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1. Introduction

The study of groups by imposing conditions on the set of their normal subgroups
is a theme which has recursively appeared in group theory since early in its history,
both for finite and infinite groups. It is well-known, for example, the structure of
the groups in which every subgroup is normal, a result that dates back to Dedekind.
Another property which is frequently used in group theory is that a finite p-group
all of whose abelian normal subgroups are cyclic must be either cyclic itself or a
2-group of maximal class. It is also very interesting, but perhaps not so well-known,
the following generalization of this result due to Thompson: if p > 2 and G is a finite
p-group in which every abelian normal subgroup can be generated by r elements
then every subgroup of G can be generated by r(r + 1)/2 elements. Finiteness
conditions related to normal subgroups are also of great importance, such as the
minimal and maximal conditions. A comprehensive account of the properties of
the groups satisfying one of these conditions can be found in Chapter 5 of [7].

In this paper we survey recent research on a new kind of restriction on the
normal subgroups of a group, a subject to which we have contributed actively. An
elementary fact in group theory is that any subgroup of a group G which either
contains G′ or is contained in Z(G) must be normal. But what can we say about
the structure of G if these are the only normal subgroups it has? Surprisingly
enough, this question does not seem to have been raised until very recently and the
answer to it, at least for nilpotent groups, will be one of the issues we will touch
on in this paper. More generally, we will deal with nilpotent groups whose normal
subgroups either contain G′ or do not separate more than a fixed distance from the
centre of the group. In other words, we will assume there exists n ∈ N ∪ {∞} such
that |NZ(G) : Z(G)| < n for every N E G not containing G′. As we will show,
this restriction has important consequences about the structure of the group, and
in particular about the index of the centre of G.

Let us briefly explain how this paper is organized. In the second section we
comment on the character-theoretical problem that motivated our dealing with
this kind of restrictions, and present the first results we proved, which apply to
finite p-groups. We will devote the third section to a substantial generalization
of our study due to I.M. Isaacs, still within the world of finite p-groups. Isaacs’
ideas suggested to us abandoning finite p-groups and working more generally with
(infinite) nilpotent groups. The results obtained in this direction are collected in
the fourth section of the paper. Finally, in the last section we give a list of open
problems for the reader who gets interested in this area of research.
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2. Origin of the problem

Incidentally, our interest in these questions arose when we were dealing with a
problem about characters in finite groups. It is well-known that the degree of a
complex irreducible character of a finite group G cannot exceed |G : Z(G)|1/2. If
this value is attained then G is called of central type. As proved by R.B. Howlett
and I.M. Isaacs in [3], groups of central type are necessarily soluble. If we ask
further that the only character degrees of G are 1 and |G : Z(G)|1/2 then the
conclusion is much stronger: G is nilpotent of class 2 and all but one of the Sylow
subgroups of G are abelian. In these circumstances, we say that G is a group with
two extreme character degrees. By the last remark, the study of these groups may
be reduced to the case of p-groups, and we wonder how we can characterize p-groups
with two extreme character degrees in purely group-theoretical terms. This is the
main purpose of our paper [1]. One of these characterizations, which is yet another
instance of a still not well understood duality between characters and conjugacy
classes in finite groups, is the following: the groups under consideration are just
the p-groups with two extreme conjugacy class lengths, namely 1 and |G′|.

On the other hand, if G has two extreme character degrees, it is straightforward
to see that a normal subgroup N of G must satisfy either that G′ ≤ N or that
N ≤ Z(G). If the normal subgroups of a group G fulfil this restriction, we say
that G satisfies the strong condition on normal subgroups. Is the converse true? It
turns out that this is the case, provided that |G : Z(G)| is a square, a condition
that is obviously necessary for G to have two extreme character degrees, but is
not a consequence of the strong condition on normal subgroups. Thus we have the
following theorem.

Theorem 2.1. Let G be a finite p-group such that |G : Z(G)| is a square. Then G
is a group with two extreme character degrees if and only if G satisfies the strong
condition on normal subgroups.

The proof of the ‘if part’ of this theorem relies on a couple of results giving
detailed information about the structure of finite p-groups with the strong condition
on normal subgroups. The first one is related to groups of class 2.

