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1. Introduction.
Let P be a finite p-group, where p is some prime number. As usual, we write cd(P )

to denote the set of degrees of the irreducible complex characters of P and we note that
cd(P ) is a set of powers of p that contains the number 1. The converse of this statement
is also true: If S is an arbitrary set of powers of the prime number p, subject only to the
condition that 1 ∈ S, then there is some finite p-group P such that cd(P ) is exactly the
set S. In fact, it is always possible to choose P so that its nilpotence class c(P ) does not
exceed 2. This theorem of the first author is the main result of [1].

A more subtle question is whether or not the given set S of powers of p can occur as
cd(P ) for some p-group P having large nilpotence class. It is known, for example, that
for each prime p, there exist p-groups P of unboundedly large nilpotence class such that
cd(P ) = {1, p}. On the other hand, if cd(P ) = {1, p2}, then the nilpotence class of P
is bounded, and in fact, c(P ) ≤ p. More generally, if cd(P ) = {1, pe}, where e > 1 is
arbitrary, then also c(P ) ≤ p. (These results appear in [5].)

Now suppose that S is an arbitrary set of powers of p such that 1 ∈ S. We shall say
that S is a class-bounding set if there is some integer n (depending on S) such that
c(P ) ≤ n for every p-group P with cd(P ) = S. For example, by the results mentioned in
the previous paragraph, we see that if |S| = 2, then S is class bounding precisely when
p 6∈ S and, of course, if |S| = 1, then S = {1} and S is trivially class bounding because
cd(P ) = S only when P is abelian.

It is easy to construct large sets that can be proved to be not class bounding. For
example, if e is any positive integer, then the set Se = {1, p, p2, p3, . . . , pe} is never class
bounding. This is because this set is cd(P ) for every p-group P that is a direct product of
e groups, each having degree set {1, p}. As we mentioned previously, however, such groups
can have arbitrarily large nilpotence class, and this shows that Se is not class bounding,
as we claimed.

But sets that can be proved to be class bounding are harder to find. In fact, we believe
that up to now, the only known class-bounding sets are those of cardinality at most two.
The main results of this paper, however, allow us to construct degree-bounding sets with
arbitrarily large cardinality.

THEOREM A. Fix a prime p and an integer a > 1 and let P be a p-group such that
pa is the smallest member of cd(P ) exceeding 1. If the largest member of cd(P ) does not
exceed p2a, then the nilpotence class of P is bounded above by some function of p and a.

Thus, for example, the sets {1, p2, p3}, {1, p2, p4} and {1, p2, p3, p4} are class bound-
ing, as is any set of the form S = {1, pa} ∪ T , where a > 1 and T is any subset of
{pa+1, pa+2, . . . , p2a}.

Another way to build class-bounding sets of large cardinality is to use the following
result.

THEOREM B. Let S be a class-bounding set and let b be a power of p exceeding the
square of the largest member of S. Then S ∪ {b} is also class bounding provided that this
set does not contain p.

In particular, Theorem B provides an alternative proof that the set {1, pe} is class
bounding if e > 1.
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Our proofs of Theorems A and B rely on special properties enjoyed by p-groups P
such that p 6∈ cd(P ). In particular, the following result shows that to bound the nilpotence
class of such a group in terms of its irreducible character degrees, it suffices to bound the
nilpotence class of its derived subgroup P ′.

THEOREM C. Let P be a p-group such that p 6∈ cd(P ). Then c(P ) < Kc(P ′) + M ,
where K and M are integers depending only on b(P ), the largest irreducible character
degree of P .

Our results are motivated by the paper [6], in which M. C. Slattery considered p-
groups satisfying a condition on character degrees similar to (but slightly stronger than) the
hypothesis in our Theorem A. Under the additional assumption that the derived subgroup
is abelian, he showed that the nilpotence class of such a group is bounded. Although in
our Theorem A, we obtain a bound on the nilpotence class without any assumption on
the derived subgroup, our Theorem C is consistent with Slattery’s idea that the structure
of the derived subgroup of a p-group is relevant to the problem of bounding its nilpotence
class in terms of its character degrees.

It is tempting to conjecture that a set S of powers of p is class bounding if and only
if it does not contain p, and as we have seen, this is indeed true if |S| ≤ 2. We can now
push this a bit further.

THEOREM D. Let S be a set of three powers of the prime p, where 1 ∈ S. Then S is
class bounding if and only if p 6∈ S.

We mention that in contrast with the situation for the nilpotence class, the derived
length dl(P ) of a p-group P is always bounded in terms of the set cd(P ) of its irreducible
character degrees. In fact, since all p-groups are monomial groups, it follows from Taketa’s
theorem that dl(P ) ≤ |cd(P )|. (See Theorem 5.12 of [2].) Unlike the situation with derived
length, however, there definitely does not exist a function f(n), independent of the prime
p, such that if P is a p-group and p 6∈ cd(P ), then c(P ) ≤ f(|cd(P )|). (By Example 3.9 of
[5], there exists for each prime p a p-group P such that c(P ) = p and cd(P ) = {1, pe} for
every integer e > 1.) It may be true, however, that c(P ) is bounded by some function of
p and |cd(P )| whenever p 6∈ cd(P ), but there is very little evidence for this.

