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Abstract

Let m be a fixed non-negative integer. In this work we try to an-
swer the following question: What can be said about a (finite) group
G if all of its irreducible (complex) characters vanish on at most m
conjugacy classes? The classical result of Burnside about zeros of
characters says that G is abelian if m = 0, so it is reasonable to
expect that the structure of G will somehow reflect the fact that the
irreducible characters vanish on a bounded number of classes. The
same question can also be posed under the weaker hypothesis that
some irreducible character of G has m classes of zeros. For nilpotent
groups we shall prove that the order is bounded by a function of m in
the first case but only the derived length can be bounded in general
under the weaker condition. For solvable groups the situation is not
so well understood although we shall prove that the Fitting height
can be bounded by a double logarithmic function of m, improving a
recent result by G. Qian.

1 Introduction

Let G be a non-abelian finite group. For every χ ∈ Irr(G) we put

m(χ) = |{C ∈ cl(G) | χ(x) = 0 for x ∈ C}|,

where cl(G) denotes the set of conjugacy classes of G.

Let m(G) = maxχ∈Irr(G)m(χ) and n(G) = minχ∈Irr1(G)m(χ), where
Irr1(G) stands for the set of non-linear irreducible characters of G. A
number of papers have been devoted to the study of the zeros of the
characters of a finite group. In particular, in a very recent paper G. Qian
[24] proves that the Fitting height h(G) of a solvable group G is bounded
by a linear function of m(G). In this work our aim is twofold trying to
improve Qian’s result both quantitatively (giving a more realistic bound
for the Fitting height) and qualitatively (substituting the Fitting height
by some other group invariant like the derived length or the order or
replacing m(G) by n(G)). In the first direction, using information from
[20], we obtain the following result.

Theorem A. Let G be a solvable group and write Fi(G) (simply F (G)
for i = 1) to denote the ith term in the Fitting series of G. Then

(i) There exist real numbers C1 and C2 such that

h(G) ≤ C1 log logm(G) + C2

whenever m(G) > 1.
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(ii) |G : F10(G)| is bounded in terms of m(G).

(iii) If |F10(G)| is odd, then |G : F (G)| is bounded in terms of m(G).

Parts (ii) and (iii) of this theorem are actually examples of our second
goal. We believe that it is possible to improve Qian’s result also qual-
itatively, however our results in this direction refer mostly to nilpotent
groups. (Actually, we will just state these results for p-groups and it will
always be clear how to extend them to nilpotent groups.) For instance,
we have the following.

Theorem B. Let P be a finite non-abelian p-group. Then |P | is bounded
by some function that depends only on m(P ).

As dihedral groups of order 2m show, the order of a non-abelian super-
solvable group cannot be bounded in terms of m(G), so this result cannot
be pushed further.

Much effort has been devoted to finding good lower bounds for the
number of conjugacy classes of a finite group in terms of the order of the
group (see [23], for instance). This result shows that for nilpotent groups
it is possible to bound the group order by the number of certain conjugacy
classes. While we do not give explicit bounds, it is possible to obtain them
just by following the proofs.

A classical theorem of W. Burnside asserts that any non-linear charac-
ter of a finite group vanishes at some element. Our next result shows that
for p-groups there always exists more than one conjugacy class of zeros of
any non-linear character.

Theorem C. Let χ be a non-linear irreducible character of a finite p-
group P of degree pn. Then m(χ) is a multiple of p − 1 bigger than or
equal to (p+ n)(p− 1). In particular, m(χ) ≥ p2 − 1.

The last inequality is best possible, as extraspecial p-groups of order p3

show. We will see that there are 2-groups and 3-groups of arbitrarily large
order with faithful characters that vanish on exactly 3 and 8 conjugacy
classes, respectively, so it is not possible to bound the order of a p-group
P in terms of n(P ) for p ≤ 3. Rather surprisingly, the order of a p-group
with an irreducible character vanishing on exactly p2−1 conjugacy classes
is bounded (by a function depending on p only) if p ≥ 5.

Theorem D. Let p ≥ 5 be a prime number and P a p-group. Suppose
that there exists χ ∈ Irr(P ) such that m(χ) = p2−1. Let r be the smallest
prime that does not divide p − 1. Then |P | ≤ p2r−1 and moreover, this
bound can be improved to |P | ≤ pr+1 if χ is faithful.
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We will see that the bound that we have obtained in the faithful case
is best possible for all but finitely many primes. In order to check this we
will need some results on the so-called permutation polynomials. These
results are proved in Section 2.

In view of this result it is tempting to conjecture that for p ≥ 5 the
order of a p-group P is bounded in terms of n(P ). However, we shall show
that there are p-groups with arbitrarily large order and an irreducible
character vanishing on exactly (p− 1)! + p2− p classes. These groups also
have unbounded nilpotence class (they are of maximal class) though they
are metabelian. The next theorem shows that it is not possible to find
p-groups P with arbitrarily large derived length and fixed n(P ).

Theorem E. Let P be a finite p-group. Then the derived length of P is
bounded by some function that depends only on n(P ).

We will show in Section 6 that it is not possible to bound the derived
length of a solvable group G in terms of n(G). We conjecture the following.

Conjecture F. If G is solvable, then dl(G) and |G : F (G)| are bounded
in terms of m(G).

Note that the second statement of this conjecture has been proved for
odd order groups in Theorem A. We will also see that it is not possible
to bound the index |G : F (G)| in terms of n(G). However, we conjecture
the following.

Conjecture G. The Fitting height of a solvable group G is bounded in
terms of n(G).

We shall prove this conjecture when n(G) = 1.

As proved by D. Chillag in [4] and independently by Y. Berkovich and
L. Kazarin in [1], m(G) = 1 if and only if G is a Frobenius group with
complement of order 2 and abelian kernel of odd order. In particular,
Conjecture F holds if m(G) = 1. Groups G with m(G) = 2 were studied
in [2] and it follows from Theorem 1.1 of that paper that Conjecture F
also holds in this case. We have taken the study of these groups further
and, with the help of the detailed information of these groups given in
Theorem 1.1 of [2] we have obtained a complete classification of them.

Theorem H. Let G be a finite group. Then m(G) = 2 if and only if G
is isomorphic to one of the following groups:

(i) the symmetric group S4.

(ii) the alternating group A5.
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(iii) the projective special linear group PSL(2, 7).

(iv) an extension of a group of order 2 by a Frobenius group with com-
plement of order 2 and abelian kernel of odd order.

(v) a Frobenius group with complement of order 3 and abelian kernel.

We have also been able to prove Conjecture F for supersolvable groups.
It might be true that the derived length of a solvable group is bounded by
some function of m(χ) for any faithful irreducible character χ. An easy
subdirect product argument shows that this would imply Conjecture F.

Next, we explain the way our results are distributed in the paper. In
Section 2 we review some results on permutation polynomials that will
be useful in Section 4, where we prove Theorem D. Section 3 is devoted
to the proof of Theorem C. We prove Theorem B in Section 5. Finally,
we present some results on bounding the derived length by the number of
classes of zeros in Section 6 and those on the Fitting height in Section 7.