Theorem 2.2. Let G be a finite p-group of class 2 satisfying the strong condition
on normal subgroups. Then expG/Z(G) = exp G′ = p.

Once we have this result, it is quite easy to prove Theorem 2.1 for groups of
class 2. To see this, let χ ∈ Irr(G) be non-linear. Then G′ 6≤ Kerχ and, by the
strong condition, Kerχ ≤ Z(G). It follows that Z(χ)/Z(G) is a cyclic group. Now
G being of class 2 has two consequences: on the one hand, the last theorem yields
that |Z(χ) : Z(G)| = 1 or p; on the other hand, it is a basic result in character
theory that |G : Z(χ)| = χ(1)2 is a square. Since |G : Z(G)| is also a square by
hypothesis, we necessarily have that Z(χ) = Z(G) and χ(1) = |G : Z(G)|1/2, as
desired.

In view of the previous discussion, in order to complete the proof of Theorem
2.1, it suffices to take into account this second result from [1], which requires a
thorough analysis of the groups in question.

Theorem 2.3. Let G be a finite p-group satisfying the strong condition on normal
subgroups. Then the nilpotency class of G is at most 3, and if it equals 3 then
necessarily |G : Z(G)| = p3.
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After having proved Theorem 2.1, it is natural to ask next what happens when
the index of the centre of the p-group G is not a square, say |G : Z(G)| = p2n+1.
Of course, if we stick to the definition we have given of a group with two extreme
character degrees then there are no such groups in this setting. However, since the
biggest possible degree of an irreducible character of G is pn, it seems reasonable to
extend our definition and say that a group has two extreme character degrees in this
case if the only degrees arising are 1 and pn. Again, we can give a characterization
of these groups in terms of their normal subgroups, but nevertheless it is not exactly
having the strong condition on normal subgroups.

Theorem 2.4. Let G be a finite p-group such that |G : Z(G)| is not a square. Then
the following two conditions are equivalent:

(i) G has two extreme character degrees.
(ii) For any normal subgroup N of G, either G′ ≤ N or |NZ(G) : Z(G)| ≤ p.

If (ii) above holds for a finite p-group G, we say that G satisfies the weak condition
on normal subgroups. The proof of Theorem 2.4 follows in a similar way to that
of Theorem 2.1. Again, it is straightforward to see that (i) implies (ii), and the
converse can be easily proved for groups of class 2 with the help of the following
result, in the same spirit of Theorem 2.2.

Theorem 2.5. Let G be a finite p-group of class 2 satisfying the weak condition on
normal subgroups. Then expG/Z(G) = expG′ = p or p2. Moreover, in the latter
case G/Z(G) ∼= Cp2 × Cp2 and G′ ∼= Cp2 .

In particular, if G is a finite p-group of class 2 satisfying the weak condition on
normal subgroups and |G : Z(G)| is not a square then expG/Z(G) = p, and we can
argue much in the same way as we did for groups with the strong condition. Now,
the result that allows us to reduce to the class 2 case is the following one, which
plays for the weak condition the role of Theorem 2.3 for the strong condition.

Theorem 2.6. Let G be a finite p-group satisfying the weak condition on normal
subgroups. Then the nilpotency class of G is at most 4, and if the class is greater
than 2 then |G : Z(G)| = p3, p4 or p6 for odd p and |G : Z(G)| = 23 or 24 for p = 2.

Observe that the only way for |G : Z(G)| not to be a square if the class exceeds
2 is that |G : Z(G)| = p3, and in this case it is clear that the only character degrees
are 1 and p. Hence Theorem 2.4 is a consequence of the last two theorems. We
stress that the hardest part of the work is done in the proof of Theorem 2.6.

On the other hand, Theorems 2.3 and 2.6 have an importance of their own, since
they provide a significant restriction on the structure of a finite p-group with either
the strong or the weak condition on normal subgroups if the class is greater than
2, namely that the index of the centre must be quite small. (Note that this is not
the case when the class is 2: all p-groups with derived subgroup of order p satisfy
the strong condition, and the index of the centre cannot be bounded in this case,
as extraspecial groups show.) Even more, sometimes it is not only the index of the
centre that we can bound, but also the order of the whole group. This happens
when the nilpotency class takes the maximum possible value in the corresponding
family of groups, as stated in the following result from our work [1].

