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In 1996 J. G. Thompson [2] proved that given any finite group G the

function θp : G → Z defined by

θp(g) = |{h ∈ G | 〈g, h〉p is abelian}|,

where 〈g, h〉p denotes a Sylow p-subgroup of 〈g, h〉, is a generalized charac-

ter. Thompson mentioned that “it seems reasonable to hope that θp is a

character”. Certainly, this is the case for groups with abelian Sylow sub-

groups or for nilpotent groups. Unfortunately, we will show that θp does not

need to be a character even for supersolvable groups with a normal Sylow

p-subgroup.

Let E be the extraspecial 3-group of order 33 and exponent 3. Let a be
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the automorphism of E that centralizes Z(E) and inverts the elements of

E/Z(E). Put E = 〈x, y〉, z = [x, y] and let G be the semidirect product of

〈a〉 and E. A routine but tedious calculation shows that [θ3, λ] = −8, where

λ is the non-principal linear character of G. Therefore θ3 is not a character.

At the end of [2], Thompson defines the functions θsolv and θnilp by

θsolv(g) = |{h ∈ G | 〈g, h〉 is solvable}|

and

θnilp(g) = |{h ∈ G | 〈g, h〉 is nilpotent}|.

These functions are generalized characters and Thompson asserts that “they

are quite possibly characters”. However, this is false again. If we take

G = A5 then one can check that θsolv = 22χ1 + 8χ2 + 6χ3 − 4χ4 − 4χ5 (we

are using the notation of the Appendix of [1] for the character table of A5).

Finally, the semidirect product G of the Frobenius group of order 72 which

has an elementary abelian kernel of order 9 and a quaternion complement

acted on by an automorphism of order 3 shows that θnilp does not need to

be a character (because [θnilp, χ] = −2, where χ is the rational irreducible

character of G of degree 2).
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