We thank G. A. Fernández-Alcober, R. Guralnick, M. Isaacs, A. Mann
and M. Zieve for helpful comments. The results of Section 2 have been
proved by Guralnick and Zieve and are included here with their kind per-
mission. Some of this work was done while both of us were visiting the
University of Wisconsin, Madison. We thank the Mathematics Depart-
ment for its hospitality.

2 Permutation polynomials

Let F be the finite field with q elements, where q is a power of a prime p. A
polynomial with coefficients in F is called a permutation polynomial
if it is a bijection from F onto itself. We write md(q) to denote the
minimal degree of a non-linear permutation polynomial over the field with
q elements. Our proof of Theorem D yields that |P | ≤ pmd(p)+1 if χ
is faithful and |P | ≤ p2md(p)−1 in general and that the bound in the
faithful case is best possible. The goal of this section is to obtain a precise
estimation of md(p) that allows us to claim that the bound in Theorem
D is best possible in the faithful case for all but finitely many primes, i.e,
we need to compute the exact value of md(p) for almost all primes.

We remark that if r does not divide p− 1 then the polynomial f(x) =
xr ∈ Fp[x] is a bijection, so it is clear that Theorem D follows from the
bounds mentioned in the previous paragraph. It is a consequence of a
theorem of Dickson, that appears as Theorem 84 of [9] (which actually
goes back to Hermite for fields of prime order) that the degree of a non-
linear permutation polynomial over the field with q elements does not
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divide q − 1, so md(p) is at least the smallest number not dividing p− 1.
In particular, md(p) can be arbitrarily large.

The goal of this section is to prove that md(p) = r, where r is the
smallest prime that does not divide p − 1, for almost all primes. First,
we need a lemma, whose proof seems to have been known for a long time
but for which there doesn’t seem to be a reference. An exceptional
polynomial over Fq is a polynomial f ∈ Fq[x] for which the only factors
of f(x) − f(y) ∈ Fq[x, y] which are irreducible in K[x, y] are the scalar
multiples of x−y, where K is an algebraic closure of Fq. It was proved by
Cohen [6] that every exceptional polynomial is a permutation polynomial,
but we will not need this fact.

Lemma 2.1. If f(x) ∈ Fq[x] is a non-exceptional permutation polynomial
of degree d, then

q + 3− 2d ≤ [2q1/2](d− 2)(d− 3)/2.

In particular, q < d4.

Proof. Since f(x) is non-exceptional, there is a polynomial R(x, y) ∈
Fq[x, y] such that R(x, y) divides f(x)− f(y), R(x, y) is not a multiple of
x− y and R(x, y) is irreducible in K[x, y], where K is an algebraic closure
of Fq. Let D be the degree of R and N the number of pairs (a, b) ∈ (Fq)2

such that R(a, b) = 0. Notice that D ≤ d− 1, so by Corollary 2(b) of [17]
we have that

N ≥ q+1−D−[2q1/2](D−1)(D−2)/2 ≥ q+2−d−[2q1/2](d−2)(d−3)/2.

On the other hand, R(a, b) = 0 can only occur if a = b (because f is a
permutation polynomial), so the number N is the number of roots of the
polynomial R(x, x) ∈ Fq[x]. This polynomial is non-zero (otherwise x− y
would be a divisor of R(x, y)) and its degree is at most d− 1 so N ≤ d− 1
and the result follows.

Theorem 2.2. The minimal degree of a permutation polynomial over the
field with p elements is the smallest prime that does not divide p−1 unless
p ∈ S = {7, 211, 421, 631, 1051, 1471, 2311}.

Proof. If r is the least prime not dividing p− 1, then as we have pointed
out before, md(p) ≤ r. Let’s suppose that this inequality is strict and
show that p ∈ S in this case. It is proved in [10] (see also Chapter 6 of
[18]), that r is the lowest degree of any non-linear exceptional polynomial
over Fp, so it follows that, under our assumption md(p) < r, a permuta-
tion polynomial of minimal degree is not exceptional and, by Lemma 2.1,
md(p) > p1/4. Therefore, any prime less than p1/4 must divide p− 1. For
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p ≥ 174, the number of primes less that p1/4 is at least 4p1/4/ log p (see
Corollary 1 in [25], for instance). Trivial estimates yield that p ≤ 234.
Now, using a computer, it is easy to determine for which of these primes
p, p − 1 is divisible by all the primes that do not exceed p1/4. The list
of primes thus obtained can be further reduced taking into account the
stronger inequality in Lemma 2.1 and the result of Dickson and Hermite.
After these reductions only the primes in S remain.

The polynomial x4+3x is a permutation polynomial over F7, so p = 7 is
a genuine exception to this theorem. It seems likely that for the remaining
primes p in S the minimal degree is also the smallest prime that does not
divide p− 1.

3 Proof of Theorem C

The goal of this section is to prove Theorem C. We introduce first some
notation that will be maintained throughout this paper.

Given a group G and g ∈ G, we write clG(g) to denote the conjugacy
class of g in G. If N is a normal subgroup of G, then the preimage in G
of clG/N (gN) is the union of some conjugacy classes C1, . . . , Cn of G. If
χ ∈ Irr(G/N) vanishes at gN and we view χ as a character χ of G, then we
have that χ vanishes on all the conjugacy classes C1, . . . , Cn. In particular,
m(χ) ≤ m(χ) with an equality if and only if the classes of zeros of χ lift
to unique classes in G. It follows that, in general, m(G/N) ≤ m(G). It
is also clear that if N is a normal subgroup of a group G and x1N and
x2N are not conjugate in G/N , then x1 and x2 are not conjugate in G.
We will use these facts without further explicit mention. If S is a normal
subset of G, we write kG(S) to denote the number of conjugacy classes
of G contained in S. We simply write k(G) for the number of conjugacy
classes of G.

We need the following easy lemma.

Lemma 3.1. Let M be a normal subgroup of a p-group P and H a sub-
group of M with |M : H| = pn. Then

kP (M − ∪g∈PH
g) ≥ n(p− 1).

Proof. Argue by induction on |M |, the case M = 1 being trivial. Take
a minimal normal subgroup N of P inside M and apply the inductive
hypothesis to the group P/N and the subgroups M/N and HN/N . The
result is then clear if N ≤ H. Otherwise N ∩ H = 1 and we obtain
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(n− 1)(p− 1) classes inside M −∪g∈PH
gN . Since N is central, the non-

trivial elements in N provide us with p− 1 extra classes in M −∪g∈PH
g,

so the result follows.

Proof of Theorem C. The fact that m(χ) is a multiple of p − 1 can be
proved by standard methods noting that if the exponent of P is pe then
the Hall p′-subgroup of the group of units of Z/peZ acts fixed point freely
on the set of conjugacy classes of zeros of χ.

