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Abstract. Brauer’s Problem 1 asks the following: what are the possible com-

plex group algebras of finite groups? It seems that with the present knowledge
of representation theory it is not possible to settle this question. The goal of

this paper is to announce a partial solution to this problem. We conjecture

that if the complex group algebra of a finite group does not have more than
a fixed number m of isomorphic summands, then its dimension is bounded in

terms of m. We prove that this is true for every finite group if it is true for

the symmetric groups.

1. Introduction

Let G be a finite group and Irr(G) = {χ1, . . . , χk} the set of irreducible characters
of G. Put χi(1) = ni. Following B. Huppert, we say that (n1, . . . , nk) is the
degree pattern of G. In recent years much information has been obtained on
the possible sets of character degrees of finite groups, especially in the solvable
case (even though a complete classification of such sets seems to be very far away).
However, as pointed out by Huppert, almost nothing is known about Brauer’s
Problem 1 (see [2]), which asks the following: What are the possible degree patterns
of finite groups? As is well-known, if (n1, . . . , nk) is the degree pattern of G, the
complex group algebra of G is CG =

⊕k
i=1 Mni(C). So knowing the possible degree

patterns of finite groups is equivalent to knowing the possible isomorphism types
of complex group algebras.

Even though we think that with the present knowledge of representation theory
it is not possible to settle Brauer’s Problem 1, we think that it is possible to obtain
significant restrictions on the structure of the complex group algebras. The goal of
this note is to provide the first such restriction. For the sake of discussion, we state
the following.

Conjecture A. The C-dimension of the complex group algebra of any finite group
G is bounded in terms of the maximum number of isomorphic summands in the
decomposition CG =

⊕k
i=1 Mni

(C).

In other words, Conjecture A says that the order of a finite group is bounded
in terms of the largest multiplicity of its irreducible character degrees. Our main
results are the following. As usual, we say that a quantity is (a1, . . . , al)-bounded
if it is bounded by some real valued function that depends on a1, . . . , al.
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Theorem B. Conjecture A holds for every finite group if it holds for the symmetric
groups.

Theorem C. Let G be a finite group and assume that G does not contain an alter-
nating group bigger than Alt(t) as a composition factor. If the largest multiplicity
of a character degree is m, then the order of G is (m, t)-bounded.

Unfortunately, we have been unable to prove that Conjecture A holds for the
symmetric groups. This seems to be a difficult number theoretical problem. Note
that an immediate consequence of Theorem C is that Conjecture A holds for solvable
groups. (Actually, we prove this result in our way toward a proof of Theorems B
and C.)

In the next section we will outline the proof of Theorems B and C. Full details
will appear elsewhere. In Section 3, we discuss Conjecture A for symmetric groups.

I thank the referee for a number of useful comments that have improved the
readability of this paper.

2. Proof of Theorems B and C

The first step in the proof of Theorems B and C is the proof that Conjecture A
holds for solvable groups. First, we note that the hypothesis of this conjecture is
inherited by quotients. In the key lemma, we show that the number of primes that
divide the order of a solvable group that satisfies the hypothesis is bounded. It is
an application of results and ideas from [4].

Lemma 2.1. Let G be a solvable group with at most m irreducible characters of
each degree and let p be a prime divisor of |G|. Then p is m-bounded.

Actually, in this lemma we are just using that for any character χ ∈ Irr(G), the
field Q(χ) is an extension of Q of degree ≤ m. This follows from the fact that all
the Galois conjugate characters have the same degree.

By Gaschutz’s theorem, if G is a solvable group then G/F (G) acts faithfully
and completely reducibly on F (G)/Φ(G). This is the context in which we apply
the following lemma. We say that a finite module V for a group G has mixed
characteristic if V is an abelian group all of whose Sylow subgroups are elementary
abelian groups. For such a G-module V , r(G, V ) stands for the number of orbits
in V under the action of G. For a solvable group G, we write dl(G) to denote the
derived length of G.

Lemma 2.2. Let G be solvable and let V be a finite faithful completely reducible
G-module (possibly in mixed characteristic). Then there exist constants C1 and C2

such that
dl(G) ≤ C1 log log r(G, V ) + C2.

if r(G, V ) > 1 and dl(G) ≤ C2 if r(G, V ) = 1.

Proof. This immediate consequence of Theorem 2.4 of [11] appears as Theorem 7.2
of [13]. �

Finally, we need the following result, which is the nilpotent case of Conjecture
A.

