
FIELD EQUIVALENT FINITE GROUPS

by
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1. INTRODUCTION

M. Isaacs has given the following definition: two finite groups X and Y are field
equivalent if there is a bijection χ 7→ χ′ from Irr(X) onto Irr(Y ) such that Q(χ) = Q(χ′)
for every χ ∈ Irr(X), where Irr(X) is the set of complex irreducible characters of X and
Q(χ) is the field of values of χ. In this paper, we give solution to a problem proposed by
him.

THEOREM A. Suppose that G is field equivalent to a cyclic group. Then G is cyclic.

In general, we cannot expect much more than this. For instance, there exists a group G
of order 64 with 16 conjugacy classes such that all of its irreducible characters are rational
valued. Hence, G is field equivalent to an elementary abelian 2-group and G is not abelian.
Even more, there exists another group H of order 32 with 11 conjugacy classes and rational
valued characters. In particular, H is field equivalent to the symmetric group of degree 6.

There is an application of Theorem A: if A acts coprimely on a finite group G, then the
fields of values of the A-invariant irreducible characters of G determine if the fixed points
subgroup CG(A) is cyclic. (See Section 4 below.)

2. GROUPS OF ODD ORDER

We notice that a finite group G is field equivalent with a cyclic group C of order n if
and only if

Irr(G) =
⋃
d|n

Irrd(G) ,

where Irrd(G)∩Irre(G) = ∅ if d 6= e, |Irrd(G)| = ϕ(d), and if ψ ∈ Irrd(G), then Q(ψ) = Qd,
the cyclotomic field of d-th roots of unity. This easily follows by writing Irrd(C) = {λ ∈
Irr(C) | o(λ) = d}, and noticing that if λ ∈ Irrd(C), then Q(λ) = Qd. Since groups of odd
order are exactly the groups with exactly one real character, we have that |G| is odd if
and only if n is odd.

In order to use inductive arguments in groups of odd order, it is convenient to have the
following weaker hypothesis.

(2.1) HYPOTHESIS. Suppose that G is a finite group such that

Irr(G) =
⋃
d∈A

Irrd(G) ,

where A is a set of positive odd integers such that if ψ ∈ Irrd(G), then Q(ψ) = Qd and
|Irrd(G)| = ϕ(d).

Our aim in this Section is to classify all finite groups satisfying Hypothesis (2.1).

Throughout this paper, we shall use an elementary fact on cyclotomic fields: if d ≤ e
are positive integers, then Qd ⊆ Qe if and only if d divides e or e is odd and d = 2f , for
some f dividing e. Hence, if e and d are odd , then Qd ⊆ Qe if and only if d divides e and
therefore Qd = Qe only if d = e. If a group G satisfies (2.1) and d ∈ A, then notice that
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G has exactly ϕ(d) characters χ with Q(χ) = Qd and all of them are Galois conjugate. In
particular, if a group G satisfies (2.1), then all factor groups of G satisfy (2.1). Notice too
that groups satisfying (2.1) are of odd order. Finally, if χ ∈ Irr(G) is such that Q(χ) = Qf ,
where f is odd, then f ∈ A.

(2.2) LEMMA. Suppose that G is a nilpotent group satisfying (2.1). Then G is cyclic.

Proof. Since G/Φ(G) satisfies (2.1), we may assume that the Sylow subgroups of G are
elementary abelian. Now let p be a prime divisor of |G| and let λ ∈ Irr(G) be of order p.
Then Q(λ) = Qp and G has exactly p − 1 irreducible characters with field of values Qp.
Hence all Sylow subgroups of G are cyclic.

We shall repeatedly use the following fact.

(2.3) LEMMA. Suppose that G has a normal Sylow p-subgroup P and let θ ∈ Irr(P ). If

T is the stabilizer of θ in G and θ̂ is the canonical extension of θ to T , then χ = θ̂G ∈ Irr(G)
lies over θ and Q(χ) ⊆ Q(θ).