Now we want to see that m(χ) ≥ (p + n)(p − 1). Of course we can
suppose from the outset that χ is a faithful character. Let H ≤ P be
a subgroup of index pn such that χ = λP for some linear character λ
of H and M a maximal subgroup containing H. Then χ vanishes on
P − ∪g∈PH

g, so by the previous lemma we have

m(χ) ≥ kP (P −M) + kP (M − ∪g∈PH
g) ≥ kP (P −M) + (n− 1)(p− 1).

If all the centralizers of the elements in P −M have order greater than p2,
then P −M has at least p3− p2 classes and the result is clear. Otherwise,
the centralizer of some element, say g, has order p2 so, by a well-known
result of M. Suzuki (see Satz III.14.23 in [11]), P is a p-group of maximal
class. The case |P | = p3 is obvious (all the non-linear characters have
degree p and vanish on exactly p2−1 classes), so in the sequel we suppose
that |P | ≥ p4. Then the second centre Z2 is abelian and by Problem 6.11
of [13], χ is a relative M -character with respect to Z2. This means that the
subgroup H can be taken to contain Z2. Note that kP (P −M) ≥ p2 − p,
so we only need to produce p− 1 classes of zeros inside ∪g∈PH

g. We shall
do this by proving that χ vanishes on Z2−Z (Z denotes the centre of P ).
Let z ∈ Z2 − Z. Since CP (g) = 〈g〉Z, it is clear that [z, g] 6= 1. On the
other hand the restriction of λ to Z is not the principal character (because
χ = λP is faithful), so ε = λ([z, g]) is a primitive pth root of unity. Finally
we compute χ(z). We have

χ(z) = χ(zg) = χ(z[z, g]) = χ(z)λ([z, g]) = χ(z)ε,

and it follows that χ(z) = 0.

Note that a consequence of the last theorem is that the number of
classes of zeros of any non-linear character χ of a p-group P is at least
p2−1 and the equality can only hold if the p-group has maximal class and
the degree of the character is p. It also follows from the proof that if we
assume in addition that χ is faithful (and |P | ≥ p4), then χ vanishes on
the p2 − p conjugacy classes outside a certain maximal subgroup and on
the p−1 conjugacy classes that are contained in Z2(P )−Z(P ). If χ is not
faithful and its kernel is K then, as a character of P/K, χ also vanishes
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on p2 − 1 classes, which lift to unique classes in P . This simply means
that for any zero x of χ, all the elements in the coset xK are conjugate.
We will make use of these ideas later on. It was pointed out by Berkovich
(see [4]) that the number of zeros for p-groups that are not of maximal
class is at least p3 − p2 (this is also clear from the preceding proof).

4 Characters of p-groups with few classes of zeros

First, we present examples that show that it is possible to have m(χ) =
p2 − 1 for characters of 2-groups and 3-groups of arbitrarily large order.

Take first any 2-group of maximal class P (of order at least 8) and
a faithful irreducible character χ. If C is the maximal cyclic subgroup
of P , then χ can be induced from a linear character λ of C and λ has
order |C| = 2n (otherwise, χ would not be faithful). For x ∈ C we have
that χ(x) = λ(x) + λ(xi) = ε + εi, where ε is a primitive o(x)-th root of
unity and i depends on the group P . In any case it happens that εi is
the opposite of ε if and only if o(x) = 4, so the zeros of χ are exactly the
elements of P −C and the two elements of C of order 4, a set that is the
union of three conjugacy classes.

Now, instead of just constructing the promised family of 3-groups,
we shall show that for any odd prime p there are p-groups (of maximal
class) of arbitrarily large order having an irreducible character with exactly
(p − 1)! + p2 − p classes of zeros (8, for p = 3). This will show that in
general the order of a p-group P (or even the nilpotence class) cannot be
bounded by a function of n(P ). This example will also play a key role in
the proof of Theorem D.

Example 4.1. Let p be an odd prime and suppose P is a p-group with a
maximal subgroup which is homocyclic of rank p−1 and has exponent pe,
sayA = 〈x1, . . . , xp−1〉. Assume also that there exists an element g ∈ P−A
such that xg

i = xi+1 for 1 ≤ i < p− 1 and xg
p−1 = x−1

1 . . . x−1
p−1. We claim

that any irreducible faithful character of P vanishes on exactly (p− 1)! +
p2−p conjugacy classes. Checking this requires some computations which
we now sketch below.

Lemma 4.2. Let ε1, . . . , εp−1 be pnth roots of unity adding up to −1.
Then they are the different p− 1 primitive pth roots of unity.

Proof. Apply to the relation 1 + ε1 + · · · + εp−1 = 0 the automorphisms
in the Galois group of the field extension Q(ε1, . . . , εp−1)/Q. One gets
that for any integer j coprime with p, 1 + εj1 + · · · + εjp−1 = 0. Now the
coefficients of the polynomial l(x) = (x−ε1) . . . (x−εp−1) can be computed
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by using Newton’s formulas (see, for instance, p. 179 of [7]) and it turns
out that l(x) = xp−1 + · · ·+ x+ 1, so the result is clear.

Lemma 4.3. Let p be an odd prime number and define the following
matrix in the indeterminates x1, . . . , xp−1:

∆(x1, . . . , xp−1) =


x2 x3 . . . xp−1 d
x3 x4 . . . d x1
...

...
. . .

...
...

d x1 . . . xp−3 xp−2

 ,

where d = −x1 − · · · − xp−1. The determinant of this matrix defines a
polynomial f(x1, . . . , xp−1) with integer coefficients. Then

f(x1, . . . , xp−1) =

(−1)p(p−1)/2
∏

ζp=1
ζ 6=1

(x1 + (1 + ζ)x2 + · · ·+ (1 + ζ + · · ·+ ζp−2)xp−1). (1)

In particular, if c1, . . . , cp−1 are integers, then

f(c1, . . . , cp−1) ≡ (−1)p(p−1)/2(c1 + 2c2 + · · ·+ (p− 1)cp−1)p−1 (mod p).

Proof. Take any primitive pth root of unity ζ. To calculate the determi-
nant of ∆, note that if we multiply the jth column by ζ+ζ2 + · · ·+ζj and
then sum these columns for j = 1, . . . , p − 1, we obtain a column whose
entries are polynomials which are proportional to x1 + (1 + ζ)x2 + · · · +
(1+ ζ+ · · ·+ ζp−2)xp−1. We conclude that all these linear polynomials for
the various ζ divide f and so, except for a constant, their product is f .
To compute the constant simply evaluate in x1 = 1, x2 = · · · = xp−1 = 0.

The congruence can be obtained by reducing the coefficients on both
sides of (1) modulo a maximal ideal of the ring of integers of Q(ζ) (ζ is
a primitive pth root of unity) containing pZ. The point is that, modulo
this ideal, ζ becomes 1.

