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E-mail: Alexander.Moreto@uv.es

2000 Mathematics Subject Classification: Primary 20C15

Research supported by the FEDER, the Spanish Ministerio de Ciencia y
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1 Introduction

Let a group A act as automorphisms on a finite group G. There are many
papers devoted to studying the orbits of these actions and, in particular,
to prove that there are large orbits. As is well-known, these results have
applications in character theory. For instance, they are the key to many
of the results that have been proved on character degrees.

It may be surprising therefore that, as far as we know, there is not any
known result that says that there is a large orbit on the set of irreducible
characters of G. As an application of the results of [16], we provide one
such result.

Theorem A. Let A be a p-group that acts faithfully on a solvable p′-group
G. Let n be an integer such that |A : CA(χ)| ≤ pn for all χ ∈ Irr(G). Then
|A| ≤ p19n.

It is certainly necessary to assume that (|A|, |G|) = 1. Otherwise, we
can take G to be any nonabelian p-group and A = G/Z(G). Since |A| can
be arbitrarily large and all the A-orbits of characters of G are trivial, we
deduce that Theorem A fails in the noncoprime case. It was already proved
by W. Burnside [2] that there are p-groups P that have class-preserving
outer automorphisms. It follows from a theorem of R. Brauer (Theorem
6.32 of [5]) that these automorphisms fix all the irreducible characters.
We can take a direct product of arbitrarily many copies of P and this
shows that it is necessary to assume that the action is coprime even it we
take A to be a subgroup of outer automorphisms of G. However, we think
that it should be possible to remove the solvability assumption on G. As
we will see in Section 2, this would allow to solve Conjecture 4 of [12] for
p-solvable groups.

In the situation of Theorem A, if we consider the action on the elements
of G instead of on the characters, it is possible to prove that |A| ≤ p2n

and there are even better bounds (see [6]). If seems reasonable to expect
that, since the number of characters of a non-abelian group is usually much
smaller than the number of elements, the bounds that we will obtain when
we consider actions on characters will be worse. However, we know of no
example where |A| > p2n. It is worth mentioning that for coprime group
actions the sizes of the orbits on characters are the same as the sizes of the
orbits on the conjugacy classes. Therefore Theorem A can also be applied
to actions on conjugacy classes.

As a consequence of Theorem A, we will prove some results that relate
ordinary and Brauer character degrees. Fix a prime number p. It follows
from the Fong-Swan theorem (Theorem 10.1 of [17]) that for solvable
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groups G the set of irreducible Brauer characters IBr(G) may be seen as
a subset of Irr(G). It seems natural to ask the following: What can we
say about Irr(G) if we know IBr(G)? In this note, we focus on character
degrees so our question is: What can we say about the degrees of the
ordinary irreducible characters if we know the Brauer character degrees?
Since Op(G) is contained in the kernel of all the Brauer characters, it is
natural to assume that Op(G) = 1.

First, we look at p-parts of character degrees. It was proved in [7] that
if p2 does not divide the degree of any irreducible Brauer character of a
solvable group with Op(G) = 1, then it does not divide the degree of any
irreducible ordinary character either. The hypothesis was replaced by the
analogue one on class sizes of p-regular elements in Theorem 1.4 of [9],
and the same conclusion was obtained. We will extend these results. We
define ep(G) to be the largest integer that occurs as the exponent of the
p-part of the degrees of the members of Irr(G). Similarly, we define ep(G)
to be the largest integer that occurs as the exponent of the p-part of the
degrees of the members of IBr(G). We prove that ep(G) is bounded in
terms of ep(G). In fact, we obtain a stronger result.

Theorem B. Let G be a finite solvable group with Op(G) = 1 and write
ep(G) = n. Then |G|p ≤ p96n.

As a consequence, we have that for any solvable group such that
ep(G) = n, |G : F (G)|p ≤ p96n. It would be interesting to know what
the best possible bounds are. In particular, we know of no example where
|G|p > p2n in the situation of Theorem B.