The condition that p 6∈ cd(P ) seems very strong, and so one might ask if in that
case there is an upper bound for the nilpotence class c(P ) that depends only on p and is
otherwise independent of cd(P ). In fact, for each prime p, the nilpotence class of such a
group can be unboundedly large. To see this, let F be a field of order q = pe and let P
be the full Sylow p-subgroup of GL(n, q). Then by the main result of [3], we know that
cd(P ) consists of powers of q, and so p 6∈ cd(P ) if e > 1. It is well known, however, that
c(P ) is unboundedly large for large n.

We close this introduction by thanking the institutions where each of us was a visitor
while doing some of his work on this paper. The first author was at the Institute for
Experimental Mathematics in Essen, Germany and the second author was at the Mathe-
matics Department of the University of Wisconsin, Madison. The hospitality of both hosts
is much appreciated.
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2. Theorem C.
In this section, we consider p-groups that lack an irreducible character of degree p,

and we work toward a proof of Theorem C. The key is the following easy observation.

(2.1) LEMMA. Suppose that P is a p-group and that p 6∈ cd(P ). Let L / P with P/L
cyclic. Then L′ = P ′.

Proof. Of course, L′ ⊆ P ′, and so we work to prove the reverse containment. By replacing
P with P/L′, we can assume that L is abelian, and our goal is to prove that P is abelian.
Otherwise, choose K / P , maximal with the property that P/K is nonabelian. Then
(P/K)′ is the unique minimal normal subgroup of P/K and it follows that |(P/K)′| = p.
We deduce from this that P/Z is elementary abelian, where Z/K = Z(P/K).

Since L/K is abelian and Z/K is central in P/K, we see that LZ/K is abelian.
Also, P/LZ is both cyclic and elementary abelian, and hence |P : LZ| ≤ p. Since P/K
is nonabelian and has an abelian subgroup of index at most p, it follows that P/K has
an irreducible character of degree p. This is a contradiction, and we conclude that P is
abelian, as required.

We use the notation P 1 = P , P 2 = [P, P ] and in general, P i+1 = [P i, P ] for i ≥ 1.
The subgroups P i are thus the terms of the lower central series of P and it is well known
that [Pn, Pm] ⊆ Pn+m for all integers m,n ≥ 1. The nilpotence class c(P ) is the unique
integer k such that P k > 1 but P k+1 = 1.

The following general fact appears as Lemma 2.1 of [6], but we provide the (short)
proof here for the convenience of the reader.

(2.2) LEMMA. Let P be any group and suppose that L/ P and L′ = P ′. Then Pn = Ln

for all integers n ≥ 2.

Proof. By hypothesis, we have P 2 = P ′ = L′ = L2, and so working by induction on
n, we can assume that n ≥ 3. Clearly, Ln ⊆ Pn, and so it suffices to prove the reverse
containment. We have

Pn = [Pn−1, P ] = [Ln−1, P ] = [Ln−2, L, P ] ,

where the second equality follows by the inductive hypothesis. We want to show that
Pn ⊆ Ln, and so since Ln / P , it suffices by the three subgroups lemma to show that
[P,Ln−2, L] ⊆ Ln and that [L,P, Ln−2] ⊆ Ln.

We have

[P,Ln−2, L] ⊆ [P, Pn−2, L] = [Pn−1, L] = [Ln−1, L] = Ln ,

as desired. Also,

[L,P, Ln−2] ⊆ [P ′, Ln−2] = [L′, Ln−2] = [L2, Ln−2] ⊆ Ln ,

and this completes the proof.

Next, we work in the group ring ZF , where F is an arbitrary finite p-group. If X ⊆ F ,
we write X̂ to denote the element of ZF obtained by adding the elements of X.
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(2.3) LEMMA. Let F be a p-group and let S be the additive subgroup of the group
ring ZF generated by all elements of the form Ê, where E runs over the subgroups of
F such that F/E is cyclic. If X ⊆ F is any subgroup such that F/X is abelian, then
|F : X|X̂ ∈ S. In fact, if X is proper in F , then (|F : X|/p)X̂ ∈ S.

Proof. We proceed by induction on the index |F : X|. If F/X is cyclic, then X̂ is one
of the generating elements of S and there is nothing further to prove. We can assume,
therefore, that F/X is not cyclic, and hence there exists a subgroup A ⊆ F such that
X ⊆ A and A/X is elementary of order p2. If Y/X is any one of the p + 1 subgroups of
order p in A/X, then |F : Y | < |F : X| and the inductive hypothesis applies. Since Y < F ,
we conclude that nŶ ∈ S, where n = |F : Y |/p = |F : A|. Now Â = t − pX̂, where t is
the sum of the elements Ŷ as Y/X runs over the subgroups of order p in A/X. It follows
that that nt ∈ S and by the inductive hypothesis applied to the subgroup A, we also have
nÂ = |F : A|Â ∈ S. We conclude that npX̂ ∈ S, and since np = |F : X|/p, the proof is
complete.