Proof. By Corollary (8.16) of [3], there exists a unique θ̂ ∈ Irr(T ) extending θ such that
the determinantal order of θ̂ is a power of p. In fact o(θ) = o(θ̂). (This is called the
canonical extension of θ to T .) Now, χ lies over θ and Q(χ) ⊆ Q(θ̂). Since θ uniquely
determines θ̂, it follows that Q(θ) = Q(θ̂).

(2.4) THEOREM. Suppose that G is a group satisfying (2.1). Suppose that G has an
elementary normal p-subgroup V such that G/V has a normal p-complement and a cyclic
Sylow p-subgroup. If λ ∈ Irr(V ) has order p, then {λ, λ2, . . . , λp−1} is a complete set of
representatives of G-orbits on Irr(V )− 1V .

Proof. We may write G/V = (K/V )(P/V ), where K/V / G/V has p′-order, P ∈ Sylp(G)
and P/V is cyclic. Suppose that |P/V | = pf . Since P/V is isomorphic to a quotient of
G, we have that for e ≤ f , G has exactly ϕ(pe) irreducible characters with field of values
Qpe , all having K in its kernel.

Let 1 6= λ ∈ Irr(V ) and let T = IG(λ) be the stabilizer of λ in G. Now, by Corollary
(8.16) of [3], there exists a unique λ̂ ∈ Irr(T ∩ K) of order p extending λ. Also, by
uniqueness, we have that λ̂ is T -invariant. In particular, if L = ker(λ̂), then L / T . Also,
|(T ∩ K)/L| = p. Now, T/T ∩ K is cyclic, and therefore λ̂ extends to T . Suppose that
the cyclic group T/T ∩ K has order pd. We have that d ≤ f . If β ∈ Irr(T ) lies over λ̂,
we have that β extends λ̂ and βpd+1

= 1. We have that Q(βG) ⊆ Q(β) ⊆ Qpd+1 . Since
Q(βG) = Qpe for some e ≤ d + 1 and K is not contained in the kernel of βG, necessarily
e > f . Then e = f + 1, d = f , Q(βG) = Qpf+1 and Q(β) = Qpf+1 . In particular,
o(β) = pf+1. Since L ⊆ ker(β), we deduce that T/L is cyclic of order pf+1. Now, by
considering the pf extensions β of λ̂ to T , we notice that G has pf different irreducible
characters with field of values Qpf+1 lying over λ.

Suppose now that λg = λs for some g ∈ G and 1 < s < p. Then T g = IG(λs) = T .
Hence, g ∈ NG(T ). By the uniqueness of canonical extensions, we easily have that λ̂g = λ̂s

and also ker(λ̂) = ker(λ̂s) = ker(λ̂g) = Lg. Thus g also normalizes L. Write T/L = 〈yL〉
and notice that yg−1

L = ynL for some 1 ≤ n coprime with p. Now, let β ∈ Irr(T ) be
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over λ̂ and let χ = βG ∈ Irr(G), which we know has field of values Qpf+1 . Now, we have
that βg = βn. Hence, λ̂g = λ̂n = λ̂s and therefore n ≡ smod p. Now, let σ be the Galois
automorphism of Gal(Q|G|/Q) fixing p′-roots of unity and sending each p-power order root
of unity ξ to ξn. Then

χσ = (βσ)G = (βn)G = (βg)G = βG = χ ,

and therefore σ fixes Qpf+1 = Q(χ). Then σ fixes Qp and therefore n ≡ 1 mod p. Thus
s ≡ 1 mod p, and this is impossible.

Hence, for each 1 ≤ j ≤ p− 1, we have at least pf irreducible characters of G with field
of values Qpf+1 lying over λj . This gives rise to at least pf (p − 1) = ϕ(pf+1) irreducible
characters, and we conclude that there are no more. This implies the theorem.

In what follows, we shall use a well-known fact: if V is a faithful irreducible GF (p)C-
module, where C is cyclic of order m, then |V | = pn, where n is the order of p modulo
m.