Suppose now that χ is a faithful irreducible character of the group
P in the example. Then χ = λP for some linear character λ of A and,
since χ is faithful and (x1x

2
2 . . . x

p−1
p−1)

pe−1
is in the centre of P , we have

that λ((x1x
2
2 . . . x

p−1
p−1)

pe−1
) 6= 1. Now fix once and for all a primitive peth

root of unity ε and take integers c1, . . . , cp−1 such that λ(xi1
1 . . . x

ip−1

p−1 ) =
εc1i1+···+cp−1ip−1 . Note that the preceding remark simply says that c1 +
2c2 + · · ·+ (p− 1)cp−1 6≡ 0 (mod p).
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To simplify, we put C = (c1, . . . , cp−1), X = (i1, . . . , ip−1) and denote
by M the (p− 1)× (p− 1) matrix with 1’s in the second upper diagonal,
−1’s in the last row and zeros elsewhere. Then

χ(xi1
1 . . . x

ip−1

p−1 ) = εXCt
(1 + εX(M−I)Ct

+ · · ·+ εX(Mp−1−I)Ct
).

(Here I is the (p−1)×(p−1) identity matrix and Ct denotes the transpose
matrix of C). Lemma 4.2 implies that xi1

1 . . . x
ip−1

p−1 is a zero of χ if and
only if 

X(M − I)Ct ≡ k1p
e−1 (mod pe)

...
X(Mp−1 − I)Ct ≡ kp−1p

e−1 (mod pe),
(2)

where k1, . . . , kp−1 is a permutation of the numbers 1, . . . , p − 1. We can
write this system more compactly as

XR−XCt(1, . . . , 1) ≡ (k1, . . . , kp−1)pe−1 (mod pe), (3)

where R = ∆(c1, . . . , cp−1). Note that C = −(1, . . . , 1)R, so (3) simplifies
to

XR+XRJ ≡ (k1, . . . , kp−1)pe−1 (mod pe), (4)

where J is the (p − 1) × (p − 1) matrix all of whose entries are 1. By
the last lemma, the determinant of R is coprime with p (remember that
c1 + 2c2 + · · · + (p − 1)cp−1 6≡ 0 (mod p)), so the number of solutions of
(4) is the same as for

Y (I + J) ≡ (k1, . . . , kp−1)pe−1 (mod pe). (5)

The solutions of this system are y1 ≡ 0 (mod pe−1), yi ≡ y1+(ki−k1)pe−1

(mod pe) for 2 ≤ i ≤ p− 1 (we notice that at some point it is necessary to
make use of the fact that k1 + · · ·+ kp−1 ≡ 1+ · · ·+(p− 1) ≡ 0 (mod p)).
We conclude that the number of solutions of any of the systems (2) to (5)
is p, which means that the number of zeros of χ in A is p(p − 1)!. So χ
vanishes on (p − 1)! classes inside A and also on the p2 − p classes that
make up P −A. We find that the total number of classes of zeros of χ is
(p− 1)! + p2 − p.

We work now toward a proof of Theorem D where we show that the
behaviour of the primes 2 and 3 is exceptional in the sense that a p-group
with an irreducible character vanishing on exactly p2−1 conjugacy classes
has bounded order for p ≥ 5. In the proof of the next lemma we make
use of the fact that the exponent of the derived subgroup of a p-group of
maximal class and order at most pp+1 is p (see [3]). We have made the
rest of the proof self-contained although it could be simplified by using
some additional results from the theory of p-groups of maximal class.
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Lemma 4.4. Let M be an abelian p-group of order at most pp with a
subgroup M0 such that M/M0 is cyclic. Suppose that M has an automor-
phism α of order p which fixes exactly p elements in M , none of which,
except for the identity, lies in M0. Then there exist elements x1, . . . , xr in
M such that M is the direct product of the subgroups 〈xi〉 and one of the
following happens:

(i) M is elementary abelian, M0 = 〈x1, . . . , xr−1〉 and xα
i = xixi+1 for

1 ≤ i ≤ r (put xr+1 = 1).

(ii) All the elements xi have order p, except for x1, which has order p2,
M0 = 〈x2, . . . , xr〉, xα

i = xixi+1 for 1 ≤ i ≤ r − 1 and xα
r = xrx

lp
1

for some (l, p) = 1.

Proof. The semidirect product P = 〈α〉 n M is a p-group of maximal
class of order at most pp+1, so the exponent of P ′ is p and, since P ′ ≤
M , P ′ is elementary abelian. We have P ′ ≤ Ω1(M) ≤ M ≤ P , where
Ω1(M) = {x ∈ M | xp = 1}. Since |P : M | = p and |P : P ′| = p2, either
P ′ = Ω1(M) or else, Ω1(M) = M . We deal first with the latter case,
that is, when M is elementary abelian. Then M = M0 × Z(P ), whence
P ′ = [M,α] = [M0, α]. Of course we can assume that |M | = pr > p, so
that P ′ 6= 1 and Z(P ) ≤ P ′ = [M0, α]. Fix a generator xr of Z(P ) and
take xr−1 ∈ M0 such that xr = [xr−1, α]. The subgroup generated by
xr−1 and xr is normal in P so, unless its order is greater than pr−1, it is
contained in P ′ and we can pick xr−2 ∈ M0 such that xr−2 = [xr−1, α].
Arguing this way we can find elements x1, . . . , xr such that xα

i = xixi+1

(xr+1 = 1, as usual). Now we only need to prove that M is generated
by the xi, but this is clear because otherwise there would exist a largest
1 ≤ i < r such that xi ∈ 〈xi+1, . . . , xr〉 and then

xi+1 = [xi, α] ∈ [〈xi+1, . . . , xr〉, α] = 〈xi+2, . . . , xr〉,

against the choice of i.

We deal finally with the second case P ′ = Ω1(M). Then M is not
elementary abelian but does have a maximal subgroup which is elementary
abelian, namely P ′, so M is the direct product of a cyclic subgroup of
order p2 and subgroups of order p. It follows that Mp has order p and
Mp = Z(P ). We apply the previous case with Ω1(M) and Ω1(M) ∩
M0 playing the role of M and M0, respectively (note that M0 6= Ω1(M)
because Z(P ) is contained in Ω1(M) but not in M0). We conclude that
there exists a minimal set of generators of Ω1(M), x2, . . . , xr, ω such that
Ω1(M) ∩M0 = 〈x2, . . . , xr〉 and xα

i = xixi+1 for 2 ≤ i ≤ r − 1, xα
r = xrω

and ωα = ω. Since x2 ∈ Ω1(M) = P ′ = [M,α], there exists x1 ∈ M such
that xα

1 = x1x2 and x1 6∈ Ω1(M) (otherwise, x2 = [x1, α] ∈ 〈x3, . . . , xr, ω〉,
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which is impossible). Thus the order of x1 is p2 and xp
1 ∈ Z(P ) = 〈ω〉

(because xp
1 is fixed by α), whence ω = xlp

1 with (l, p) = 1.

We are now ready to prove the faithful case in Theorem D.

