An answer to a question of J. G. Thompson
on some generalized characters

Alexander Moretó

Departamento de Algebra
Facultad de Matemáticas
Universidad de Valencia
46100 Burjassot. Valencia. SPAIN
E-mail: mtbmoqua@lg.ehu.es

In 1996 J. G. Thompson [2] proved that given any finite group G the
function $\theta_p : G \rightarrow \mathbb{Z}$ defined by

$$\theta_p(g) = |\{h \in G \mid \langle g, h \rangle_p \text{ is abelian}\}|,$$

where $\langle g, h \rangle_p$ denotes a Sylow p-subgroup of $\langle g, h \rangle$, is a generalized character. Thompson mentioned that “it seems reasonable to hope that θ_p is a character”. Certainly, this is the case for groups with abelian Sylow subgroups or for nilpotent groups. Unfortunately, we will show that θ_p does not need to be a character even for supersolvable groups with a normal Sylow p-subgroup.

Let E be the extraspecial 3-group of order 3^3 and exponent 3. Let a be
the automorphism of E that centralizes $Z(E)$ and inverts the elements of $E/Z(E)$. Put $E = \langle x, y \rangle$, $z = [x, y]$ and let G be the semidirect product of $\langle a \rangle$ and E. A routine but tedious calculation shows that $[\theta_3, \lambda] = -8$, where λ is the non-principal linear character of G. Therefore θ_3 is not a character.

At the end of [2], Thompson defines the functions θ_{solv} and θ_{nilp} by

$$\theta_{\text{solv}}(g) = |\{h \in G \mid \langle g, h \rangle \text{ is solvable}\}|$$

and

$$\theta_{\text{nilp}}(g) = |\{h \in G \mid \langle g, h \rangle \text{ is nilpotent}\}|.$$

These functions are generalized characters and Thompson asserts that “they are quite possibly characters”. However, this is false again. If we take $G = A_5$ then one can check that $\theta_{\text{solv}} = 22\chi_1 + 8\chi_2 + 6\chi_3 - 4\chi_4 - 4\chi_5$ (we are using the notation of the Appendix of [1] for the character table of A_5).

Finally, the semidirect product G of the Frobenius group of order 72 which has an elementary abelian kernel of order 9 and a quaternion complement acted on by an automorphism of order 3 shows that θ_{nilp} does not need to be a character (because $[\theta_{\text{nilp}}, \chi] = -2$, where χ is the rational irreducible character of G of degree 2).

References