Lemma 2.3. Let G be a nilpotent group and assume that the largest multiplicity
of a character degree is m. Then |G| is m-bounded.
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Proof. This is Corollary 1.12 of [10]. �

With these ingredients, the idea of the proof of Conjecture A in the solvable case
is the following. We consider the solvable groups G at most m irreducible characters
of any given degree. We want to see that |G| is m-bounded. First, we look at the
solvable groups with fixed derived length k. An easy inductive argument shows
that for these groups the order of G is (m, k)-bounded. Thus, if we want to find
a counterexample to Conjecture A for solvable groups, we need to consider groups
of arbitrarily large derived length. Indeed, by Clifford’s theory and Lemma 2.3, we
need to consider groups G such that dl(G/F (G)) is arbitrarily large. Now applying
Lemma 2.2 to the action of G/F (G) on F (G)/Φ(G), we deduce that the number of
orbits in this action is doubly exponential on dl(G/F (G)). The inductive argument
mentioned above shows that, in fact,

|G : F (G)| ≤ m4dl(G/F (G))
.

This together with Lemma 2.1 leads to the fact that the number of divisors of
|G : F (G)| is bounded by a function of the form

|G : F (G)| ≤ 4dl(G/F (G)) · f(m).

for some function f that only depends on m. Since the number of orbits of
G/F (G) on F (G)/Φ(G), and hence on Irr(F (G)/Φ(G)), is doubly exponential on
dl(G/F (G)), we deduce that the number of irreducible characters of G whose de-
gree divides |G : F (G)| is doubly exponential on dl(G/F (G)). We conclude that,
since dl(G/F (G)) is arbitrarily large, some of the irreducible character degrees oc-
curs with multiplicity larger than m. This contradiction concludes the proof of
Conjecture A for solvable groups.

The next step of the proof of Conjecture A is for the simple groups of Lie type.
We will present a proof, due to G. Malle, that gives pretty good explicit bounds.
An independent proof has been found in [12]. We will give the proof in a series of
lemmas. The idea if to find many Galois conjugate characters.

Lemma 2.4. Let s ∈ GL(n, Fq) be semisimple. Then s is conjugate to at most n!
of its powers. If moreover all eigenvalues of s are powers of one among them, then
s is conjugate to at most n of its powers.

Lemma 2.5. The group GL(n, q) contains a semisimple element s of order qn − 1
all of whose eigenvalues are powers of one among them.

Lemma 2.6. Let G = SL(n, q),SU(n, q),Sp(2n, q),SO(2n + 1, q),SO+(2n, q),
SO−(2n, q). Then G contains a semisimple element of order (qn−1)/(q−1), q[n/2]−
1, qn − 1, qn − 1, qn − 1, qn−1 − 1 conjugate to at most n, n, 2n, 2n + 1, 2n, 2n of its
powers.

Corollary 2.7. Let G = PSL(n, q),PSU(n, q),PSp(2n, q),PSO(2n + 1, q),
PSO+(2n, q),PSO−(2n, q). Then G contains a semisimple element of order at least
(qn − 1)/n(q − 1), (q[n/2] − 1)/n, (qn − 1)/2, (qn − 1)/2, (qn − 1)/2, (qn−1 − 1)/2
conjugate to at most n, n, 2n, 2n + 1, 2n, 2n of its powers.

These results follow from easy linear algebra arguments. With them and Deligne-
Lusztig theory, we can prove the main result for the classical groups of Lie type.
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Theorem 2.8. Let G = PSL(n, q),PSU(n, q),PSp(2n, q),PSO(2n + 1, q),
PSO+(2n, q),PSO−(2n, q). Then the largest multiplicity of the character degrees of
G is at least ϕ(qn − 1)/n2(q − 1), ϕ(q[n/2] − 1)/n2, ϕ(qn − 1)/4n, ϕ(qn − 1)/2(2n +
1), ϕ(qn − 1)/4n, ϕ(qn−1 − 1)/4n.

Theorem 2.9. Conjecture A holds for simple groups of Lie type.

Sketch of proof. For classical groups, this follows easily from Theorem 2.8 using the
fact that for any ε > 0, ϕ(k)/k1−ε →∞ when k →∞ (see Theorem 327 of [6]).

For exceptional groups, we can use, for example, that (P ) SL(2, q) ≤ G(q) for
G(q) of exceptional type different from 2B2(q) (see Dynkin diagram) and G(q) ≤
GL(a, q) for some small a. For instance, (P ) SL(2, q) ≤ E8(q) ≤ GL(248, q)). It
is easy to see using the first part of Lemma 2.4 that E8(q) contains a semisimple
element of order (q − 1)/2 conjugate to at most (248)! of its powers. Now, use
Deligne-Lusztig theory.