Proof of Theorem D, faithful case. We know that P is a p-group of maxi-
mal class, that the degree of χ is p and that χ = λP for λ a linear character
of a maximal subgroup M , which is abelian (M ′ is contained in the kernel
of χ and so is trivial). We split the proof in two cases. First we suppose
that |P | ≥ pp+1. As is usual when dealing with p-groups of maximal class,
we shall denote by Pi, i ≥ 2, the ith term of the lower central series.
Then P2/Pp+1 has order pp−1 and exponent p (by [3]) and, being inside
M/Pp+1, is abelian. We conclude that the rank of M is at least p − 1.
Now we take an elementary abelian subgroup A ≤ M of rank p − 1 and
normal in P and set L = 〈g〉A, where g is an element outside M . Since
L is not abelian, χ restricts irreducibly to it, so it follows from Example
4.1 (the particular case when A is elementary abelian) that χL vanishes
on (p − 1)! classes in A (at this point, the distinction between L-classes
and P -classes is immaterial). Taking into account the classes in P −M ,
we conclude that χ vanishes on at least (p− 1)! + p2 − p classes, which is
impossible because this number is greater than p2 − 1 for p ≥ 5.

We consider now the case |P | ≤ pp. We apply the previous lemma to
the group M , the subgroup M0 = Kerλ and the automorphism α induced
by conjugation by an element g ∈ P −M . According to the lemma two
cases can occur. In the first one M is elementary abelian and there exists a
minimal set of generators x1, . . . , xr such that xg

i = xixi+1 (xr+1 = 1) and
M0 = Kerλ = 〈x1, . . . , xr−1〉, that is λ(xi) = 1 for 1 ≤ i < r and λ(xr) =
ε, a primitive pth root of unity. Since χ only vanishes on p2 − 1 classes,
the only zeros in M are the elements in Z2(P )−Z(P ) = 〈xr−1, xr〉− 〈xr〉
(we can suppose of course that |P | ≥ p4).

Routine computations show that

λg−j
(xi1

1 . . . x
ir
r ) = εir+ir−1(j

1)+ir−2(j
2)+···+i1( j

r−1)

(we adhere to the usual convention of setting
(

j
k

)
= 0 if k > j).

For i1, . . . , ir fixed elements in Fp, we define the polynomial ϕ(x) =
i1

(
x

r−1

)
+ · · · + ir−1

(
x
1

)
+ ir, where

(
x
i

)
, 1 ≤ i < p, is the polynomial

x(x− 1) . . . (x− i+ 1)/i! ∈ Fp[x]. We note that

χ(xi1
1 . . . x

ir
r ) = εϕ(0) + εϕ(1) + · · ·+ εϕ(p−1),

so xi1
1 . . . x

ir
r is a zero of χ if and only if ϕ is a permutation polynomial

on Fp (by Lemma 4.2). It is clear that the map assigning to each element
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xi1
1 . . . x

ir
r the corresponding polynomial ϕ is a bijection between M and

the set of polynomials of degree at most r − 1. Under this map linear
polynomials correspond to the elements in the difference 〈xr−1, xr〉−〈xr〉,
that is, to the zeros of χ in M . We conclude that, apart from linear
polynomials, permutation polynomials must have degree at least r, so
r ≤ md(p) and |P | = pr+1 ≤ pmd(p)+1.

We consider now the second possibility in Lemma 4.4 and maintain
the notation there. This time λ(xi1

1 . . . x
ir
r ) = εi1 , where ε is a primitive

p2th root of unity and

λg−j
(xi1

1 . . . x
ir
r ) = εi1+pl(ir(j

1)+ir−1(j
2)+···+i1(j

r)),

so xi1
1 . . . x

ir
r is a zero of χ if and only if the polynomial ψ(x) = i1

(
x
r

)
+

ir−1

(
x

r−1

)
+ · · ·+ ir

(
x
1

)
is a permutation polynomial. Since χ has no more

zeros in M than those in 〈xr, ω〉 − 〈ω〉, we conclude that non-linear per-
mutation polynomials must have degree at least r + 1, so r ≤ md(p) − 1
and |P | = pr+2 ≤ pmd(p)+1.

It is clear from the above proof that the bound obtained is best possi-
ble. Actually, with some routine extra work one could classify the p-groups
with a faithful character vanishing exactly on p2 − 1 conjugacy classes.

To prove the general bound in Theorem D we need to recall some
results from the theory of p-groups of maximal class. If P is such a p-
group and |P | = pn ≥ p4, we define the maximal subgroup P1 as the
centralizer in P of P2/P4. Then P is called exceptional if there exist
i, j ≥ 1 with i + j ≤ n − 1 and [Pi, Pj ] = Pi+j . Otherwise P is called
non-exceptional, i. e., when [Pi, Pj ] ≤ Pi+j+1 for all i, j ≥ 1. In the
former case, P has exactly (p−1)2 conjugacy classes of size pn−2 whereas,
in the latter, the number of such classes is p2 − p (see [3]).

Lemma 4.5. Let P be a non-exceptional p-group of maximal class of order
pn ≥ p4 and x ∈ Pj − Pj+1 for some 1 ≤ j ≤ n− 2. Then the elements in
the coset xPj+2 are all conjugate if and only if CP (x) = Pn−j−1. Moreover,
in that case n ≤ 2j + 1.

Proof. Let us denote by C the conjugacy class of x. We begin noting that
C ⊆ xPj+1 but C 6⊆ xPj+2 (because x is central modulo Pj+1 but not
modulo Pj+2). The cosets xPj+1 and xPj+2 have sizes pn−j−1 and pn−j−2,
respectively and the size of C is also a power of p. Then it is clear that
the inclusion xPj+2 ⊆ C amounts to the equality xPj+1 = C. Since one
of the inclusions here is always true, we conclude that this equality holds
if and only if |C| = |Pj+1| or, in terms of centralizers, |CP (x)| = pj+1.
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On the other hand P is non-exceptional so [x, Pn−j−1] ≤ [Pj , Pn−j−1] ≤
Pn = 1, that is Pn−j−1 ≤ CP (x) and |Pn−j−1| = pj+1, so the first part
of the lemma follows directly. In particular, under the hypothesis of the
lemma, x ∈ CP (x) = Pn−j−1. But x ∈ Pj − Pj+1, so n − j − 1 ≤ j, that
is n ≤ 2j + 1.

Proof of Theorem D, general case. Set K = Kerχ, which can be sup-
posed to be non-trivial so that |P | = pn ≥ p4. By the faithful case of
this theorem we know that ps = |P/K| ≤ pmd(p)+1. The character χ van-
ishes outside a maximal subgroup M of P and also on at least p−1 classes
inside M . But the number of classes in P −M is at least p2 − p, so no
more classes can exist here and, in addition, the size of all of them must be
pn−2. As indicated before this can only happen if P is a non-exceptional
p-group of maximal class. Viewed as a character of P/K, χ also vanishes
on p2−1 classes so each of them must lift to a single conjugacy class of P ,
which simply means that all the elements in the coset xK are conjugate
if x is a zero of χ. Now we take x ∈ Ps−2 − Ps−1, which modulo K is in
Z2(P/K) − Z(P/K) and so is a zero of χ. Then by the previous lemma
we conclude that |P | ≤ p2s−3 and therefore, |P | ≤ p2md(p)−1 because
s ≤ md(p) + 1.