Theorem 2.7. Let G be a finite p-group.
(i) If G satisfies the strong condition on normal subgroups and has class 3

then |G| ≤ p5. Furthermore, if p = 2 then |G| = 24.
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(ii) If G satisfies the weak condition on normal subgroups and has class 4 then
|G| ≤ p6. Furthermore, if p = 2 then |G| = 25.

The bounds we provide above are sharp, and show that the group is very close to
a p-group of maximal class. In fact, for p = 2 they actually yield that the group has
maximal class. For odd p this is not necessarily true, but we can see that G/Z(G)
is of maximal class. As it turns out, this is the first step in the proof of the previous
theorem.

We note that G. Silberberg has also proved that a finite p-group G with the
strong condition and class 3 satisfies that |G : Z(G)| = p3 and |G| ≤ p5, see [8].

Summarizing, we could say that the underlying moral in all of these results is
that the groups with one of the above conditions on normal subgroups face more
and more restrictions as the nilpotency class grows: when the class is 2 the group
can separate as much as we want from its centre, this is no longer true when the
class is bigger than 2, then there comes a limit value of the class that bounds even
the order of the group, and after this limit value the groups of this kind no longer
exist.

3. Isaacs’ generalization

Prompted by the structural results we have described in the previous section,
Isaacs considered in [4] a natural generalization of the strong and weak conditions
on normal subgroups for finite p-groups, by asking that all normal subgroups either
contain the derived subgroup or separate boundedly from the centre. Then his
objective is to prove that, provided that the class is greater than 2, the index of the
centre is bounded in these groups, thus generalizing Theorems 2.3 and 2.6. In fact,
he does even better, since he shows that it suffices to impose the condition not on
all normal subgroups but only on those containing the centre. It is convenient to
introduce the following two invariants.

Definition. Let G be a finite p-group.
(i) Let N denote the collection of all normal subgroups N of G such that

G′ 6≤ N . Then we define a(G) to be the minimum value of a ≥ 0 such that
|NZ(G) : Z(G)| < pa for all N ∈ N .

(ii) Similarly, let N ∗ denote the collection of all normal subgroups N of G such
that G′ 6≤ N and Z(G) ≤ N . Then we define b(G) to be the minimum
value of b ≥ 0 such that |NZ(G) : Z(G)| < pb for all N ∈ N ∗.

When there is no risk of confusion we write simply a and b instead of a(G) and
b(G). Observe that a(G) = 0 if and only if N is empty, that is, if and only if G is
abelian. In the same way, b(G) = 0 if and only if the class of G is at most 2. Also,
a(G) ≤ 1 is equivalent to G satisfying the strong condition on normal subgroups
and a(G) ≤ 2 is equivalent to the weak condition.

Since N ∗ ⊆ N , we always have that b(G) ≤ a(G). On the other hand, if K is a
normal subgroup of G then a(G/K) ≤ a(G) and b(G/K) ≤ b(G). If a(G) > 1 then
it is not difficult to see that a(G/K) < a(G) for any K E G containing Ω1(Z(G)).
This provides the grounds for the use of inductive arguments.

The first of Isaacs’ results bounds the exponent of G′ in terms of a(G), thus
extending Theorems 2.2 and 2.5 to arbitrary values of a and of the nilpotency
class. We give a slightly sharpened version of it, more precisely we describe in
part (ii) of the theorem all the exceptions to the general rule stated in (i). For the
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sake of completeness and to maintain the parallelism with our previous theorems,
we also include a similar result for the exponent of G/Z(G), which can be proved
analogously.

Theorem 3.1. Let G be a finite p-group. Then one of the following cases holds:
(i) expG′ ≤ pa and expG/Z(G) ≤ pa.
(ii) G is a 2-group of maximal class of order greater than 8, and expG′ =

expG/Z(G) = 2a+1.

The main result of Isaacs’ in [4] is the next one, giving a bound for the index of
the centre in terms of a or b.