In certain cases, our next result can be used to establish a connection between the
exponent and the nilpotence class of a p-group.

(2.4) LEMMA. Suppose that P acts on A, where P is a p-group and A is abelian of
exponent pe. Then [A,P, P, . . . , P ] = 1, where the number of commutations with P is e|P |.
Proof. Proceeding by induction on e, we consider first the case where e = 1 so that A
is elementary. We must show in this case that [A,P, P, . . . , P ] = 1, where there are |P |
commutations by P , and we prove this by induction on |P |. If P = 1, then, of course,
[A,P ] = 1, and there is nothing further to prove. We can assume, therefore, that P > 1,
and we let Q be a subgroup of index p in P . Write A0 = A, A1 = [A,Q] and in general
Ai = [Ai−1, Q] if i > 0. By the inductive hypothesis, we have A|Q| = 1, and since
|P | = p|Q|, it suffices to show that [Ai, P, P, . . . , P ] ⊆ Ai+1 for i ≥ 0, where there are p
commutations by P . But Q acts trivially on Ai/Ai+1, and so P/Q is a group of order p that
acts on Ai/Ai+1. It therefore suffices to prove the lemma in the situation where |P | = p
(and where we continue to assume that e = 1). To do this, we view A as a vector space
over a field of order p and we let T be the linear operator on A induced by a generator
of P . We see that [A,P, . . . , P ] = A(T − 1)i, where there are i commutations by P and
i ≥ 0. Since (T − 1)p = T p − 1 = 0, this completes the proof in the case where e = 1.

We can now assume that e > 1 and we consider the action of P on A = A/Φ(A). Since
A has exponent p, it follows by what we have already proved that [A,P, P, . . . , P ] = 1,
where there are |P | commutations by P , and thus [A,P, . . . , P ] ⊆ Φ(A), where again there
are |P | commutations by P . But Φ(A) has exponent pe−1, and so by the inductive hypoth-
esis, (e−1)|P | commutations by P will annihilate Φ(A). It follows that e|P | commutations
by P will annihilate A, and the proof is complete.

(2.5) COROLLARY. In the situation of Lemma 2.4, we have [A,P, P, . . . , P ] = 1, where
the number of commutations is e|P : CP (A)|.
Proof. Apply Lemma 2.4 to the natural action of P/CP (A) on A.

Next, we recall that for any finite group G, there exists an abelian subgroup A ⊆ G
with index bounded above by some function of b = b(G), the largest irreducible character
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degree of G. (See Theorem 12.23 of [2] for this result of the first author and D. S. Passman.)
It follows that coreG(A) is a normal abelian subgroup of G whose index is bounded in terms
of b.

At this point, we can prove that c(P ) is bounded in terms of b(P ) and the maximum
of the exponents of abelian normal subgroups of P ′. To obtain this easy result, it is not
even necessary to assume that p 6∈ cd(P ).

(2.6) COROLLARY. Let pe be the maximum of the exponents of all abelian normal
subgroups of P ′, where P is a p-group. Then the nilpotence class c(P ) is bounded in terms
of e and b = b(P ).

Proof. Choose an abelian normal subgroup A of P of index bounded by some function
of b. Since the order of P/A is bounded in terms of b, so too is its nilpotence class, and it
follows that there is some integer M depending only on b such that PM ⊆ A. Since we can
certainly assume that M ≥ 2, it follows that PM is an abelian normal subgroup of P ′, and
thus its exponent does not exceed pe. Also, A ⊆ CP (PM ), and hence by Corollary 2.5, we
know that 1 = [PM , P, P, . . . , P ] = PN+M , where there are N = e|P : A| commutations
by P . It follows that c(P ) < N + M , and the result follows.

Finally, we are ready to prove Theorem C.

Proof of Theorem C. As in the proof of Corollary 2.6, we can choose an abelian normal
subgroup A of P with index bounded in terms of b = b(P ). It follows that there is an
integer M depending only on b such that (P/A)M = 1, and for convenience, we assume
that M ≥ 2. We thus have Pm ⊆ A ∩ P ′ for all integers m ≥ M .

Let Q = AP ′ and note that if m ≥ M , then [Pm, Q] = [Pm, P ′] since A centralizes
Pm. (Recall that A is abelian and that Pm ⊆ A.) We will show that there exists an
integer K, depending only on b, such that Pm+K ⊆ [Pm, Q] for all integers m ≥ M . It
follows that Pm+2K ⊆ [Pm+K , Q] ⊆ [Pm, Q,Q] for integers m ≥ M and continuing like
this, we deduce that for each positive integer n, we have

PM+nK ⊆ [PM , Q,Q, . . . , Q] = [PM , P ′, P ′, . . . , P ′] ⊆ (P ′)n+1 ,

where there are n commutations by Q and by P ′. (Note that the final containment holds
because PM ⊆ P ′ since M ≥ 2.) If we write N = c(P ′), it follows that PM+NK = 1, and
thus the nilpotence class c(P ) < M + NK, as required.