Finally, we consider the groups 2B2(q). It is well-known that they have (q−2)/2
characters of degree q2 + 1 (see Theorem XI.5.10 of [8]). The result follows. �

Now, we can begin work toward the proof of the general case of Theorems B
and C. We need some more lemmas. The first one is a non-trivial number-theoretic
result. Given an integer n, we write d(n) to denote the number of divisors of n.

Lemma 2.10. (i) If ε > 0, then d(n) < 2(1+ε) log n/ log log n for all n > n0(ε).
(ii)

lim
n→∞

d(n!)

2
c log n!

(log log n!)2
= 1,

where c is some constant.

Proof. The first part is Theorem 317 of [6]. The second part is in [3]. �

We need one more lemma on the characters of the simple groups.

Lemma 2.11. Let S be a finite simple group. Then there exist a non-principal
irreducible character of S that extends to Aut(S).

In the proof of Theorem C, the following result is also necessary.

Theorem 2.12. Let G be a permutation group on a set Ω of cardinality k and
assume that G does not contain any alternating group bigger than Alt(t) as a com-
position factor. Then the number of orbits of G on the power set P(Ω) is at least
ak/t where a > 1 is some constant.

Proof. This appears in [1] �

Now we will sketch the proof of Theorem C.

Sketch of proof of Theorem C. Using the solvable case and Clifford’s theory, we
may assume that F (G) = 1. Hence, G is isomorphic to a subgroup of the auto-
morphism group of its socle, so it suffices to bound the cardinality of the socle of
G.

We have to bound the number of times that a given simple group S appears as
a direct factor of the socle and also the order of each of these simple groups. We
will just do the first part.

Let N be a normal subgroup of G isomorphic to the direct product of k copies
of a non-abelian simple group S. We will bound k in terms of m. We have that
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G/CG(N) embeds into Aut(N) ∼= Aut(S) o Sk. Put H = G/CG(N) and view this
group as a subgroup of Aut(S) o Sk. Let B = H ∩Aut(S)k and note that H/B is a
permutation group on k letters. Fix a non-linear character ϕ ∈ Irr(S) that extends
to Aut(S) (it exists by Lemma 2.11). Note that the hypotheses of Theorem 2.12
hold. It follows from this result that for some s, the number of orbits of H/B on
the subsets of cardinality s is at least ak/t/(k + 1). Considering the characters of
B that extend products of s copies of ϕ and k− s copies of the principal character
of S, we deduce that there are at least ak/t/(k + 1) H-orbits of characters of B of
the same degree. Using Corollary 11.29 of [9], it follows that H (and hence G) has
at least ak/t/(k + 1)d(k!) characters of the same degree. Using part (ii) of Lemma
2.10 and Stirling’s formula, one can see that this quotient goes to infinity as k goes
to infinity. It follows that k has to be bounded in terms of m, as desired. �

Using these results together with Schreier’s conjecture and Stirling’s formula,
one can complete the proof of Theorem C. Note that by the solvable case, we may
assume that G does not have any non-trivial solvable normal subgroup, so it suffices
to bound the order of the socle of G.

Once we have proved Theorem C, Theorem B will be an immediate consequence
of the following lemma. Given a group G, we write m(G) to denote the largest
multiplicity of the character degrees of G.

Lemma 2.13. Assume that Alt(t) is a composition factor of a finite group G for
some t > 6. Then

m(G) ≥ m(Alt(t))/4.

In the proof of this lemma, we are using that any invariant character of the base
group of a wreath product extends to the whole group.

3. Symmetric groups

The goal of this section is to discuss Conjecture A for symmetric groups. As
we will see, this is a combinatorial problem. It is well known, that the number of
irreducible characters of Sn is the number of partitions of n. A. Young found a
description of the irreducible characters in terms of the partitions of n.

Given a partition of n, µ = (a1, . . . , at), with a1 ≥ a2 ≥ · · · ≥ at, the Young
diagram associated to µ is an array of n nodes with ai nodes in the ith row. We
assign numbers to the rows and columns and coordinates to the nodes. The hook
number H(i, j) of the node (i, j) is the number of nodes to the right and below the
node (i, j), including the node (i, j). The degree of the character χµ associated to
the partition µ is given by the hook length formula

χµ(1) =
n!∏

i,j H(i, j)
.

This description of the degrees was obtained by J. Frame, G. de B. Robinson and
R. Thrall in [5].

Therefore, Conjecture A can be restated as follows. Given an integer n, let m(n)
be the largest number of partitions of n with the same product of hook numbers.

Conjecture A’. m(n) →∞ as n →∞.

Computer calculations suggest that this is the case, but it seems to be difficult
to find a proof. Just to find a proof of the weaker result lim supm(n) = ∞ would
be interesting.
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