Theorem 3.2. If G is a finite p-group of class greater than 2 then |G : Z(G)| ≤ p3b.
In particular, |G : Z(G)| ≤ p3a.

The following construction, also due to Isaacs, shows that the two bounds above
are sharp. Let F be a finite field with q elements, where q = pe is a power of a
prime p > 2. Then the set

E =

{1 x x(x− 1)/2
0 1 x
0 0 1

 | x ∈ F

}
is a group under matrix multiplication, and it acts naturally on the space F 3 of row
vectors. Let G denote the corresponding semidirect product. It is not difficult to
see that any normal subgroup of G is placed between two consecutive members of
the lower central series, which coincides with the upper central series. This group
is nilpotent of class 3, and |G : G′| = q2 and |G′ : γ3(G)| = |γ3(G)| = q. It follows
that a(G) = b(G) = e and that |G : Z(G)| = q3 = p3e.

It is not a coincidence that the group in the example above has class 3. In
fact, it is easy to see that Isaacs’ proof of Theorem 3.2 can be used to obtain a
bound for |G : Z(G)| including the class of the group. This bound, which we give
below, improves the general bound if the class is greater than 3 and reflects the
phenomenon we have mentioned before: increasing the class of the group imposes
stronger restrictions on the group structure.

Theorem 3.3. Let G be a finite p-group of class c > 2. Then |G : Z(G)| ≤
p3b−2(c−3).

It is now clear that any group G satisfying |G : Z(G)| = p3b must have class 3.

If G is a finite p-group of class c then G′ 6≤ Zc−2(G) and consequently |Zc−2(G) :
Z(G)| < pb. Hence c ≤ b + 2 and the class is bounded when we fix the value of b.
The smallest bound we can get in the last theorem is achieved when the class takes
its biggest possible value, that is b + 2, and reads |G : Z(G)| ≤ pb+2. For this value
of the class the bound is sharp, as shown by any p-group of maximal class of order
pb+3.

4. Infinite groups

While our results about the groups with either the strong or weak condition on
normal subgroups can be considered as a by-product of our interest in providing
group-theoretical characterizations of a character-theoretical property of groups,
the generalization in Isaacs’ paper put the main focus on the group-theoretical side
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of the problem. This opened the door to further generalizations, and in our work
[2] we set out to extend the study of this kind of restrictions on normal subgroups
to the realm of infinite groups. We introduce the following definition.

Definition. Let n be a positive integer or ∞. We say that a group G satisfies
condition Cn, or that G is a Cn-group, if either G′ ≤ N or |NZ(G) : Z(G)| < n for
every N E G.

Thus we want to study the infinite groups satisfying condition Cn for some
n, which can be understood as a finiteness condition for the group, and want to
derive information about the group structure, mainly about the index of the centre
in the whole group. Since the C1-groups are simply the abelian groups, we may
well assume that n > 1. On the other hand, all simple groups clearly satisfy
condition C2 (which, by the way, is equivalent to the strong condition on normal
subgroups). Hence if we want to get interesting results in our study, we have to
restrict somehow the class of groups we want to explore. By analogy with the finite
group case, where we only dealt with p-groups, we will focus our attention on the
class of nilpotent groups. In fact, our study also covers residually nilpotent groups,
since any residually nilpotent C∞-group is actually nilpotent. To see this, suppose
that G is a C∞-group, residually nilpotent and non-abelian. Then γ3(G) < G′

and consequently |γ3(G)Z(G) : Z(G)| < ∞. Hence there exists n ∈ N such that
γi(G)Z(G) = γn(G)Z(G) for all i ≥ n. It follows that γi+1(G) = γn+1(G) for all
i ≥ n and, since G is residually nilpotent, this implies the nilpotency of G.