Let V = Pm/[Pm, Q], where m ≥ M . Then P acts on V and our goal is to find
some integer K, depending only on b, such that [V, P, P, . . . , P ] = 1, where there are K
commutations by P . Since Q acts trivially on V , however, we see that P/Q acts on V and
our goal is to show that [V, P/Q, P/Q, . . . , P/Q] = 1, where there are K commutations
and K is some integer depending only on b. But |P/Q| ≤ |P/A|, which is bounded above
by some function of b. Since V is abelian, it would suffice by Lemma 2.4 to show that the
exponent of V is bounded in terms of b. In fact, it suffices to show that the exponent of
[V, P/Q] = [V, P ] is bounded in terms of b, and this we proceed to prove.

If L / P with P/L cyclic, then since we are assuming that p 6∈ cd(P ), we know by
Lemmas 2.1 and 2.2 that Pn = Ln for all integers n ≥ 2. In particular, we have

[Pm, L] = [Lm, L] = Lm+1 = Pm+1 = [Pm, P ] .
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If λ ∈ Irr(Pm) is fixed by L, then [Pm, P ] = [Pm, L] ⊆ ker(λ), and it follows that λ is
fixed by all of P .

Write F = P/A and U = Irr(Pm) and observe that F acts on U since A acts trivially
because A is abelian and contains Pm. We view U (written additively) as a ZF -module.
If u ∈ U is arbitrary and E ⊆ F , then u·Ê is E-invariant, and thus if E is normal in F
with a cyclic factor group, it follows from the preceding paragraph that u·Ê is F -invariant.
This shows that US ⊆ CU (F ), where S is the additive subgroup of the group ring ZF
generated by elements of the form Ê for normal subgroups E of F with cyclic factors.

Now write X = Q/A ⊆ F and observe that F/X is abelian since P ′ ⊆ Q. By
Lemma 2.3, it follows that |F : X|X̂ lies in S. If u ∈ U is X-invariant, then u·X̂ = |X|u,
and it follows that

|F |u = |F : X||X|u = u·|F : X|X̂ ∈ US ,

and so |F |u is F -invariant. Translating this back into the language of the action of P
on the linear characters of Pm, we see that if λ ∈ Irr(Pm) is Q-invariant, then λ|P :A| is
P -invariant.

Recall that our goal is to show that the abelian group [V, P ] has exponent that is
bounded in terms of b. We will show, in fact, that this exponent is a divisor of |P : A|,
which we know is bounded in terms of b. (For notational convenience, we write |P : A| = e.)
It suffices to show that [v, g]e = 1 for all elements v ∈ V and g ∈ P . Let λ be an arbitrary
linear character of V . Since V = Pm/[Pm, Q], we see that we can view λ as a Q-invariant
linear character of Pm, and thus we know that λe is P -invariant. Hence λe(v) = λe(vg),
and we have 1 = λe([v, g]) = λ([v, g]e). Since λ was arbitrary, it follows that [v, g]e = 1,
and thus [V, P ] has exponent dividing e, as desired.

In particular, Theorem C tells us that if P is a metabelian p-group and p 6∈ cd(P ),
then the nilpotence class of P is bounded in terms of b = b(P ). This improves on the
result in [6], where Slattery obtained a bound on the class of a metabelian p-group under
much stronger hypotheses on the character degrees. In fact, in this metabelian case, we
can sharpen our arguments somewhat to obtain an explicit and relatively small bound.
(But it seems probable that this is still far from the best possible result of this type.)

(2.7) THEOREM. Let P be a metabelian p-group and suppose that p 6∈ cd(P ). If
b(P ) = pe, then c(P ) ≤ 2 + (e− 1)pe.

Proof. We work by induction on |P | and we observe that the hypotheses on P are
inherited by homomorphic images P/N , where N / P . Since b(P/N) ≤ b(P ) and the
function 2 + (e− 1)pe is monotonic in e, it follows that c(P/N) ≤ 2 + (e− 1)pe for every
nonidentity normal subgroup N . We can assume, therefore, that P has a unique minimal
normal subgroup, and thus Z(P ) is cyclic and P has a faithful irreducible character χ.
Because P is metabelian, it follows that χ is induced from a linear character of a subgroup
A ⊇ P ′, and since A/ P , we see that all irreducible constituents of χA are linear. But χ is
faithful, and so A is abelian and therefore no irreducible character of P has degree larger
than |P : A| = χ(1). In particular, it follows that |P : A| = b(P ).

Now we argue as we did in the proof of Theorem C. We observe that if L/ P and P/L
is cyclic, then [P ′, P ] = P 3 = L3 = [L′, L] = [P ′, L], and thus P fixes every L-invariant
linear character of P ′. We let U = Irr(P ′), and we view U as a module for the group ring
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ZF , where F = P/A. Observe that F is abelian since we chose A to contain P ′. Also,
since we can assume that P is nonabelian, we have A < P , and so F > 1. If E ⊆ F and
F/E is cyclic, then u·Ê is E-invariant, and hence is F -invariant, and thus all members of
US are F -invariant, where S is as in Lemma 2.3. We apply Lemma 2.3 to the identity
subgroup of F , and we deduce that |F |u is F -invariant for all u ∈ U . In fact, since 1 < F ,
we can use the slightly stronger statement in the conclusion of Lemma 2.3 to conclude that
(|F |/p)U consists of F -invariant elements.

