FIELD EQUIVALENT FINITE GROUPS

by

Alexander Moretó and Gabriel Navarro Facultat de Matemàtiques Universitat de València Burjassot, València 46100 SPAIN

E-mail: alexander.more to @uv.es, gabriel @uv.es

Research partially supported by the Ministerio de Ciencia y Tecnología, Grants BFM2001-1667-C03-02, BMF-2001-0180. The first author is also supported by the Programa Ramón y Cajal.

1. INTRODUCTION

M. Isaacs has given the following definition: two finite groups X and Y are **field** equivalent if there is a bijection $\chi \mapsto \chi'$ from Irr(X) onto Irr(Y) such that $\mathbb{Q}(\chi) = \mathbb{Q}(\chi')$ for every $\chi \in Irr(X)$, where Irr(X) is the set of complex irreducible characters of X and $\mathbb{Q}(\chi)$ is the field of values of χ . In this paper, we give solution to a problem proposed by him.

THEOREM A. Suppose that G is field equivalent to a cyclic group. Then G is cyclic.

In general, we cannot expect much more than this. For instance, there exists a group G of order 64 with 16 conjugacy classes such that all of its irreducible characters are rational valued. Hence, G is field equivalent to an elementary abelian 2-group and G is not abelian. Even more, there exists another group H of order 32 with 11 conjugacy classes and rational valued characters. In particular, H is field equivalent to the symmetric group of degree 6.

There is an application of Theorem A: if A acts coprimely on a finite group G, then the fields of values of the A-invariant irreducible characters of G determine if the fixed points subgroup $\mathbf{C}_G(A)$ is cyclic. (See Section 4 below.)

2. GROUPS OF ODD ORDER

We notice that a finite group G is field equivalent with a cyclic group C of order n if and only if

$$\operatorname{Irr}(G) = \bigcup_{d|n} \operatorname{Irr}_d(G) \,,$$

where $\operatorname{Irr}_d(G) \cap \operatorname{Irr}_e(G) = \emptyset$ if $d \neq e$, $|\operatorname{Irr}_d(G)| = \varphi(d)$, and if $\psi \in \operatorname{Irr}_d(G)$, then $\mathbb{Q}(\psi) = \mathbb{Q}_d$, the cyclotomic field of *d*-th roots of unity. This easily follows by writing $\operatorname{Irr}_d(C) = \{\lambda \in \operatorname{Irr}(C) \mid o(\lambda) = d\}$, and noticing that if $\lambda \in \operatorname{Irr}_d(C)$, then $\mathbb{Q}(\lambda) = \mathbb{Q}_d$. Since groups of odd order are exactly the groups with exactly one real character, we have that |G| is odd if and only if *n* is odd.

In order to use inductive arguments in groups of odd order, it is convenient to have the following weaker hypothesis.

(2.1) HYPOTHESIS. Suppose that G is a finite group such that

$$\operatorname{Irr}(G) = \bigcup_{d \in A} \operatorname{Irr}_d(G) \,,$$

where A is a set of positive odd integers such that if $\psi \in \operatorname{Irr}_d(G)$, then $\mathbb{Q}(\psi) = \mathbb{Q}_d$ and $|\operatorname{Irr}_d(G)| = \varphi(d)$.

Our aim in this Section is to classify all finite groups satisfying Hypothesis (2.1).

Throughout this paper, we shall use an elementary fact on cyclotomic fields: if $d \leq e$ are positive integers, then $\mathbb{Q}_d \subseteq \mathbb{Q}_e$ if and only if d divides e or e is odd and d = 2f, for some f dividing e. Hence, if e and d are odd, then $\mathbb{Q}_d \subseteq \mathbb{Q}_e$ if and only if d divides e and therefore $\mathbb{Q}_d = \mathbb{Q}_e$ only if d = e. If a group G satisfies (2.1) and $d \in A$, then notice that

G has exactly $\varphi(d)$ characters χ with $\mathbb{Q}(\chi) = \mathbb{Q}_d$ and all of them are Galois conjugate. In particular, if a group *G* satisfies (2.1), then all factor groups of *G* satisfy (2.1). Notice too that groups satisfying (2.1) are of odd order. Finally, if $\chi \in \operatorname{Irr}(G)$ is such that $\mathbb{Q}(\chi) = \mathbb{Q}_f$, where *f* is odd, then $f \in A$.

(2.2) LEMMA. Suppose that G is a nilpotent group satisfying (2.1). Then G is cyclic.