In the next example we construct p-groups for p ≥ 5 which possess
non-faithful irreducible characters vanishing on p2 − 1 conjugacy classes.
However, they do not prove that the general bound in Theorem D is best
possible.

Example 4.6. Let r be an odd number with r ≤ md(p). We claim that
there exists a p-group P of order pr+2 with an irreducible character χ such
that its kernel has order p and it vanishes on p2−1 classes. We start with
the group H = 〈g〉 n A, the semidirect product between the elementary
abelian groupA = 〈x1, . . . , xr〉 of rank r and the cyclic group 〈g〉 of order p,
where the action is given by xg

i = xixi+1 (xr+1 = 1). Then all we need is a
non-exceptional group of maximal class P of order pr+2 such that P/Pr+1

is isomorphic to H and [Pr−1, P1] = Pr+1 (this is simply a reformulation
of the condition that all the classes in Z2(P/Pr+1) − Z(P/Pr+1) lift to
unique classes in P ). Instead of trying to find such a group it is easier to
construct a Lie algebra over Fp of maximal class L of dimension r+2 such
that [Li,Lj ] ≤ Li+j+1 for all i, j ≥ 1, [Lr−1,L1] = Lr+1 and L/Lr+1 has
a basis e1, . . . , er, f satisfying the relations [ei, ej ] = 0 and [ei, f ] = ei+1

(er+1 = 0). Of course, the ideals Li are defined similarly to the subgroups
Pi but in the context of Lie algebras. Then the p-group P corresponding
to L under the Lazard correspondence satisfies all the conditions required.
Note that Lazard’s correspondence can be used since the nilpotence class
of L should be r + 1 ≤ md(p) + 1 ≤ p− 1.
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To construct our Lie algebra L we consider a vector space with a basis
e1, . . . , er, ω, f and define a Lie product by setting [ei, er−i] = (−1)iω,
[ei, f ] = ei+1 for 1 ≤ i < r and [er, f ] = ω (the rest of the products among
the generators are defined to be zero). To check that this actually defines a
Lie algebra structure, notice first that the relations for e1, . . . , er, ω define
a Lie algebra structure of nilpotence class 2 (the relations are consistent
because r is odd) and f acts on it as a derivation.

Since we have proved that md(p) is the smallest prime that does not
divide p− 1 for almost all p, this example shows for almost all primes we
cannot remove the hypothesis that the character is faithful if we want to
obtain the bound |P | ≤ pmd(p)+1.

Unfortunately, we have been unable to settle the following question
for p ≥ 5.

Question 4.7. What is the smallest integer n = n(p) such that there
are p-groups of arbitrarily large order with an irreducible character with n
conjugacy classes of zeros?

Our results show that p2 − 1 < n(p) ≤ (p− 1)! + p2 − p.

5 Bounding the order of a p-group P in terms of
m(P )

In this section we show that the order of a p-group can be bounded if all
its irreducible characters vanish on at most a fixed number of classes. We
need one lemma. Recall that if P is a p-group, the cobreadth of P is
defined as cb(P ) = minx∈P |CP (x)|.

Lemma 5.1. The cobreadth of a p-group P cannot exceed 2n(P ).

Proof. Write |P | = pn and let χ ∈ Irr(P ) be non-linear. As before, there
exists a (normal) subgroup M of index p in P such that χ is induced from
some character of M . In particular, χ vanishes on the pn − pn−1 elements
of P −M . Since χ vanishes on m(χ) conjugacy classes, we deduce that
the number of conjugacy classes of P −M cannot exceed m(χ). Thus, the
average size of the conjugacy classes of P contained in P −M is at least
(pn − pn−1)/m(χ) and the same thing must happen for the size of one
of these classes. This means that for some element in P −M the order
of the centralizer is at most p

p−1m(χ) ≤ 2m(χ) and the result follows
directly.
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Finally, we show that the order of a non-abelian p-group P can be
bounded in terms of m(P ).

Proof of Theorem B. Let ϕ be an irreducible character of P of maximal
degree among all the irreducible characters. By Theorem 12.26 of [13],
there exists an abelian subgroup B of P of index at most ϕ(1)4. By The-
orem 5.1 of [22], we have that P has a normal abelian subgroup of index
at most ϕ(1)8. By Theorem C the degree of ϕ is bounded by a function
of m(ϕ), so P has an abelian normal subgroup with index bounded by a
function of the number of classes of zeros of an irreducible character of
maximal degree and consequently also by a function of m(P ).

Let A be an abelian normal subgroup of P of maximal order and notice
that, by the preceding discussion, the index of A is bounded by a function
of m(P ). Put K = [A,P ]. Since A is not central, we have that K > 1
and we can take a maximal subgroup L of K such that L E P . Set
Z/L = Z(P/L). Since K > L, we have that A ∩ Z < A. Also, since K/L
has order p, K ≤ A ∩ Z. We write P = P/L and use the bar convention.
Note that A ≤ Z2(P ). Thus

[Ap
, P ] = [A,P ]p = K

p = 1

and we deduce that A/(A ∩ Z) has exponent p.

By Lemma 5.1 there exists x ∈ P such that |CP (x)| is bounded by
some function of m(P ). We can view x as an automorphism of A, and
viewed as such an automorphism its order cannot exceed |P : A|, which
is bounded in terms of m(P ). It follows that the rank of A is bounded by
some function that depends only on m(P ) (by Corollary 2.7 of [16], for
instance). Since A/(A ∩ Z) has exponent p, this means that the order of
A/(A∩Z) is similarly bounded and the same thing happens for the index
|P : A ∩ Z|.

Let N be a normal subgroup of P such that N ≤ A and |N/A∩Z| = p.
Note that |P : N | is bounded in terms of m(P ). Pick x ∈ N − (A ∩ Z)
and put C/L = CP (x). Since x is not central modulo L, we have that
1 6= [x, P ] ≤ K, whence [x, P ] = K has order p.

Since N is not contained in Z, P does not act trivially on N/L and
does not act trivially on Irr(N/L) either. Let λ be an irreducible character
of N/L that is not P -invariant. Since N/K is central in P/K, we deduce
that µ = λK/L 6= 1K/L.

Now, let χ ∈ Irr(P |λ), y ∈ N − (A∩Z) and g ∈ P such that [g, y] 6∈ L.
Then

χ(y) = χ(yg) = χ(y)µ([g, y])

17



and it follows that χ(y) = 0.

Write |N | = pk. Since A is abelian the size of any conjugacy class
contained in N cannot exceed |P : A|. We have then that

pk − pk−1

|P : A|
≤ kP (N − (A ∩ P )) ≤ m(χ) ≤ m(P ),

and we deduce that pk − pk−1 is bounded in terms of m(P ). This implies
that k is bounded in terms of m(P ). Since p and |P : N | are also bounded
in terms of m(P ), the result follows.

