary 5.6 Let G be a solvable group and P ∈ Sylp(G). Then |P : Op(G)| ≤
psp(G/Op(G))(2ep(G)−1).

Proof It is enough to apply repeatedly the previous lemma. 2

Now we are ready to bound ep(P ) in terms of ep(G) and sp(G).

Theorem 5.7 Let G be a solvable group and P ∈ Sylp(G). Then

ep(P ) ≤ (2sp(G/Op(G)) + 1)ep(G)− sp(G).

Proof By Lemma 5.2, ep(Op(G)) ≤ ep(G) and, by the previous corollary, |P :
Op(G)| ≤ psp(G)(2ep(G)−1). Therefore

b(P ) ≤ |P : Op(G)|b(Op(G)) ≤ psp(G)(2ep(G)−1)+ep(G)

and the result follows. 2

Corollary 5.8 Let G be a group of order paqb and P ∈ Sylp(G). Then

ep(P ) ≤ C1ep(G) log ep(G) + C2.

Proof It is enough to observe that sp(G/Op(G)) = lp(G/Op(G)) and apply [27, p.
194] to the bound in Theorem 5.7. 2

It seems hard to find a counterexample to the conjecture, since it would be
necessary to construct an infinite family of groups with Fitting height going to
infinity and at least 3 primes dividing the order of each of the groups.

There is a similar conjecture, due to G. Navarro [31].
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Conjecture 5 Let G be a finite group. Then∏
p∈π(G)

b(Gp) ≤ b(G),

where Gp is a Sylow p-subgroup of G.

Despite the similar flavor of these conjectures, it does not seem easy to apply
results obtained for one of them to the other.

We close by remarking that it is not difficult to prove the conjugacy-class analog
of Conjecture 4 for solvable groups. (We believe that the solvability hypothesis
is not necessary, however.) On the other hand, the analog of Conjecture 5 is
completely false even for solvable groups (see [3]).
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