Proof. Since $G/\Phi(G)$ satisfies (2.1), we may assume that the Sylow subgroups of G are elementary abelian. Now let p be a prime divisor of |G| and let $\lambda \in \operatorname{Irr}(G)$ be of order p. Then $\mathbb{Q}(\lambda) = \mathbb{Q}_p$ and G has exactly p-1 irreducible characters with field of values \mathbb{Q}_p . Hence all Sylow subgroups of G are cyclic.

We shall repeatedly use the following fact.

(2.3) LEMMA. Suppose that G has a normal Sylow p-subgroup P and let $\theta \in \operatorname{Irr}(P)$. If T is the stabilizer of θ in G and $\hat{\theta}$ is the canonical extension of θ to T, then $\chi = \hat{\theta}^G \in \operatorname{Irr}(G)$ lies over θ and $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\theta)$.

Proof. By Corollary (8.16) of [3], there exists a unique $\hat{\theta} \in \operatorname{Irr}(T)$ extending θ such that the determinantal order of $\hat{\theta}$ is a power of p. In fact $o(\theta) = o(\hat{\theta})$. (This is called the canonical extension of θ to T.) Now, χ lies over θ and $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\hat{\theta})$. Since θ uniquely determines $\hat{\theta}$, it follows that $\mathbb{Q}(\theta) = \mathbb{Q}(\hat{\theta})$.

(2.4) THEOREM. Suppose that G is a group satisfying (2.1). Suppose that G has an elementary normal p-subgroup V such that G/V has a normal p-complement and a cyclic Sylow p-subgroup. If $\lambda \in Irr(V)$ has order p, then $\{\lambda, \lambda^2, \ldots, \lambda^{p-1}\}$ is a complete set of representatives of G-orbits on $Irr(V) - 1_V$.

Proof. We may write G/V = (K/V)(P/V), where $K/V \triangleleft G/V$ has p'-order, $P \in \operatorname{Syl}_p(G)$ and P/V is cyclic. Suppose that $|P/V| = p^f$. Since P/V is isomorphic to a quotient of G, we have that for $e \leq f$, G has exactly $\varphi(p^e)$ irreducible characters with field of values \mathbb{Q}_{p^e} , all having K in its kernel.

Let $1 \neq \lambda \in \operatorname{Irr}(V)$ and let $T = I_G(\lambda)$ be the stabilizer of λ in G. Now, by Corollary (8.16) of [3], there exists a unique $\hat{\lambda} \in \operatorname{Irr}(T \cap K)$ of order p extending λ . Also, by uniqueness, we have that $\hat{\lambda}$ is T-invariant. In particular, if $L = \ker(\hat{\lambda})$, then $L \triangleleft T$. Also, $|(T \cap K)/L| = p$. Now, $T/T \cap K$ is cyclic, and therefore $\hat{\lambda}$ extends to T. Suppose that the cyclic group $T/T \cap K$ has order p^d . We have that $d \leq f$. If $\beta \in \operatorname{Irr}(T)$ lies over $\hat{\lambda}$, we have that β extends $\hat{\lambda}$ and $\beta^{p^{d+1}} = 1$. We have that $\mathbb{Q}(\beta^G) \subseteq \mathbb{Q}(\beta) \subseteq \mathbb{Q}_{p^{d+1}}$. Since $\mathbb{Q}(\beta^G) = \mathbb{Q}_{p^e}$ for some $e \leq d+1$ and K is not contained in the kernel of β^G , necessarily e > f. Then e = f + 1, d = f, $\mathbb{Q}(\beta^G) = \mathbb{Q}_{p^{f+1}}$ and $\mathbb{Q}(\beta) = \mathbb{Q}_{p^{f+1}}$. In particular, $o(\beta) = p^{f+1}$. Since $L \subseteq \ker(\beta)$, we deduce that T/L is cyclic of order p^{f+1} . Now, by considering the p^f extensions β of $\hat{\lambda}$ to T, we notice that G has p^f different irreducible characters with field of values $\mathbb{Q}_{p^{f+1}}$ lying over λ .