(2.5) LEMMA. Suppose that V is a faithful irreducible GF (p)C-module of dimension
n, where C is cyclic of order e coprime with p. Suppose that there exists v ∈ V such that
{v, 2v, . . . , (p − 1)v} is a complete set of representatives of C-orbits on V − {0}. Then
|C| = pn − 1/p− 1 and (p− 1, e) = 1.

Proof. Our hypotheses easily imply that CC(v) = CC(V ) = 1 and therefore CC(w) = 1
for all 0 6= w ∈ V . Hence, |C| = pn − 1/p − 1 = e. Let d = (p − 1, e) and let D be the
subgroup of C of order d. Now, let W be a simple D-submodule of V . Then W is faithful
and if |W | = pm, we know that m is the order of p modulo d. Hence m = 1. If 1 6= x ∈ D
and 0 6= w ∈W , we have that wx = kw for some 1 < k < p. Now, w = jvc for some c ∈ C
and 1 ≤ j < p , and we conclude that vx = kv. This is not possible.

In the proof of the following result, we use a nontrivial theorem of E. Shult, namely,
if A acts as automorphisms on an odd p-group P transitively permuting the subgroups of
order p of P , then P is abelian ([6]).

(2.6) THEOREM. Suppose that G is a group satifying (2.1) with Fitting length 2. Let
N be the smallest normal subgroup of G such that G/N is nilpotent. Then G = NC,
where C is cyclic, (|N |, |C|) = 1 and N is nilpotent such that all of its Sylow subgroups
are non-cyclic elementary abelian and minimal normal subgroups of G.

Proof. By Lemma (2.2), we have that G/N is cyclic. Also, by hypothesis, 1 < N is
nilpotent.

First, we want to see that (|G/N |, |N |) = 1. Let p be a common prime divisor of |N |
and |G/N |. If K is the p-complement of N , by working in G/K (which has Fitting length
two) we may assume that N is a p-group. Since G/N is abelian, we have that G has a
normal Sylow p-subgroup P > N . We may write G = PD, where D is a cyclic p′-group,
[P,D] ⊆ N and P/N is cyclic. Since p divides |G/N |, we have that G/N has a linear
irreducible character of order p. Hence, all the p − 1 irreducible characters ψ of G with
Q(ψ) = Qp contain N in the kernel. Suppose that P is not cyclic. Then P/Φ(P ) is not
cyclic and therefore there exists λ ∈ Irr(P ) linear of order p with N not contained in its
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kernel. By Lemma (2.3), there exists χ ∈ Irr(G) lying over λ with Q(χ) ⊆ Qp. Now,
Q(χ) = Qf for some odd integer f , and we deduce that Q(χ) = Qp. This is impossible.
Therefore, P is cyclic. Since P = [P,D]×CP (D), we conclude that [P,D] = 1. Hence, G
is abelian, and this is a contradiction. We conclude that (|G/N |, |N |) = 1.

We may write G = NC, where C is cyclic and (|N |, |C|) = 1. It remains to show that
the Sylow subgroups of N are non-cyclic elementary abelian minimal normal subgroups of
G. Let P ∈ Sylp(N) and notice that PC is isomorphic to a factor group of G with Fitting
length two. Hence, it is no loss if we assume that N = P . Also, since G/CC(P ) cannot
be nilpotent, we may assume that CC(P ) = CC(P/Φ(P )) = 1.

By Theorem (2.4), if 1 6= λ ∈ Irr(P/Φ(P )), we know that {λ, λ2, . . . , λp−1} is a complete
set of representatives of C-orbits on Irr(P/Φ(P )) − 1P . Since C is abelian, notice that
all nontrivial irreducible characters of P/Φ(P ) have the same stabilizer T . Now, the
elements of T ∩ C fix every irreducible character in P/Φ(P ) and we deduce that T ∩
C = CC(P/Φ(P )) = 1 and T = P . In particular, we have that Irr(P/Φ(P )) is an
irreducible faithful C-module. Thus, if |P/Φ(P )| = pn, by Lemma (2.5), we have that
|C| = pn − 1/p − 1 = e with (e, p − 1) = 1. If P/Φ(P ) = 〈λ〉 is cyclic, then n = 1 and
[C,P ] = 1. Hence G is nilpotent and this is not possible. Hence, P is not cyclic.