6 Bounding the derived length

First, we prove Theorem E. This is an immediate consequence of the
following theorem of A. Shalev.

Theorem 6.1. The derived length of a p-group is bounded in terms of the
cobreadth.

Proof. This is Theorem A’ of [26]. The proof there also gives an explicit
bound.

Proof of Theorem E. This follows from Lemma 5.1 and Shalev’s Theorem.

Our next result shows that it is not possible to extend Theorem E to
solvable groups. It also shows that it is not possible to bound |G : F (G)|
in terms of n(G).

Theorem 6.2. For any integers m and l, there exists a monomial group
G with a Sylow tower and χ ∈ Irr(G) such that dl(G) > m, |G : F (G)| > l
and χ vanishes just on one conjugacy class of G.

Proof. Let n be an integer such that the derived length of the group
U = Un(q) of upper unitriangular matrices of size n over the finite field
with q elements is greater than m (n doesn’t actually depend on q). Let
r ≥ max{l, n} be a prime number and a a generator of the group of
units U(Z/rZ). By Dirichlet’s Theorem, there exists a prime of the form
p = a + kr for some positive integer k. Thus we have U(Z/rZ) = 〈p〉.
Let q = pr−1. Since q ≡ 1 (mod r), F = Fq contains r different rth roots
of unity. We choose n such roots ζ1 = 1, ζ2 = ζ, ζ3, . . . , ζn. Let σ be
the diagonal matrix diag(ζ1, . . . , ζn). Note that the order of σ is r and
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that σ acts fixed point freely on U by conjugation. Of course, we can
view the semidirect product L = 〈σ〉 n U as a subgroup of the group of
invertible upper triangular matrices Tn(q). The Frobenius automorphism
of F induces an automorphism ψ of L of order r − 1. Put G = 〈ψ〉n L.

It is clear that G has a Sylow tower. Now we want to see that G is
an M -group. First, we define certain subgroups of U . For every 1 ≤ i <
j ≤ n, let Hi,j be the subgroup of U formed by the matrices whose non-
diagonal entries in the first j−1 columns and in the last n−i rows of the jth
column are zero, the rest of the entries above the diagonal being arbitrary.
(Note that H1,2 = U .) Conveniently ordered, the subgroups Hi,j form an
increasing sequence of F -algebra groups (see [14] for the definition of an
algebra group) and adding the subgroups 1, L and G we obtain a series
of normal subgroups of G. By Theorem A of [14], the restriction of a
character of some subgroup Hi,j to the preceding one in the normal series
is either irreducible or splits as the sum of q different irreducible characters.
Since G/L is cyclic and L/U has prime order, we can refine our normal
series to a normal series where all the consecutive quotients between U and
G have prime order. In particular, it also holds for these terms that the
restriction of a character to the preceding subgroup is either irreducible
or the sum of different irreducible characters. Now we can apply Lemma
1.2 of [27] to deduce that G is an M -group.

Write C = 〈ψ〉 and S = 〈σ〉, so that G = CSU . Since C acts Frobenius
on S and S acts Frobenius on U , there exists a unique conjugacy class of
elements of order r and all other elements of G are r′-elements. Thus, it
suffices to show that there exists a non-linear character χ ∈ Irr(G) such
that χ(x) 6= 0 for any r′-element x. Actually, we shall find χ as a character
of the group J = G/H2,3. Note that all we need to worry about is that χ
does not vanish on the r′-elements of J , since then this condition will be
automatically satisfied by the r′-elements of G.

We can identify J with CSF , where the action of σ on F is given by
multiplication by ζ2 = ζ. Let H = CF and N = SF . Write F = P ×Q,
where P is the prime subfield of F and let λ = δ × 1Q, where δ is a non-
principal linear character of P . Since S acts Frobenius on F and C fixes
P , we deduce that IJ(λ) = H. Now, λ extends to H and then induces to
an irreducible character χ of J . By Lemma 2.1 of [21], for instance, we
know that χ(x) 6= 0 for all x ∈ F . Also, either by an easy calculation or
by Theorem 13.6 of [13], one can see that χ does not vanish on any of the
elements of H −F . This means that χ does not vanish on any element of
the Hall r′-subgroup H and so it does not vanish on any r′-element at all,
which is what we needed.

Now we show that Conjecture F holds for supersolvable groups. Since
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in a supersolvable group G the quotient G/F (G) is abelian, there is an
irreducible character that is induced from some character of F (G) (by
Proposition 19.17 of [12]). In particular, it vanishes on G − F (G). Now,
it is clear that G − F (G) has at least |G : F (G)| − 1 conjugacy classes
of G and it follows that |G : F (G)| ≤ m(G) + 1. So we just need to
bound the derived length. In order to achieve this, we need the following
result. Given an integer n, ω(n) is the number of prime divisors (counting
multiplicities) of n and for any group G, we define ω(G) = max{ω(χ(1)) |
χ ∈ Irr(G)}.

Theorem 6.3. Let G be a supersolvable group. Then exist constants E1

and E2 such that dl(G) ≤ E1 logω(G) + E2.

Proof. Since G is supersolvable, we have that G′ ≤ F (G). There exists a
prime p and P ∈ Sylp(F (G)) such that dl(P ) = dl(F (G)). Let pn be the
largest degree of the irreducible characters of P . As we have done already
in the proof of Theorem B, P has a normal abelian subgroup A of index
at most p8n. Thus the derived length of P/A is logarithmically bounded
in terms of n (using a well-known theorem of P. Hall). Since n ≤ ω(G)
and dl(G) ≤ dl(P ) + 1, the result follows.

Proposition 6.4. Let G be a supersolvable group. There exist constants
C1 and C2 such that

dl(G) ≤ C1 logm(G) + C2.

Proof. First note that the argument in Lemma 3.1 proves that if G is a
supersolvable group and H ≤ G has index n, then kG(G − ∪g∈GH

g) ≥
ω(n). Now, using the fact that supersolvable groups are M -groups, we
have that m(χ) ≥ ω(χ(1)) for any χ ∈ Irr(G), so m(G) ≥ ω(G) and the
result follows from the previous theorem.

In view of this proof, it would suffice to obtain a lower bound for
kG(G−∪g∈GH

g) in terms of ω(|G : H|) in order to obtain a bound for the
derived length of an M -group G by m(G). However, this is not possible.
One can take the semilinear group G = Γ(q) for any power q of a prime p
and H a Hall p′-subgroup of G. Since G is a Frobenius group there is only
one conjugacy class of non-identity elements disjoint with H. However, it
might be true that such a bound exists if we assume in addition that a
(linear) character of H induces irreducibly to G, but we have been unable
to prove this.