Suppose now that $\lambda^g = \lambda^s$ for some $g \in G$ and 1 < s < p. Then $T^g = I_G(\lambda^s) = T$. Hence, $g \in \mathbf{N}_G(T)$. By the uniqueness of canonical extensions, we easily have that $\hat{\lambda}^g = \hat{\lambda}^s$ and also $\ker(\hat{\lambda}) = \ker(\hat{\lambda}^s) = \ker(\hat{\lambda}^g) = L^g$. Thus g also normalizes L. Write $T/L = \langle yL \rangle$ and notice that $y^{g^{-1}}L = y^n L$ for some $1 \leq n$ coprime with p. Now, let $\beta \in \operatorname{Irr}(T)$ be over $\hat{\lambda}$ and let $\chi = \beta^G \in \operatorname{Irr}(G)$, which we know has field of values $\mathbb{Q}_{p^{f+1}}$. Now, we have that $\beta^g = \beta^n$. Hence, $\hat{\lambda}^g = \hat{\lambda}^n = \hat{\lambda}^s$ and therefore $n \equiv s \mod p$. Now, let σ be the Galois automorphism of $\operatorname{Gal}(\mathbb{Q}_{|G|}/\mathbb{Q})$ fixing p'-roots of unity and sending each p-power order root of unity ξ to ξ^n . Then

$$\chi^{\sigma}=(\beta^{\sigma})^{G}=(\beta^{n})^{G}=(\beta^{g})^{G}=\beta^{G}=\chi\,,$$

and therefore σ fixes $\mathbb{Q}_{p^{f+1}} = \mathbb{Q}(\chi)$. Then σ fixes \mathbb{Q}_p and therefore $n \equiv 1 \mod p$. Thus $s \equiv 1 \mod p$, and this is impossible.

Hence, for each $1 \leq j \leq p-1$, we have at least p^f irreducible characters of G with field of values $\mathbb{Q}_{p^{f+1}}$ lying over λ^j . This gives rise to at least $p^f(p-1) = \varphi(p^{f+1})$ irreducible characters, and we conclude that there are no more. This implies the theorem.

In what follows, we shall use a well-known fact: if V is a faithful irreducible GF(p)Cmodule, where C is cyclic of order m, then $|V| = p^n$, where n is the order of p modulo
m.

(2.5) LEMMA. Suppose that V is a faithful irreducible GF(p)C-module of dimension n, where C is cyclic of order e coprime with p. Suppose that there exists $v \in V$ such that $\{v, 2v, \ldots, (p-1)v\}$ is a complete set of representatives of C-orbits on $V - \{0\}$. Then $|C| = p^n - 1/p - 1$ and (p - 1, e) = 1.

Proof. Our hypotheses easily imply that $\mathbf{C}_C(v) = \mathbf{C}_C(V) = 1$ and therefore $\mathbf{C}_C(w) = 1$ for all $0 \neq w \in V$. Hence, $|C| = p^n - 1/p - 1 = e$. Let d = (p - 1, e) and let D be the subgroup of C of order d. Now, let W be a simple D-submodule of V. Then W is faithful and if $|W| = p^m$, we know that m is the order of p modulo d. Hence m = 1. If $1 \neq x \in D$ and $0 \neq w \in W$, we have that wx = kw for some 1 < k < p. Now, w = jvc for some $c \in C$ and $1 \leq j < p$, and we conclude that vx = kv. This is not possible.

In the proof of the following result, we use a nontrivial theorem of E. Shult, namely, if A acts as automorphisms on an odd p-group P transitively permuting the subgroups of order p of P, then P is abelian ([6]).

(2.6) **THEOREM.** Suppose that G is a group satisfying (2.1) with Fitting length 2. Let N be the smallest normal subgroup of G such that G/N is nilpotent. Then G = NC, where C is cyclic, (|N|, |C|) = 1 and N is nilpotent such that all of its Sylow subgroups are non-cyclic elementary abelian and minimal normal subgroups of G.

Proof. By Lemma (2.2), we have that G/N is cyclic. Also, by hypothesis, 1 < N is nilpotent.