Notice now that G exactly has p− 1 irreducible characters with field of values Qp, and
these are lying over λ, λ2, . . . , λp−1, respectively, where 1 6= λ ∈ Irr(P/Φ(P )).

Suppose that P/P ′ is not elementary abelian. Hence P ′ < Φ(P ) and let U/P ′ =
Φ(Φ(P )/P ′). Now, U/ G, P/U is abelian and exp(P/U) = p2. Now, Φ(P )/U ⊆ Ω1(P/U)/
G/U . Hence, Φ(P )/U = Ω1(P/U). In particular, P/U is a direct product of n cyclic groups
of order p2.

Suppose that µ ∈ Irr(P/U) is one of the p2n − pn characters of P/U of order p2. By
Lemma (2.3), there exists χ ∈ Irr(G) over µ with Q(χ) = Qa ⊆ Qp2 for some odd integer
a. Now, a divides p2 and necessarily a = p2. Hence there are exactly ϕ(p2) = p(p − 1)
irreducible characters inG with field of values Qp2 . This implies that the p2n−pn characters
of order p2 lie in at most p(p − 1) different C-orbits. On the other hand, if x ∈ C fixes
µ, then x fixes µp and thus x ∈ P . Hence, each C-orbit exactly contains pn−1

p−1 elements.
Then

p2n − pn ≤ p(p− 1)
pn − 1
p− 1

and n = 1, which is not possible.
We wish to prove that P is abelian. We may assume that P ′ is a minimal normal

subgroup of G, and therefore elementary abelian. Also, P ′ ⊆ Z(P ). Since P/P ′ is a chief
factor of G, we have that Z = Z(P ) = P ′. Now, the exponent of P divides p2. Hence,
if θ ∈ Irr(P ), Q(θ) ⊆ Qp2 . If θ ∈ Irr(P ) does not contain P ′ in its kernel, by Lemma
(2.3), there exists χ ∈ Irr(G) lying over θ such that Q(χ) ⊆ Q(θ) ⊆ Qp2 . Since the
irreducible characters of G with field of values Qp contain P ′ in its kernel, we deduce that
Q(χ) = Q(θ) = Qp2 . In particular, the exponent of P is p2. Now, since P/Z is abelian, Z
is elementary abelian and p is odd, we have that

Ω1(P ) = 〈x ∈ P |xp = 1〉 = {x ∈ P |xp = 1} < P .

We conclude that all the subgroups of order p of P lie inside Z. By coprime action,
and using that p is odd, it is well-known that CC(Z) = CC(P ) = 1. Hence Z is a
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faithful irreducible C-module and therefore |Z| = |P/P ′| = pn. Now, we claim that C acts
transitively on the subgroups of order p of Z. Let 1 6= z ∈ Z and suppose that c ∈ C fixes
〈z〉. Then zc = zk for some 1 ≤ k < p. Since (e, p− 1) = 1, we deduce that zc = z. Then
c centralizes 〈zu|u ∈ C〉 = Z, and this is impossible. Therefore the stabilizer of 〈z〉 in C is
trivial. Since there are pn − 1/p− 1 = |C| subgroups of order p in Z, we conclude that C
acts transitively on them. By Shult’s theorem, this is a contradiction.

Finally, since P is an irreducible C-module, we have that P is a minimal normal sub-
group of G.

In the next result, we use a well-known theorem of Brodkey ([1]): if a finite group G
has an abelian Sylow p-subgroup P , then there is g ∈ G such that P ∩ P g = Op(G).

(2.7) THEOREM. If G satisfies (2.1), then the Fitting length of G is at most 2.