Write m = |F |/p and recall that |F | = pe so that m = pe−1. From the result of the
previous paragraph, we see that if λ ∈ Irr(P ′) is arbitrary, then λm is P -invariant, and
thus λm(x) = λm(xg) for x ∈ P ′ and g ∈ P . Thus 1 = λm([x, g]) = λ([x, g]m), and since
λ was arbitrary, it follows that [x, g]m = 1, and thus P 3 = [P ′, P ] has exponent dividing
m = pe−1.

Since A is in the kernel of the action of P on P 3 and |P/A| = pe, it follows by
Corollary 2.5 that [P 3, P, P, . . . , P ] = 1, where the number of commutations by P is
(e − 1)|P : A| = (e − 1)pe. Thus Pn = 1, where n = 3 + (e − 1)pe, and it follows
that c(P ) ≤ 2 + (e− 1)pe, as required.

3. Theorem A.
The following three results give information about the subgroups of an arbitrary finite

group G in terms of the parameter b(G). The first two of these are essentially Lemma 12.10
and Problem 12.12(a) of [2], but since they are crucial ingredients of our proof of Theo-
rem A, we present them here, along with their short proofs.

(3.1) LEMMA. Let A ⊆ G, where A is abelian and b(G) = b. Then the number of
orbits in the conjugation action of A on G is at least |G|/b.

Proof. By the basic orbit counting formula (often attributed to Burnside), the number
of orbits is

1
|A|

∑
a∈A

|CG(a)| = 1
|A|

∑
a∈A

∑
χ∈Irr(G)

|χ(a)|2

=
∑

χ∈Irr(G)

[χA, χA]

≥
∑

χ∈Irr(G)

χ(1) ,

where the inequality holds because A is abelian, and so χA is a sum of χ(1) linear characters.
Now |G| =

∑
χ(1)2 ≤ b

∑
χ(1), and thus

∑
χ(1) ≥ |G|/b, where all of these sums

run over χ ∈ Irr(G). The result now follows.

(3.2) LEMMA. Let Z ⊆ Z(H), where H ⊆ G and b(G) = b. If |G : H| > b, then there
exists g ∈ G−H such that |Z : CZ(g)| ≤ b2.

Proof. Let Z act on G by conjugation and observe that |Z : CZ(g)| is the size of the
orbit containing the element g. We can assume, therefore, that every Z-orbit containing
an element of G −H has size exceeding b2, and we work to obtain a contradiction. Note

8



that since H < G, there actually are orbits of size exceeding b2, and hence G is nonabelian
and b > 1.

The elements of H all lie in orbits of size 1 under the conjugation action of Z on
G, and so these elements account for |H| orbits of this action. By Lemma 3.1, the total
number of orbits is at least |G|/b, and so the |G| − |H| elements outside of H are divided
into at least |G|/b − |H| orbits. Since we are assuming that each of these orbits has size
exceeding b2, we obtain the inequality (g/b− h)b2 < g− h, where we have written g = |G|
and h = |H|. Thus bg− b2h < g− h, or equivalently, g(b− 1) < h(b2 − 1). Since b− 1 > 0,
we deduce that g < h(b + 1), and thus |G : H| = g/h < b + 1. But |G : H| is an integer,
and so we have |G : H| ≤ b, and this is contrary to hypothesis.

(3.3) THEOREM. Let b(G) = b. Then there exists N / G such that |G : N | ≤ b and
|N : Z(N)| is bounded by some function of b.

Proof. Suppose N / G and |G : N | > b, and write Z = Z(N). We show that there exists
a normal subgroup M > N such that |Z : Z∩Z(M)| is bounded above by some function of
b and |G : N |. To see this, observe that by Lemma 3.2, there exists an element g ∈ G−N
such that |Z : CZ(g)| ≤ b2. Write A = CZ(g) and note that A / N and Z / G, and thus
the G-conjugacy class of A consists of at most |G : N | subgroups of Z, each of index at
most b2 in Z. Writing B = coreG(A), we deduce that |Z : B| ≤ (b2)|G:N |, and we see that
B / G and the index |Z : B| is bounded in terms of b and |G : N |. We set M = CG(B),
and we observe that M / G and M ⊇ N . Finally, we observe that this containment is
strict since g ∈ M and g 6∈ N .