First, we want to see that (|G/N|, |N|) = 1. Let p be a common prime divisor of |N|and |G/N|. If K is the p-complement of N, by working in G/K (which has Fitting length two) we may assume that N is a p-group. Since G/N is abelian, we have that G has a normal Sylow p-subgroup P > N. We may write G = PD, where D is a cyclic p'-group, $[P, D] \subseteq N$ and P/N is cyclic. Since p divides |G/N|, we have that G/N has a linear irreducible character of order p. Hence, all the p - 1 irreducible characters ψ of G with $\mathbb{Q}(\psi) = \mathbb{Q}_p$ contain N in the kernel. Suppose that P is not cyclic. Then $P/\Phi(P)$ is not cyclic and therefore there exists $\lambda \in Irr(P)$ linear of order p with N not contained in its kernel. By Lemma (2.3), there exists $\chi \in \operatorname{Irr}(G)$ lying over λ with $\mathbb{Q}(\chi) \subseteq \mathbb{Q}_p$. Now, $\mathbb{Q}(\chi) = \mathbb{Q}_f$ for some odd integer f, and we deduce that $\mathbb{Q}(\chi) = \mathbb{Q}_p$. This is impossible. Therefore, P is cyclic. Since $P = [P, D] \times \mathbb{C}_P(D)$, we conclude that [P, D] = 1. Hence, G is abelian, and this is a contradiction. We conclude that (|G/N|, |N|) = 1.

We may write G = NC, where C is cyclic and (|N|, |C|) = 1. It remains to show that the Sylow subgroups of N are non-cyclic elementary abelian minimal normal subgroups of G. Let $P \in \text{Syl}_p(N)$ and notice that PC is isomorphic to a factor group of G with Fitting length two. Hence, it is no loss if we assume that N = P. Also, since $G/\mathbb{C}_C(P)$ cannot be nilpotent, we may assume that $\mathbb{C}_C(P) = \mathbb{C}_C(P/\Phi(P)) = 1$.

By Theorem (2.4), if $1 \neq \lambda \in \operatorname{Irr}(P/\Phi(P))$, we know that $\{\lambda, \lambda^2, \ldots, \lambda^{p-1}\}$ is a complete set of representatives of *C*-orbits on $\operatorname{Irr}(P/\Phi(P)) - 1_P$. Since *C* is abelian, notice that all nontrivial irreducible characters of $P/\Phi(P)$ have the same stabilizer *T*. Now, the elements of $T \cap C$ fix every irreducible character in $P/\Phi(P)$ and we deduce that $T \cap$ $C = \mathbf{C}_C(P/\Phi(P)) = 1$ and T = P. In particular, we have that $\operatorname{Irr}(P/\Phi(P))$ is an irreducible faithful *C*-module. Thus, if $|P/\Phi(P)| = p^n$, by Lemma (2.5), we have that $|C| = p^n - 1/p - 1 = e$ with (e, p - 1) = 1. If $P/\Phi(P) = \langle \lambda \rangle$ is cyclic, then n = 1 and [C, P] = 1. Hence *G* is nilpotent and this is not possible. Hence, *P* is not cyclic.

Notice now that G exactly has p-1 irreducible characters with field of values \mathbb{Q}_p , and these are lying over $\lambda, \lambda^2, \ldots, \lambda^{p-1}$, respectively, where $1 \neq \lambda \in \operatorname{Irr}(P/\Phi(P))$.

Suppose that P/P' is not elementary abelian. Hence $P' < \Phi(P)$ and let $U/P' = \Phi(\Phi(P)/P')$. Now, $U \triangleleft G$, P/U is abelian and $\exp(P/U) = p^2$. Now, $\Phi(P)/U \subseteq \Omega_1(P/U) \triangleleft G/U$. Hence, $\Phi(P)/U = \Omega_1(P/U)$. In particular, P/U is a direct product of n cyclic groups of order p^2 .

Suppose that $\mu \in \operatorname{Irr}(P/U)$ is one of the $p^{2n} - p^n$ characters of P/U of order p^2 . By Lemma (2.3), there exists $\chi \in \operatorname{Irr}(G)$ over μ with $\mathbb{Q}(\chi) = \mathbb{Q}_a \subseteq \mathbb{Q}_{p^2}$ for some odd integer a. Now, a divides p^2 and necessarily $a = p^2$. Hence there are exactly $\varphi(p^2) = p(p-1)$ irreducible characters in G with field of values \mathbb{Q}_{p^2} . This implies that the $p^{2n} - p^n$ characters of order p^2 lie in at most p(p-1) different C-orbits. On the other hand, if $x \in C$ fixes μ , then x fixes μ^p and thus $x \in P$. Hence, each C-orbit exactly contains $\frac{p^n-1}{p-1}$ elements. Then

$$p^{2n} - p^n \le p(p-1)\frac{p^n - 1}{p-1}$$

and n = 1, which is not possible.