We first consider the case when n is a positive integer. If G is a nilpotent Cn-
group of class c then we may argue as at the end of the last section to prove that
c < 3 + log2 n. So the nilpotency class of nilpotent Cn-groups is n-bounded. (We
will say that a certain invariant associated to a family of groups is n-bounded if it
can be uniformly bounded by a function of n for all groups in the family. We may
speak similarly of boundedness in terms of more than one parameter.) Now Isaacs’
result suggests that the index of the centre might be n-bounded for the nilpotent
Cn-groups of class exceeding 2, but this is not exactly the case. For instance, any
finite p-group G of class 3 satisfying the strong condition is a C2-group, but there
is no absolute bound for |G : Z(G)| = p3 as p ranges over all primes. Surprisingly,
the next theorem says that everything goes as expected if we just avoid a small set
of exceptions closely related to this simple example.

Theorem 4.1. Let n be a positive integer and G a nilpotent Cn-group of class
greater than 2. Then G is central-by-finite and, more precisely:

(i) If G is not of the form P ×Q, with P a finite p-group of class 3 satisfying
the strong condition and Q an abelian p′-group, then the index of the centre
of G is n-bounded.

(ii) For the exceptions in (i), the index of the centre is p3.

It follows from Theorem 2.7 that the order of a p-group of class 3 satisfying the
strong condition is either p4 or p5. Hence the exceptions pointed out in the last
theorem are all classified.

Let us now consider condition C∞. We have that central-by-finite groups are
C∞-groups. All the previous results point to the converse being also true but, as
happened in the last theorem, there may be problems with the groups of class
3. For example, let C = 〈x〉 be an infinite cyclic group and let D be the direct
product of three copies of Prüfer’s Cp∞ group. Then C acts on D by means of
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(a, b, c)x = (a, ab, bc) and the corresponding semidirect product is a nilpotent C∞-
group of class 3 with infinite central index. Fortunately, the groups of class greater
than 3 have a tame behaviour, as shown by the following theorem.

Theorem 4.2. Let G be a nilpotent group of class greater than 3. Then G is a
C∞-group if and only if it is central-by-finite.

It seems to us that, contrary to what happened in Theorem 4.1, a complete
classification of the C∞-groups of class 3 which are not central-by-finite is out of
reach. Instead, we have contented ourselves with providing several independent
characterizations of the C∞-groups of class 3 which are central-by-finite. We say
that a group G is Prüfer-free if there are no normal subgroups N ≤ K of G such
that K/N ∼= Cp∞ .

Theorem 4.3. Let G be a nilpotent C∞-group of class 3. Then the following
conditions are equivalent:

(i) G is central-by-finite.
(ii) G′ is finite.
(iii) G/Z2(G) is either finitely generated, a torsion group or a Prüfer-free group.

We digress momentarily from our focus on nilpotent groups to give the following
result for residually finite groups, analogous to Theorem 4.2, which is very easy to
prove.

Theorem 4.4. Let G be a residually finite group. Then G is a C∞-group if and
only if it is central-by-finite.

Finally, we wonder whether we may obtain results similar to Theorem 3.1 about
the exponents of G/Z(G) and G′. If the class of G is greater than 3 and G satisfies
condition Cn, we have just seen that G/Z(G) is then finite, and furthermore of
n-bounded order if n is finite. It is clear that one cannot get an absolute bound for
the exponent of G/Z(G) for C∞-groups, and of course the exponent is n-bounded
for Cn-groups when n is finite, but we will not try to obtain accurate bounds, in
the same way as we did not for the index of the centre in Theorem 4.1. As for
G′, by the so-called Schur-Baer Theorem (see Theorem 2.4.1 in [5]) we deduce that
G′ is finite if G satisfies condition Cn and has class greater than 3, and in fact of
n-bounded order if n is finite. Again we will not consider the problem of giving
actual bounds for the exponent of G′.

What happens if G satisfies condition Cn and its class does not exceed 3? We
know that G/Z(G) need not be finite (or n-bounded) but, can we bound its expo-
nent? Is it at least a torsion group? What is the situation like with G′? There
is not much we can say if the class is 2. For instance, if we let Q act on Q × Q
via (a, b)x = (a, b + ax) then the corresponding semidirect product is a torsion-free
group of class 2 that satisfies the strong condition on normal subgroups. For groups
of class 3, G/Z(G) may well be a torsion-free group, see the example right before
Theorem 4.2. Still the behaviour of G′ is a bit better, as shown by the theorem
below.