Now as we observed earlier, there exists a subgroup A / G, where A is abelian and
|G : A| is bounded in terms of b. We start to define a strictly increasing series of subgroups
Ni / G by setting N0 = A. Now if we are given Ni and it happens that |G : Ni| > b, we
apply the result of the previous paragraph to the subgroup Ni. We construct Ni+1 / G
with Ni+1 > Ni, and where there is a central subgroup of Ni+1 whose index in the center
of Ni is bounded above in terms of b and |G : Ni|. In fact, |G : Ni| ≤ |G : A|, which is
bounded in terms of b alone, and also |Ni+1 : Ni| ≤ |G : A| is bounded in terms of b. It
follows that there is some integer m depending only on b and such that

|Ni+1 : Z(Ni+1)| ≤ m|Ni : Z(Ni)|

whenever Ni+1 is defined. Since N0 = A is abelian, we conclude that |Ni : Z(Ni)| ≤ mi

for all subscripts i for which Ni is defined.
Our strictly increasing chain of normal subgroups eventually terminates when we reach

a subgroup N = Nk with |G : N | ≤ b. Since |N : Z(N)| ≤ mk, where m is bounded in
terms of b, we see that to complete the proof, it suffices to show that k is also bounded
in terms of b. But this is clear since A = N0 < N1 < · · · < Nk ⊆ G, and we see that
k ≤ log2(|G : A|). Thus k is indeed bounded in terms of b since we selected A such that
|G : A| is bounded.

Finally, we are ready to prove Theorem A.
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Proof of Theorem A. We are given a p-group P whose irreducible character degrees
other than 1 all lie in the set {pa, pa+1, . . . , p2a}, where a > 1. We want to show that there
is an upper bound for the nilpotence class c(P ) in terms of p and a. Since p 6∈ cd(P ), we
know by Theorem C that c(P ) is bounded in terms of b = b(P ) and the class c(P ′) of the
derived subgroup. Since b ≤ p2a, we see that it suffices to bound c(P ′) in terms of b.

By Theorem 3.3, choose a subgroup N / P such that |P : N | ≤ b and |N : Z(N)|
is bounded in terms of b. If P/N is nonabelian, it would have a nonlinear irreducible
character of some degree f . Then f ∈ cd(P ), and since f > 1, we see that f ≥ pa. Also,
f2 < |P/N | ≤ b, and we have p2a < b, which is not the case. This shows that P/N is
abelian, and thus P ′ ⊆ N and c(P ′) ≤ c(N). But |N : Z(N)| is bounded in terms of b,
and since it is clear that c(N) ≤ |N : Z(N)|, the proof is complete.

4. Theorem B.
In this section, after a few preliminary results, we prove Theorem B. In the following,

when we refer to the ‘order’ of a linear character of some group, we mean, of course, its
order as an element of the group of linear characters. Also, we shall use the notation of
[4]: If N / G, then Irr(G|N) denotes the set {χ ∈ Irr(G) | N 6⊆ ker(χ)} and cd(G|N) is
defined to be the set of degrees of the members of Irr(G|N). The one result from [4] that
we shall need is Corollary 3.2, which asserts that if |cd(G|N)| = 1, then N is abelian.

(4.1) LEMMA. Let A/ P where P is a p-group and A is abelian, and suppose cd(P |A) =
{m}. If λ is a linear character of A of order exceeding p and T is its stabilizer in P , then
all of the following hold.

(a) |P : T | = m.

(b) T/A is abelian.

(c) NP (T )/T has no elementary abelian subgroup of order p2.

Proof. Let χ ∈ Irr(P |λ). Then χ ∈ Irr(P |A) since λ is not principal, and thus χ(1) = m.
Since P/A is nilpotent, there exists a subgroup U with A ⊆ U ⊆ P and a character µ of
U such that µA = λ and µP = χ. (This follows from Theorem 6.22 of [2], for example.)
Since µA = λ, we see that µ is linear, and thus |P : U | = χ(1) = m. Also, λ is invariant in
U , and hence U ⊆ T . We need to prove equality here.

Suppose that U < T and let U / V ⊆ T with |V/U | = p. Let ν be the product of the p
(not necessarily distinct) conjugates of µ under the action of V/U . Then ν is invariant in
V and since U < V , it follows that ν cannot induce irreducibly to V . We conclude that νP

is reducible, and so the degrees of its irreducible constituents are all less than |P : U | = m,
and hence they do not lie in Irr(P |A). It follows that A ⊆ ker(ν), and so νA = 1A. But
ν is a product of p linear characters conjugate in V to µ, and thus νA is a product of p
conjugates of µA = λ in V . Since V is contained in the stabilizer of λ, however, we see
that 1A = νA = λp, and this is a contradiction since we are assuming that the order of λ
exceeds p. This proves that T = U , and so |P : T | = m, proving (a).

Now if β ∈ Irr(T/A), then βµ is an irreducible character of T that lies over λ, and
thus (βµ)P is irreducible since T is the stabilizer of λ in P . Therefore (βµ)P ∈ Irr(P |A),
and so this character has degree m = |P : T |. It follows that β(1) = 1, and since β was
arbitrary, we conclude that T/A is abelian, proving (b).

10



Now we use reasoning similar to that in the proof of (a) to derive a contradiction if
there exists a subgroup V ⊆ P such that T / V and V/T is elementary abelian of order p2.
Suppose X/T is any nonidentity subgroup of V/T and write τ (X) to denote the product of
all of the |X/T | (not necessarily distinct) conjugates of µ under the action of X/T . Then
τ (X) is invariant in X > T , and thus it cannot induce irreducibly to P . The irreducible
constituents of (τ (X))P thus have degree less than m, and so they do not lie in Irr(P |A).
We deduce that A ⊆ ker(τ (X)) for every nonidentity subgroup X/T of V/T .