We wish to prove that P is abelian. We may assume that P' is a minimal normal subgroup of G, and therefore elementary abelian. Also, $P' \subseteq \mathbf{Z}(P)$. Since P/P' is a chief factor of G, we have that $Z = \mathbf{Z}(P) = P'$. Now, the exponent of P divides p^2 . Hence, if $\theta \in \operatorname{Irr}(P)$, $\mathbb{Q}(\theta) \subseteq \mathbb{Q}_{p^2}$. If $\theta \in \operatorname{Irr}(P)$ does not contain P' in its kernel, by Lemma (2.3), there exists $\chi \in \operatorname{Irr}(G)$ lying over θ such that $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\theta) \subseteq \mathbb{Q}_{p^2}$. Since the irreducible characters of G with field of values \mathbb{Q}_p contain P' in its kernel, we deduce that $\mathbb{Q}(\chi) = \mathbb{Q}(\theta) = \mathbb{Q}_{p^2}$. In particular, the exponent of P is p^2 . Now, since P/Z is abelian, Zis elementary abelian and p is odd, we have that

$$\Omega_1(P) = \langle x \in P | x^p = 1 \rangle = \{ x \in P | x^p = 1 \} < P.$$

We conclude that all the subgroups of order p of P lie inside Z. By coprime action, and using that p is odd, it is well-known that $\mathbf{C}_C(Z) = \mathbf{C}_C(P) = 1$. Hence Z is a faithful irreducible C-module and therefore $|Z| = |P/P'| = p^n$. Now, we claim that C acts transitively on the subgroups of order p of Z. Let $1 \neq z \in Z$ and suppose that $c \in C$ fixes $\langle z \rangle$. Then $z^c = z^k$ for some $1 \leq k < p$. Since (e, p - 1) = 1, we deduce that $z^c = z$. Then c centralizes $\langle z^u | u \in C \rangle = Z$, and this is impossible. Therefore the stabilizer of $\langle z \rangle$ in C is trivial. Since there are $p^n - 1/p - 1 = |C|$ subgroups of order p in Z, we conclude that C acts transitively on them. By Shult's theorem, this is a contradiction.

Finally, since P is an irreducible C-module, we have that P is a minimal normal subgroup of G.

In the next result, we use a well-known theorem of Brodkey ([1]): if a finite group G has an abelian Sylow *p*-subgroup P, then there is $g \in G$ such that $P \cap P^g = \mathbf{O}_p(G)$.

(2.7) **THEOREM.** If G satisfies (2.1), then the Fitting length of G is at most 2.

Proof. We argue by induction on |G|. We may assume that G has a minimal normal subgroup V such that the Fitting length of G is 3 and G/V has Fitting length 2. We have that V is an elementary abelian p-group.

By Theorem (2.6), we know the structure of G/V. We have that G/V = (N/V)(C/V), where N/V and C/V are coprime, C/V is cyclic and the Sylow subgroups of N/V are non-cyclic elementary abelian. Also, N is not nilpotent.

First, we prove that p does not divide |N/V|. Suppose it does. By taking a linear character of N/V of order p and using Lemma (2.3), we see that there are exactly p-1irreducible characters of G with field of values \mathbb{Q}_p all of them having V in their kernel. Let Q/V be a Sylow p-subgroup of G/V, which is normal in G/V. Also Q/V is elementary abelian and $\Phi(Q) \subseteq V$. Hence, the exponent of Q is at most p^2 and all irreducible characters of Q have their values in \mathbb{Q}_{p^2} . Let $\mu \in \operatorname{Irr}(Q)$ be not containing V in its kernel. By Lemma (2.3), there exists $\chi \in \operatorname{Irr}(G)$ such that $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\mu) \subseteq \mathbb{Q}_{p^2}$. Necessarily, $\mathbb{Q}(\chi) = \mathbb{Q}(\mu) = \mathbb{Q}_{p^2}$. In particular, $V = \Phi(Q)$. Now, we have that a p-complement H of N acts trivially on $Q/\Phi(Q)$. Thus [H, Q] = 1. So N is nilpotent and this is impossible.

Now, by Theorem (2.4), we have that the stabilizers of all nontrivial elements of Irr(V) are G-conjugate.

Now, $\mathbf{C}_N(V) = U \times V$, where $U \triangleleft G$ and $U \subseteq \mathbf{Z}(N)$. If U > 1, by induction we have that N/U is nilpotent, and therefore N is nilpotent. So we may assume that $\mathbf{C}_N(V) = V$.