Proof. We argue by induction on |G|. We may assume that G has a minimal normal
subgroup V such that the Fitting length of G is 3 and G/V has Fitting length 2. We have
that V is an elementary abelian p-group.

By Theorem (2.6), we know the structure of G/V . We have that G/V = (N/V )(C/V ),
where N/V and C/V are coprime, C/V is cyclic and the Sylow subgroups of N/V are
non-cyclic elementary abelian. Also, N is not nilpotent.

First, we prove that p does not divide |N/V |. Suppose it does. By taking a linear
character of N/V of order p and using Lemma (2.3), we see that there are exactly p − 1
irreducible characters of G with field of values Qp all of them having V in their kernel. Let
Q/V be a Sylow p-subgroup of G/V , which is normal in G/V . Also Q/V is elementary
abelian and Φ(Q) ⊆ V . Hence, the exponent of Q is at most p2 and all irreducible
characters of Q have their values in Qp2 . Let µ ∈ Irr(Q) be not containing V in its kernel.
By Lemma (2.3), there exists χ ∈ Irr(G) such that Q(χ) ⊆ Q(µ) ⊆ Qp2 . Necessarily,
Q(χ) = Q(µ) = Qp2 . In particular, V = Φ(Q). Now, we have that a p-complement H of
N acts trivially on Q/Φ(Q). Thus [H,Q] = 1. So N is nilpotent and this is impossible.

Now, by Theorem (2.4), we have that the stabilizers of all nontrivial elements of Irr(V )
are G-conjugate.

Now, CN (V ) = U × V , where U / G and U ⊆ Z(N). If U > 1, by induction we have
that N/U is nilpotent, and therefore N is nilpotent. So we may assume that CN (V ) = V .

Let q be a prime dividing |N : V | and let X/V ∈ Sylq(N/V ). Hence, X/V is a normal
abelian Sylow q-subgroup of G/V . Let S ∈ Sylq(X). By Brodkey’s theorem, there exists
v ∈ V such that S ∩ Sv = 1. Therefore CS(v) = 1. Since the actions of S on V and on
Irr(V ) are permutation isomorphic (by Theorem (13.24) of [3]), there exists λ ∈ Irr(V )
such that T ∩ X = V , where T is the stabilizer of λ in G. Now, T ∩ X/V is a Sylow
q-subgroup of T/V and we deduce that T/V is a q′-group. Now, if µ ∈ Irr(V ) and I is
its stabilizer in G, we deduce that I/V is a q′-group. In particular, I ∩ X = V . Then
µX ∈ Irr(X) for all 1 6= µ ∈ Irr(V ) and we deduce that CS(w) = 1 for all 1 6= w ∈ V .
Then X is a Frobenius group and S is a Frobenius complement of odd order. Hence, S is
cyclic, and this is impossible.

3. PROOF OF THEOREM A
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In the proof of our main result, we use the following result of Iwasaki ([4]). For the
reader’s convenience, we write down a proof.

(3.1) LEMMA. If G has at most two real valued characters, then a Sylow 2-subgroup
of G is normal.

Proof. We argue by induction on |G|, and we may assume that G is of even order. We
have that G has exactly two real classes. Hence, the only nontrivial real class K is the
class of involutions of G. If x, y are involutions, then xy is real, and therefore xy is an
involution. Thus N = K ∪ 1 is a normal 2-subgroup of G. If G/N has exactly one real
character, then G/N is of odd order, and we are done. Otherwise, we apply induction.

We will also use the following result of Amit and Chillag.

(3.2) THEOREM. Suppose that G is a solvable group and let χ ∈ Irr(G) with Q(χ) =
Qf . Then G has an element of order f .

Proof. See Theorem (22.1) of [5].

(3.3) LEMMA. Suppose that F = GF (2m) and let σ ∈ Gal(F ) be of order q > 1 odd.
Let Γ be the semidirect product of K = F× with I = 〈σ〉. Suppose that H ≤ Γ is not
cyclic and has order divisible by 2m − 1. Then there exists ψ ∈ Irr(H) such that Q(ψ) is
not a cyclotomic field.