Next we prove Theorem H. Note that a consequence of Theorem H is
that if m(G) = 2 and G is solvable then dl(G) ≤ 3.
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Proof of Theorem H. It is not difficult to check that if G belongs to one of
the families (i)–(v), then m(G) = 2. Conversely, suppose that m(G) = 2.
By Theorem 1.1 of [2], we may assume that there exist A and Z both of
them of order at most 2 such that G/Z = An F , where F is a Frobenius
group with complement of order 3 and nilpotent kernel of class ≤ 2. We
want to see that G is the symmetric group S4 or a Frobenius group with
complement of order 3 and abelian kernel.

First, suppose that the Fitting height of G is greater than 2. Then
Lemma 5 of [24] yields thatG ∼= S4, so we may assume thatG is metanilpo-
tent.

Write F = C nK, with C = 〈x〉 cyclic of order 3 and K nilpotent of
class ≤ 2. Put J = AF = ACK. Note that A acts trivially on C. We
want to prove that A = 1 and K is abelian.

Suppose first that K is not abelian. Let H be a maximal subgroup
of K ′ normal in K and let µ ∈ Irr(K/H) with µ(1) > 1. Write Y/H =
Z(K/H). It is clear that |K : Y | ≥ 4. By Theorem 7.5 of [12], µ vanishes
on K − Y . Since F is a Frobenius group, ϕ = µF ∈ Irr(F ). Assume first
that ϕ extends to an irreducible character χ of J . Then χK = µ+µx+µx2

vanishes on K−∪2
i=0Y

xi
, which is a non-empty set. Since χ also vanishes

on the two conjugacy classes that make up F −K, we deduce that m(χ) >
2, a contradiction.

Thus, we may assume that A > 1 and ϕJ ∈ Irr(J). But now we have
that m(ϕJ) ≥ kJ(J −K) > 2, another contradiction. We deduce that K
is abelian.

Next, we prove that A acts trivially on K. Otherwise, there exists
a linear character µ of K whose inertia group in AK is K. Since CK
is Frobenius, we have that the inertia group of µ in CK is K too. We
conclude that µJ ∈ Irr(J) and vanishes on J − K. Since this normal
subset has more than two conjugacy classes, we have reached another
contradiction. This means that J = A× F . Now, m(J) = 2 implies that
A = 1.

We have that G/Z is a Frobenius group with complement of order 3
and abelian kernel. Take a non-linear irreducible character ψ of G/Z and
gZ an element of any of the two conjugacy classes of zeros of ψ. Then gZ
splits into |Z| conjugacy classes of zeros of ψ when viewed as a character
of G. Hence, we have that Z = 1 and G belongs to the family (v), as
desired.
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7 Bounding the Fitting height

We begin with the proof of Theorem A. We need the following results.

Theorem 7.1. Let G be a solvable group. Then there exists µ ∈ Irr(F10(G))
such that µG ∈ Irr(G). Furthermore, if |G| is odd, then there exists
τ ∈ Irr(F3(G)) such that τG ∈ Irr(G) and if λ ∈ Irr(F (G)) lies under
τ , then λF2(G) ∈ Irr(F2(G)).

Proof. These are Theorems C and D of [20].

If a group G acts on a module V , we write r(G,V ) to denote the
number of orbits of the action of G on V .

Theorem 7.2. Assume that a solvable group G acts faithfully and com-
pletely reducibly on a finite module V . Then dl(G) ≤ D1 log log r(G,V ) +
D2 for some constants D1 and D2.

Proof. If G acts irreducibly on V , then this is Theorem 2.4 of [15]. Thus,
we may assume that V = V1 ⊕ V2 for non-trivial G-modules V1 and V2.
Arguing by induction on |GV |, we deduce that

dl(G) = max{dl(G/CG(V1)),dl(G/CG(V2))} ≤
max{D1 log log r(G/CG(V1), V1) +D2, D1 log log r(G/CG(V2), V2) +D2}
≤ D1 log log r(G,V ) +D2,

as desired.

The following result is Theorem A.

Theorem 7.3. Let G be a solvable group. Then |G : F10(G)| is bounded
in terms of m(G) and there exist real numbers C1 and C2 such that

h(G) ≤ C1 log logm(G) + C2.

Furthermore, if |F10(G)| is odd then |G : F (G)| is bounded in terms of
m(G).

Proof. First, we assume that G is an arbitrary solvable group. Certainly,
we may assume that F10(G) < G. By Theorem 7.1, there exists χ ∈ Irr(G)
such that χ(x) = 0 for all x ∈ G− F10(G). Hence, we have that

m(G) ≥ kG(G− F10(G)) ≥ k(G/F10(G))− 1

and the first assertion follows from [23].

22



Now, we write G = G/F10(G). By Gaschutz’s Theorem (see [11]),
H = G/F (G) ∼= G/F11(G) acts faithfully and completely reducibly on
V = F (G)/Φ(G). It is clear that

k(G) ≥ k(G/Φ(G)) ≥ r(H,V ).

We deduce that m(G) ≥ r(H,V )− 1. Using Theorem 7.2, we have that

h(G) = h(G/F11(G)) + 11 ≤ dl(H) + 11 ≤ D1 log log r(H,V ) +D2 + 11
≤ D1 log log(m(G) + 1) +D2 + 11 ≤ D1 log logm(G) +D′

2.

Finally, we assume that |F10(G)| is odd and we want to bound |G :
F (G)|. By Theorem 7.1, there exists χ1 ∈ Irr(G) such that χ1(x) = 0 for
all x ∈ G− F10(G). Applying Theorem 7.1 to F10(G) and F10(G)/F (G),
we can find characters ϕ2, ϕ3 ∈ Irr(F10(G)) such that ϕ2(x) = 0 for all x ∈
(F10(G)−F3(G))∪(F2(G)−F (G)) and ϕ3(x) = 0 for all x ∈ F3(G)−F2(G).
If we take χ2 ∈ Irr(G|ϕ2) and χ3 ∈ Irr(G|ϕ3), we can conclude that for
all x ∈ G−F (G) at least one of the three characters χ1, χ2 or χ3 vanishes
at x. Now, it suffices to argue as in the first paragraph to complete the
proof of the theorem.

We conclude with the proof of the following special case of Conjecture
G.

Theorem 7.4. Let χ be an irreducible character of a solvable group G
with exactly one conjugacy class of zeros. Then the Fitting height of G
does not exceed 5.

Proof. Let N be the normal subgroup of G generated by the conjugacy
class of zeros of χ. By [28], we know that G/N ′ is a doubly transitive
Frobenius group whose kernel is N/N ′. Also, N/N ′ is an elementary
abelian group and N is a Camina group with respect to N ′. E. M. Zhmud
also proved that the Sylow p-subgroups of N are Camina groups. By [8],
their nilpotence class does not exceed 3. Now, we can use Theorem 3 of
[5] to deduce that the Fitting height of N is at most 2.

We have that G/N acts transitively on the non-trivial elements of
N/N ′ and using Theorem 6.8 of [19], we deduce that the Fitting height of
G/N is at most 3. Thus, h(G) ≤ 5, as desired.
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