Let q be a prime dividing |N:V| and let $X/V \in \operatorname{Syl}_q(N/V)$. Hence, X/V is a normal abelian Sylow q-subgroup of G/V. Let $S \in \operatorname{Syl}_q(X)$. By Brodkey's theorem, there exists $v \in V$ such that $S \cap S^v = 1$. Therefore $\mathbf{C}_S(v) = 1$. Since the actions of S on V and on $\operatorname{Irr}(V)$ are permutation isomorphic (by Theorem (13.24) of [3]), there exists $\lambda \in \operatorname{Irr}(V)$ such that $T \cap X = V$, where T is the stabilizer of λ in G. Now, $T \cap X/V$ is a Sylow q-subgroup of T/V and we deduce that T/V is a q'-group. Now, if $\mu \in \operatorname{Irr}(V)$ and I is its stabilizer in G, we deduce that I/V is a q'-group. In particular, $I \cap X = V$. Then $\mu^X \in \operatorname{Irr}(X)$ for all $1 \neq \mu \in \operatorname{Irr}(V)$ and we deduce that $\mathbf{C}_S(w) = 1$ for all $1 \neq w \in V$. Then X is a Frobenius group and S is a Frobenius complement of odd order. Hence, S is cyclic, and this is impossible.

3. PROOF OF THEOREM A

In the proof of our main result, we use the following result of Iwasaki ([4]). For the reader's convenience, we write down a proof.

(3.1) LEMMA. If G has at most two real valued characters, then a Sylow 2-subgroup of G is normal.

Proof. We argue by induction on |G|, and we may assume that G is of even order. We have that G has exactly two real classes. Hence, the only nontrivial real class K is the class of involutions of G. If x, y are involutions, then xy is real, and therefore xy is an involution. Thus $N = K \cup 1$ is a normal 2-subgroup of G. If G/N has exactly one real character, then G/N is of odd order, and we are done. Otherwise, we apply induction.

We will also use the following result of Amit and Chillag.

(3.2) **THEOREM.** Suppose that G is a solvable group and let $\chi \in Irr(G)$ with $\mathbb{Q}(\chi) = \mathbb{Q}_f$. Then G has an element of order f.

Proof. See Theorem (22.1) of [5].

(3.3) LEMMA. Suppose that $F = GF(2^m)$ and let $\sigma \in Gal(F)$ be of order q > 1 odd. Let Γ be the semidirect product of $K = F^{\times}$ with $I = \langle \sigma \rangle$. Suppose that $H \leq \Gamma$ is not cyclic and has order divisible by $2^m - 1$. Then there exists $\psi \in Irr(H)$ such that $\mathbb{Q}(\psi)$ is not a cyclotomic field.

Proof. We claim that there exists $P \in \text{Syl}_p(K)$ such that I acts Frobenius on P. Suppose that $m \neq 6$. Let p be a Zsigmondy prime for $2^m - 1$. (See, for instance, Theorem (6.2) of [5].) If $1 \neq \tau \in I$ has order d|m, then $|\mathbf{C}_K(\tau)| = 2^{m/d} - 1$ which is not divisible by p. If $P \in \text{Syl}_p(K)$, we have that $\mathbf{C}_P(\tau) = 1$. Thus I acts Frobenius on P. If m = 6, then q = 3 and in this case we can take P of order 7.

Now, since P is cyclic, we have that q|p-1 and P is a normal Sylow p-subgroup of Γ . Hence, $P \subseteq H$, by hypothesis. Now, let $\lambda \in \operatorname{Irr}(P)$ be of order p. Notice that $I_{\Gamma}(\lambda) = K$ because $I_I(\lambda) = 1$. Hence, $K \cap H$ is the stabilizer of λ in H. Let $\nu \in \operatorname{Irr}(K \cap H)$ be the canonical extension of λ to $K \cap H$, so that $o(\nu) = p$. If $h \in H$ fixes ν , then hfixes λ and therefore $h \in K \cap H$. Hence, by the Clifford correspondence, we have that $\psi = \nu^H \in \operatorname{Irr}(H)$. Since H is not cyclic, we have that $K \cap H < H$. Now, if $h \in H - (K \cap H)$, we have that $\nu^h = \nu^r$ for some integer r with 1 < r < p. Now, $\mathbb{Q}(\psi) \subseteq \mathbb{Q}_p$. We claim that $\mathbb{Q}(\psi)$ cannot be \mathbb{Q}_p . If σ is the Galois automorphism fixing p'-roots of unity and sending p-power roots of unity ξ to ξ^r , then

$$\psi^{\sigma} = (\nu^{r})^{H} = (\nu^{h})^{H} = \nu^{H} = \psi,$$

and this proves the claim.