Theorem 4.5. Let G be a C∞-group of class 3. Then G′ is a torsion group.

For n < ∞, we cannot assure analogously that the exponent of G′ is n-bounded
when G is a Cn-group of class 3. Again, the exceptions in Theorem 4.1 provide a
counterexample.
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5. Open problems

We finish this survey by pointing out several directions for further work on this
field of research. With this purpose, we list below some open problems we consider
interesting.

Problem 1. Isaacs has proved that the bound |G : Z(G)| ≤ p3b holds for any finite
p-group of class greater than 2 and that the bound is sharp for p > 2. However,
Theorem 2.6 shows that the bound can be improved for p = 2 in the particular
case of the weak condition on normal subgroups. We pose the problem of finding
an optimum bound for 2-groups for arbitrary b.

Problem 2. If p is odd and G is a finite p-group satisfying the weak condition and
class greater than 2 then we know from Theorem 2.6 that |G : Z(G)| is either p3,
p4 or p6, so it cannot take the value p5. Do similar gaps appear in Isaacs’ bounds
for |G : Z(G)| in terms of a and b?

Problem 3. We have seen in Theorem 3.3 that Isaacs’ bound can be refined to
include the nilpotency class c of the group, getting that |G : Z(G)| ≤ p3b−2(c−3).
From Isaacs’ example we know that this bound is sharp for p > 2 and c = 3, and
p-groups of maximal class show that the same happens when the class takes its
biggest possible value, that is, b + 2. Is it possible, for every 3 < c < b + 2, to find
examples of class c for which equality holds in the previous bound? If equality does
not hold, can we provide examples of arbitrarily high order?

Problem 4. As seen in Theorem 2.7, the order of a finite p-group with either the
strong or the weak condition and biggest possible class is bounded. In [1] we proved
that this is also the case for groups with the weak condition of class 3 and for which
|G : Z(G)| = p6. We conjecture that the order of the group is bounded whenever
equality holds in the bound |G : Z(G)| ≤ p3b−2(c−3).

Problem 5. Isaacs’ proof of Theorem 3.2 shows that the invariant b is more ad-
equate than a for the use of inductive arguments. Furthermore, since b ≤ a it
provides better bounds. In [4], Isaacs asks how much bigger than b can a be in
a finite p-group of class exceeding 2. He constructs examples of groups for which
a > b, but it is not clear whether one can even get a > b + 1. On the other hand,
it is a consequence of Theorem 3.2 and the definition of a that a < 3b for finite
p-groups of class greater than 2.

Problem 6. It is possible to relate the invariant a of a finite p-group G with
the degrees of its complex irreducible characters, although not in such a precise
way as for groups with either the strong or the weak condition. If we write |G :
Z(G)| = p2n+e, with e = 0 or 1, then the maximum possible degree of an irreducible
character of G is pn. Let pm be the smallest degree of G, apart from 1. Then the
difference n −m is a way of measuring how close G is to having extreme degrees.
Theorems 2.1 and 2.4 say that this difference is 0 if and only if a ≤ 1 when e = 0,
and if and only if a ≤ 2 when e = 1. How does n −m relate to a in general? We
conjecture that (a− 1− e)/2 ≤ n−m ≤ a− 1− e holds for any a > 1. It is easy to
prove that n−m ≥ (a− 1− e)/2 is always true, and also that n−m ≤ a− 1− e
if G has class 2. (See the survey paper [6] on characters of p-groups by the second
author.) On the other hand, both for the lower and the upper bound for n − m,
there are examples with arbitrary a > 1 for which equality holds.
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Problem 7. The results in the last section apply to (residually) nilpotent groups.
Can they somehow be extended to other classes of generalized nilpotent groups? Is
there anything we can say under a condition of type Cn for soluble groups or even
for some class of generalized soluble groups?

Problem 8. The origin of this area of research has produced an asymmetry be-
tween the role of G′ and Z(G) in the restrictions we are imposing on the normal sub-
groups of G. It would be interesting to generalize the results in this paper to groups
whose normal subgroups satisfy that either |G′N : N | < m or |NZ(G) : Z(G)| < n
for some fixed m,n ∈ N ∪ {∞}.
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