Proof. We claim that there exists P ∈ Sylp(K) such that I acts Frobenius on P . Suppose
that m 6= 6. Let p be a Zsigmondy prime for 2m − 1. (See, for instance, Theorem (6.2) of
[5].) If 1 6= τ ∈ I has order d|m, then |CK(τ)| = 2m/d − 1 which is not divisible by p. If
P ∈ Sylp(K), we have that CP (τ) = 1. Thus I acts Frobenius on P . If m = 6, then q = 3
and in this case we can take P of order 7.

Now, since P is cyclic, we have that q|p− 1 and P is a normal Sylow p-subgroup of Γ.
Hence, P ⊆ H, by hypothesis. Now, let λ ∈ Irr(P ) be of order p. Notice that IΓ(λ) = K
because II(λ) = 1. Hence, K ∩ H is the stabilizer of λ in H. Let ν ∈ Irr(K ∩ H) be
the canonical extension of λ to K ∩ H, so that o(ν) = p. If h ∈ H fixes ν, then h
fixes λ and therefore h ∈ K ∩ H. Hence, by the Clifford correspondence, we have that
ψ = νH ∈ Irr(H). Since H is not cyclic, we have that K∩H < H. Now, if h ∈ H−(K∩H),
we have that νh = νr for some integer r with 1 < r < p. Now, Q(ψ) ⊆ Qp. We claim that
Q(ψ) cannot be Qp. If σ is the Galois automorphism fixing p′-roots of unity and sending
p-power roots of unity ξ to ξr, then

ψσ = (νr)H = (νh)H = νH = ψ ,

and this proves the claim.

(3.4) THEOREM. Suppose that G is field equivalent with a cyclic group of order n.
Then G is cyclic.
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Proof. By hypothesis, we have that

Irr(G) =
⋃
d|n

Irrd(G) ,

where Irrd(G)∩Irre(G) = ∅ if d 6= e, |Irrd(G)| = ϕ(d), and if ψ ∈ Irrd(G), then Q(ψ) = Qd.
We notice that G has at most two real valued characters. By Lemma (3.1), we have that
P / G, where P ∈ Syl2(G). Let H be a 2-complement of G.

Suppose that G has odd order. Then n is odd and G satisfies (2.1). If G is nilpotent,
then G is cyclic and we are done. By Theorems (2.6) and (2.7), we may assume that
G = NC, where C is cyclic and 1 < N is abelian with (|N |, |C|) = 1. Also, the Sylow
subgroups of N are not cyclic and minimal normal subgroups of G. Let p be any prime
divisor of |N |. Now, G has an irreducible character with field of values Q|C|. Hence, |C|
divides n. Also, by Lemma (2.3), G has an irreducible character with field of values Qp,
where p divides n. Thus p|C| divides n, and G has irreducible characters with field of
values Qp|C|. By Theorem (3.2), G has an element x of order p|C|. Write x = uv, where
u ∈ N has order p, v has order |C| and uv = vu. Then o(vN) = o(v) = |G/N |, and we
deduce that N〈v〉 = G. Then u ∈ Z(G) and 〈u〉 is a normal subgroup of G. Then 〈u〉 is a
Sylow p-subgroup of N , and this is not possible.

So we may assume that G is of even order. Hence, n is even and G has a unique real
valued non-trivial character χ. Let δ ∈ Irr(P ) of order 2. By Lemma (2.3), δ lies under χ,
and we deduce that H transitively permutes the nontrivial elements of Irr(P/Φ(P )). Write
|P/Φ(P )| = 2v. If T is the stabilizer of δ in H, then CH(P ) ⊆ T and |H : T | = 2v − 1.

Write n = 2em, where m is odd. We claim that

Irr(G/Φ(P )) =
⋃

d|2m

Irrd(G) .