(3.4) THEOREM. Suppose that G is field equivalent with a cyclic group of order n. Then G is cyclic. **Proof.** By hypothesis, we have that

$$\operatorname{Irr}(G) = \bigcup_{d|n} \operatorname{Irr}_d(G) \,,$$

where $\operatorname{Irr}_d(G) \cap \operatorname{Irr}_e(G) = \emptyset$ if $d \neq e$, $|\operatorname{Irr}_d(G)| = \varphi(d)$, and if $\psi \in \operatorname{Irr}_d(G)$, then $\mathbb{Q}(\psi) = \mathbb{Q}_d$. We notice that G has at most two real valued characters. By Lemma (3.1), we have that $P \triangleleft G$, where $P \in \operatorname{Syl}_2(G)$. Let H be a 2-complement of G.

Suppose that G has odd order. Then n is odd and G satisfies (2.1). If G is nilpotent, then G is cyclic and we are done. By Theorems (2.6) and (2.7), we may assume that G = NC, where C is cyclic and 1 < N is abelian with (|N|, |C|) = 1. Also, the Sylow subgroups of N are not cyclic and minimal normal subgroups of G. Let p be any prime divisor of |N|. Now, G has an irreducible character with field of values $\mathbb{Q}_{|C|}$. Hence, |C|divides n. Also, by Lemma (2.3), G has an irreducible character with field of values \mathbb{Q}_p , where p divides n. Thus p|C| divides n, and G has irreducible characters with field of values $\mathbb{Q}_{p|C|}$. By Theorem (3.2), G has an element x of order p|C|. Write x = uv, where $u \in N$ has order p, v has order |C| and uv = vu. Then o(vN) = o(v) = |G/N|, and we deduce that $N\langle v \rangle = G$. Then $u \in \mathbb{Z}(G)$ and $\langle u \rangle$ is a normal subgroup of G. Then $\langle u \rangle$ is a Sylow p-subgroup of N, and this is not possible.

So we may assume that G is of even order. Hence, n is even and G has a unique real valued non-trivial character χ . Let $\delta \in \operatorname{Irr}(P)$ of order 2. By Lemma (2.3), δ lies under χ , and we deduce that H transitively permutes the nontrivial elements of $\operatorname{Irr}(P/\Phi(P))$. Write $|P/\Phi(P)| = 2^v$. If T is the stabilizer of δ in H, then $\mathbf{C}_H(P) \subseteq T$ and $|H:T| = 2^v - 1$.

Write $n = 2^{e}m$, where m is odd. We claim that

$$\operatorname{Irr}(G/\Phi(P)) = \bigcup_{d|2m} \operatorname{Irr}_d(G).$$

Suppose that $\psi \in \operatorname{Irr}(G)$ has $\Phi(P)$ in its kernel and suppose that $\mathbb{Q}(\psi) = \mathbb{Q}_f$ for some f|n. Now, since the exponent of $G/\Phi(P)$ has 2-part 2, we have that $\mathbb{Q}(\psi) \subseteq \mathbb{Q}_{|G|_{2'}}$ and therefore f_2 divides 2. Hence, f divides 2m. Conversely, suppose that $\psi \in \operatorname{Irr}_d(G)$, where d|2m. Then $\mathbb{Q}(\psi) = \mathbb{Q}_f$ for some odd number f. Let $\mu \in \operatorname{Irr}(P)$ be under ψ . Let $\sigma \in \operatorname{Gal}(\mathbb{Q}_{|G|}/\mathbb{Q}_{|G|_{2'}})$ (which necessarily has 2-power order). Then σ fixes ψ and therefore $\mu^{\sigma} = \mu^x$ for some $x \in G/P$. Since o(x) is odd, we conclude that $\mu^{\sigma} = \mu$. Hence, μ has rational values. By Lemma (2.3), we conclude that μ lies under some rational valued character, which necessarily is χ . Then μ is G-conjugate to δ , and the claim follows.