Let σ be the product of the p+1 linear characters τ (X), as X/T runs over the subgroups
of order p in V/T . Then A ⊆ ker(σ) and we see that σ = µpτ (V ). Since also A ⊆ ker(τ (V )),
it follows that A ⊆ ker(µp), and thus 1A = (µp)A = λp. This is the desired contradiction
since λ has order exceeding p, and this proves (c).

(4.2) LEMMA. Let G be arbitrary and act on an abelian p-group V of exponent at
least p4. Assume that all G-orbits in V consisting of elements of order exceeding p have
the same size n. Then |G : CG(V )| = n.

Proof. Build a graph on the set of elements of V of order exceeding p by linking x and y
if either x is a power of y or y is a power of x. If x and y are linked, then one of CG(x) and
CG(y) contains the other, but since these subgroups both have index n in G, we deduce
that CG(x) = CG(y). It follows that all of the elements in each connected component of
our graph have the same stabilizer in G.

Now fix an element a ∈ V of order p4. Let H = CG(a), and note that |G : H| = n.
We will complete the proof by showing that H = CG(V ). We show first that H ⊆ CG(b)
for every element b ∈ V of order p2. To see this, note that since V is abelian, we have
(ab)p2

= ap2
. This is an element of order p2 joined to both a and ab in the graph, and so

a and ab lie in the same connected component and have the same stabilizer H in G. Thus
a, ab ∈ CV (H), and it follows that b ∈ CV (H) and H ⊆ CG(b), as claimed.

Since every connected component of our graph contains an element of order p2 and all
the elements in each component have the same stabilizer in G, it follows that H stabilizes
every element of V of order exceeding p. We conclude that V = Ω1(V ) ∪ CV (H). Now
Ω1(V ) < V since V is abelian of exponent exceeding p. Since V cannot be a union of two
proper subgroups, we deduce that CV (H) = V , and so H ⊆ CG(V ) ⊆ CG(a) = H. Thus
H = CG(V ) and the proof is complete.

Proof of Theorem B. We are given a class-bounding set S and a p-group P such that
cd(P ) = S ∪ {pb}. Assuming that pb exceeds the square of the largest member of S and
that p 6∈ cd(P ), we need to show that c(P ) is bounded in terms of b(P ) = pb.

Let Ξ be the sum of all irreducible characters of P with degrees in the set S and
write K = ker(Ξ). We proceed to show that cd(P/K) = S and that cd(P |K) = {pb}.
(And in thus, in particular, K is abelian by Corollary 3.2 of [4].) First, observe that K is
contained in the kernels of all irreducible characters of P with degrees different from pb,
and thus cd(P |K) ⊆ {pb}. Also, since every member of S is the degree of some irreducible
constituent of Ξ, which is a character of P/K, we see that S ⊆ cd(P/K).

If α and β are any two irreducible characters of P with degrees in S, we see that
α(1)β(1) < pb, and thus the irreducible constituents of αβ must also have degrees in S.
It follows that all irreducible constituents of all powers of Ξ have degrees in S. But Ξ
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is a faithful character of the group P/K, and so every irreducible character of P/K is a
constituent of some power of Ξ. (See Theorem 4.3 of [2].) It follows that the degree of
every irreducible character of P/K lies in S, and since we already knew that S ⊆ cd(P/K),
we must have equality here, as claimed. Also, P has some irreducible character χ of degree
pb and we now know that K 6⊆ ker(χ). Thus χ ∈ Irr(P |K), and since we already knew
that cd(P |K) ⊆ {pb}, we must have equality here too.

Suppose first that the exponent of K is at least p4. By Lemma 4.1(a), we see that
the stabilizer in P of every linear character of K of order exceeding p has index exactly pb

in P . We can therefore apply Lemma 4.2 to the action of P on the abelian group Irr(K),
which also has exponent at least p4. We deduce that the kernel of this action has index pb

in P . But an element of P that acts trivially on Irr(K) must also act trivially on K, and
so we see that if we write C = CP (K), we have |P : C| = pb and C is the full stabilizer
in P of every linear character of K of order exceeding p. By Lemma 4.1(b), we know
that C/K is abelian, and since K ⊆ Z(C), we see that the nilpotence class of C is at
most 2. By Lemma 4.1(c), we also know that P/C has no elementary abelian subgroup of
order p2, and it follows that P/C is either cyclic or generalized quaternion. But the latter
alternative is impossible since P has no irreducible character of prime degree, and thus
P/C is cyclic and P ′ ⊆ C. But then c(P ′) ≤ 2, and it follows by Theorem C that c(P ) is
bounded in terms of b(P ), as desired.