Suppose that ψ ∈ Irr(G) has Φ(P ) in its kernel and suppose that Q(ψ) = Qf for some
f |n. Now, since the exponent of G/Φ(P ) has 2-part 2, we have that Q(ψ) ⊆ Q|G|2′ and
therefore f2 divides 2. Hence, f divides 2m. Conversely, suppose that ψ ∈ Irrd(G), where
d|2m. Then Q(ψ) = Qf for some odd number f . Let µ ∈ Irr(P ) be under ψ. Let
σ ∈ Gal(Q|G|/Q|G|2′ ) (which necessarily has 2-power order). Then σ fixes ψ and therefore
µσ = µx for some x ∈ G/P . Since o(x) is odd, we conclude that µσ = µ. Hence, µ
has rational values. By Lemma (2.3), we conclude that µ lies under some rational valued
character, which necessarily is χ. Then µ is G-conjugate to δ, and the claim follows.

If Φ(P ) > 1, arguing by induction, we have that G/Φ(P ) is cyclic. Therefore P/Φ(P )
and H are cyclic. Hence P is cyclic, G = P ×H, and therefore G is cyclic. Thus, we may
assume that Φ(P ) = 1. Therefore, Q(ψ) ⊆ Q|G|2′ for all ψ ∈ Irr(G). In particular, we have
that n2 = 2, since otherwise there would exist ψ ∈ Irr(G) such that Q(ψ) = Q4 = Q(i),
and this is not possible.

Suppose that P is cyclic. Then |P | = 2 and G = P ×H. Then n = |Irr(G)| = 2|Irr(H)|,
where |Irr(H)| = m is odd. Now, for each d dividingm, there exist exactly 2ϕ(d) irreducible
characters of G with field of valued Qd. If χ ∈ Irr(G), we have that χ = 1×α or χ = δ×α,
for some α ∈ Irr(H) and in both cases Q(χ) = Q(α). This easily implies that there are
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exactly ϕ(d) irreducible characters ofH with field of values Qd. Hence, H is field equivalent
to the cyclic group of m elements, and H is cyclic, by the second paragraph of this proof.
Thus G is cyclic in this case. Hence, we may assume that v ≥ 2.

By Theorem (6.8) of [5], we deduce that H/CH(P ) is a subgroup of Γ, where Γ is as
in Lemma (3.3). Now, H/CH(P ) is isomorphic to a quotient of G, and therefore all of its
irreducible characters have cyclotomic fields of values. By Lemma (3.3), we deduce that
H/CH(P ) is cyclic. In particular, T / H and we easily have that T = CH(P ).

Notice that the stabilizer of δ in G is I = PCH(P ). If ψ ∈ Irr(G) does not contain P

in its kernel, then ψ lies over δ and therefore ψ = (δ̂α)G, where δ̂ ∈ Irr(I) is the canonical
extension of δ to I and α ∈ Irr(CH(P )). Hence, by using the Clifford correspondence and
Corollary (6.17) of [3], we have that

|Irr(G)| = |Irr(H)|+ |Irr(CH(P ))| .

Since H is of odd order, by a theorem of Burnside (Problem (3.17) of [3]), we have that

|Irr(G)| ≡ |H|+ |CH(P )| = |CH(P )|(|H/CH(P )|+ 1) = 2v|CH(P )|mod16 .

Hence, we deduce that 4 divides |Irr(G)| = n, and this was not possible.

4. COPRIME ACTION

If X and Y are finite groups and A ⊆ Irr(X) and B ⊆ Irr(Y ), we say that A and B are
field equivalent if there exists a bijection χ 7→ χ′ from A onto B such that Q(χ) = Q(χ′)
for all χ ∈ A.

(4.1) THEOREM. Suppose that A acts coprimely on G and let C = CG(A). Then C
is cyclic if and only IrrA(G) is field equivalent with the set of irreducible characters of a
cyclic group.

Proof. It is well-known that the Glauberman-Isaacs correspondence ∗ : IrrA(G) → Irr(C)
preserves fields of values. (See Chapter 13 of [3] and Section 10 of [2].) Now, Theorem A
applies.
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