If $\Phi(P) > 1$, arguing by induction, we have that $G/\Phi(P)$ is cyclic. Therefore $P/\Phi(P)$ and H are cyclic. Hence P is cyclic, $G = P \times H$, and therefore G is cyclic. Thus, we may assume that $\Phi(P) = 1$. Therefore, $\mathbb{Q}(\psi) \subseteq \mathbb{Q}_{|G|_{2'}}$ for all $\psi \in \operatorname{Irr}(G)$. In particular, we have that $n_2 = 2$, since otherwise there would exist $\psi \in \operatorname{Irr}(G)$ such that $\mathbb{Q}(\psi) = \mathbb{Q}_4 = \mathbb{Q}(i)$, and this is not possible.

Suppose that P is cyclic. Then |P| = 2 and $G = P \times H$. Then $n = |\operatorname{Irr}(G)| = 2|\operatorname{Irr}(H)|$, where $|\operatorname{Irr}(H)| = m$ is odd. Now, for each d dividing m, there exist exactly $2\varphi(d)$ irreducible characters of G with field of valued \mathbb{Q}_d . If $\chi \in \operatorname{Irr}(G)$, we have that $\chi = 1 \times \alpha$ or $\chi = \delta \times \alpha$, for some $\alpha \in \operatorname{Irr}(H)$ and in both cases $\mathbb{Q}(\chi) = \mathbb{Q}(\alpha)$. This easily implies that there are exactly $\varphi(d)$ irreducible characters of H with field of values \mathbb{Q}_d . Hence, H is field equivalent to the cyclic group of m elements, and H is cyclic, by the second paragraph of this proof. Thus G is cyclic in this case. Hence, we may assume that $v \geq 2$.

By Theorem (6.8) of [5], we deduce that $H/\mathbf{C}_H(P)$ is a subgroup of Γ , where Γ is as in Lemma (3.3). Now, $H/\mathbf{C}_H(P)$ is isomorphic to a quotient of G, and therefore all of its irreducible characters have cyclotomic fields of values. By Lemma (3.3), we deduce that $H/\mathbf{C}_H(P)$ is cyclic. In particular, $T \triangleleft H$ and we easily have that $T = \mathbf{C}_H(P)$.

Notice that the stabilizer of δ in G is $I = P\mathbf{C}_H(P)$. If $\psi \in \operatorname{Irr}(G)$ does not contain P in its kernel, then ψ lies over δ and therefore $\psi = (\hat{\delta}\alpha)^G$, where $\hat{\delta} \in \operatorname{Irr}(I)$ is the canonical extension of δ to I and $\alpha \in \operatorname{Irr}(\mathbf{C}_H(P))$. Hence, by using the Clifford correspondence and Corollary (6.17) of [3], we have that

$$|\operatorname{Irr}(G)| = |\operatorname{Irr}(H)| + |\operatorname{Irr}(\mathbf{C}_H(P))|.$$

Since H is of odd order, by a theorem of Burnside (Problem (3.17) of [3]), we have that

$$|\operatorname{Irr}(G)| \equiv |H| + |\mathbf{C}_H(P)| = |\mathbf{C}_H(P)|(|H/\mathbf{C}_H(P)| + 1) = 2^v |\mathbf{C}_H(P)| \mod 16.$$

Hence, we deduce that 4 divides |Irr(G)| = n, and this was not possible.

4. COPRIME ACTION

If X and Y are finite groups and $A \subseteq Irr(X)$ and $B \subseteq Irr(Y)$, we say that A and B are **field equivalent** if there exists a bijection $\chi \mapsto \chi'$ from A onto B such that $\mathbb{Q}(\chi) = \mathbb{Q}(\chi')$ for all $\chi \in A$.

(4.1) THEOREM. Suppose that A acts coprimely on G and let $C = C_G(A)$. Then C is cyclic if and only $Irr_A(G)$ is field equivalent with the set of irreducible characters of a cyclic group.

Proof. It is well-known that the Glauberman-Isaacs correspondence $* : \operatorname{Irr}_A(G) \to \operatorname{Irr}(C)$ preserves fields of values. (See Chapter 13 of [3] and Section 10 of [2].) Now, Theorem A applies.

REFERENCES

[1] J. S. Brodkey, A note on finite groups with an abelian Sylow group. Proc. Amer. Math. Soc. 14 (1963), 132–133.

[2] M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. **95** (1973), 594–635.

[3] M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.

[4] S. Iwasaki, On finite groups with exactly two real conjugate classes. Arch. Math. (Basel) **33** (1979/80), no. 6, 512–517.

[5] O. Manz, T. Wolf, Representations of Solvable Groups, Camdridge University Press, 1993.

[6] E. Shult, On finite automorphic algebras. Illinois J. Math. 13 (1969), 625–653.