We can now assume that the exponent of K is less than p4. Since cd(P/K) = S and S
is class bounding, we know that the nilpotence class of P/K is bounded in terms of S. We
also know that P has an abelian normal subgroup A of index bounded in terms of b(P ),
and thus the nilpotence class of P/A is bounded in terms of b(P ). It follows that there
exists an integer N depending only on b(P ) such that PN ⊆ A ∩K. Since A is abelian, it
acts trivially on PN , which has exponent at most p4 since it is contained in K. It follows
from Corollary 2.5 that 1 = [PN , P, P, . . . , P ], where there are 4|P : A| commutations by
P . Since both N and |P : A| are bounded in terms of b(P ), this yields the desired bound
on c(P ).

5. Theorem D.
In this section we prove Theorem D, which asserts that if S is a set of powers of p

containing 1 and |S| = 3, then S is class bounding if and only if p 6∈ S. One direction of
this is an immediate corollary of Theorems A and B.

(5.1) COROLLARY. Suppose that P is a p-group and that cd(P ) = {1, pa, pb}, where
1 < a < b. Then c(P ) is bounded in terms of b.

Proof. If b ≤ 2a, the result follows from Theorem A and if b > 2a, it follows from
Theorem B.

The following result completes the proof of Theorem D.

(5.2) THEOREM. Given integers b > 1 and N and a prime p, there exists a p-group P
such that c(P ) > N and cd(P ) = {1, p, pb}.
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Proof. Since we know that the set {1, p} is not class bounding, we can choose a p-group
D of class exceeding N and such that cd(D) = {1, p}. In fact, the construction of such
groups in [5] shows that we can assume that D has an abelian subgroup A of index p. Let
U = D×V , where V is elementary abelian of order p2b−1, and note that A/ U and U/A is
elementary abelian of order p2b. Also, we let E be an extraspecial p-group of order p2b+1,
and we write Z = Z(E) so that E/Z is elementary abelian of order p2b, and in particular,
E/Z ∼= U/A.

Working in the direct product U ×E, we can construct a subgroup P having normal
subgroups K and L such that K∩L = 1, where P/K ∼= U and P/L ∼= E, and where under
these isomorphisms, KL/K ⊆ P/K corresponds to the subgroup A of U and KL/L ⊆ P/L
corresponds to the subgroup Z of E.

Let T be the unique subgroup of P (containing K) such that T/K corresponds to the
subgroup D of U under the given isomorphism between P/K and U and note that since
KL/K corresponds to A ⊆ D, we have KL ⊆ T . Also, let S be the unique subgroup of
P containing K such that S/K corresponds to the subgroup V of U . Since U = D × V ,
we see that both S and T are normal in P , that ST = P and that S ∩ T = K. Observe
also that S ∩ L = S ∩ (T ∩ L) = K ∩ L = 1, and thus SL = S × L is a direct product.
Finally, we note that SL/K = (S/K)(KL/K) corresponds to the subgroup V A of U , and
thus |P : SL| = |U : V A| = p.

Since D ∼= T/K ∼= P/S, it follows that the nilpotence class of P cannot be less than
that of D, and so it suffices to show that cd(P ) = {1, p, pb}. Since cd(P/S) = cd(D) =
{1, p} and cd(P/L) = cd(E) = {1, pb}, all that is required is to show that every irreducible
character of P with degree exceeding p has degree pb. For this purpose, it suffices to show
that every nonlinear irreducible character of the index p subgroup SL ⊆ P has degree pb−1

and that no such character can be invariant in P .
Recall that SL = S×L and that both S and L are normal in P . It follows that every

irreducible character θ of SL has the form θ = α × β, where α ∈ Irr(S) and β ∈ Irr(L).
Also, θ is invariant in P if and only if both α and β are invariant in P .

Let θ ∈ Irr(SL) be nonlinear and write θ = α × β, where α ∈ Irr(S) and β ∈ Irr(L).
Since L ∼= KL/K ∼= A is abelian, we see that β is linear, and therefore α is nonlinear. But
S ∼= SL/L, which has index p in P/L ∼= E. Since E is an extraspecial p-group of order
p2b+1, it follows that α has degree pb−1, and thus θ has degree pb−1, as required. Also, the
character α × 1L of SL corresponds to a nonlinear character of SL/L, which has index p
in the extraspecial group P/L. It follows that α×1L cannot be invariant in P/L, and thus
α is not invariant in P . We conclude that θ = α× β is not invariant in P . This completes
the proof.

13



REFERENCES

1. I. M. Isaacs, Sets of p-powers as irreducible character degrees, Proc. Amer. Math. Soc.
96 (1986) 551–552.
2. I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.
3. I. M. Isaacs, Characters of groups associated with finite algebras, J. of Algebra 177
(1995) 708–730.
4. I. M. Isaacs and G. Knutson, Irreducible character degrees and normal subgroups, J.
of Algebra 199 (1998) 302–326.
5. I. M. Isaacs and D. S. Passman, A characterization of groups in terms of the degrees
of their characters II, Pacific J. of Math. 24 (1968) 467–510.
6. M. C. Slattery, Character degrees and nilpotence class in p-groups, J. of Austral. Math.
Soc., Ser A, 57 (1994) 76–80.

14