As shown in [7] it is not possible to obtain any bounds in the situation
of Theorem B if we look at q-parts of character degrees for a prime q 6= p.
However, it we consider all the primes at the same time, we can obtain
results of this flavor. Given an integer n = pa1

1 . . . pat
t where pi 6= pj if

i 6= j, we write τ(n) = maxt
i=1 ai. Now we define

τp(G) = {max τ(ϕ(1)) | ϕ ∈ IBr(G)}

and
τ(G) = {max τ(χ(1)) | χ ∈ Irr(G)}.

It was proved in Theorem 3.2 of [8] that τ(G) is bounded by a function
that is quadratic in τp(G) and logarithmic in p. After the proof of this
theorem, two questions were raised (see 3.3 of [8]). The second of them
asks whether or not it is possible to find a bound that does not depend on
p. Unfortunately, we have been unable to answer this question. However,
we can give an affirmative answer to the first question, which asks whether
there is a bound that is linear in τp(G).
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Theorem C. For every solvable group G with Op(G) = 1, we have that

τ(G) ≤ (152 log2 p+ 97)τp(G).

Our proofs are further applications of the results in [11]. The main
theorems of [11] have a number of applications to other problems on ordi-
nary character degrees, conjugacy class sizes and zeros of characters (see
Section 2 of [16] or [13, 14, 15]). The results of this paper constitute
the first applications to results that relate ordinary and Brauer character
degrees. For the reader’s convenience, we recall Theorem E(i) of [16].

Theorem 1.1. Let V be a finite completely reducible faithful G-module
(possibly of mixed characteristic), where G is a finite solvable group. Then
there exists v ∈ V such that CG(v) ≤ F9(G), where F9(G) is the 9th term
in the ascending Fitting series of G.

In order to make the proofs as smooth as possible, the constants that
appear in our results are not the best possible ones that could be obtained
with our methods. In particular, for odd order groups all the bounds can
be considerably improved.

I thank the referee for a number of helpful comments.

2 Orbits on characters

In this section, we prove Theorem A. Recall that if G is a finite group,
F1(G) = F (G) is the Fitting subgroup of G and for i > 1, Fi(G) is defined
by means of Fi(G)/Fi−1(G) = F (G/Fi−1(G)). We begin with a lemma.

Lemma 2.1. Assume that a p-group A acts faithfully on a solvable p′-
group G. Let n be an integer such that |A : CA(χ)| ≤ pn for all χ ∈ Irr(G).
Let Γ = AG be the semidirect product. Then |Fi+1(Γ) : Fi(Γ)|p ≤ p2n for
all i ≥ 1.

Proof. Let O/Fi−1(Γ) = Op(Γ/Fi−1(Γ)). Replacing Γ by Γ/O we may
assume, without loss of generality, that i = 1. Let P/F (Γ) be the Sylow
p-subgroup of F2(Γ)/F (Γ). Write P = QF (Γ), where Q ∈ Sylp(P ). We
have to prove that |Q| ≤ p2n.

We know by Gaschutz’s theorem thatQ acts faithfully on Irr(F (Γ)/Φ(P )).
Replacing A by a conjugate, if necessary, we may assume that Q ≤ A.
Also, it is clear that Q E A. It follows from our hypothesis that |Q :
CQ(χ)| ≤ pn for all χ ∈ Irr(G).
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Now, let λ ∈ Irr(F (Γ)/Φ(P )). By Theorem 13.28 of [5], there exists
χ ∈ Irr(G) lying over λ that is CQ(λ)-invariant. We claim that CQ(χ) =
CQ(λ). It is clear that |Q : CQ(λ)| divides the degree of any character of P
lying over λ. Therefore, |Q : CQ(λ)| divides the degree of any character of
QG lying over λ. Now, Corollary 8.16 of [5] and Clifford’s correspondence
(Theorem 6.11 of [5]) yield that there exist ψ ∈ Irr(QG) lying over χ,
whence over λ, such that ψ(1)p = |Q : CQ(χ)|. It follows that CQ(χ) =
CQ(λ), as desired. In particular, |Q : CQ(λ)| ≤ pn. We deduce that for
all λ ∈ Irr(F (Γ)/Φ(P )), |Q : CQ(λ)| ≤ pn. Now, [6], for instance, implies
that |Q| ≤ p2n. This completes the proof of the lemma.

Now, we are ready to prove Theorem A.

Proof of Theorem A. Let Γ = AG be the semidirect product of A and G.
By Gaschutz’s theorem, Γ/F (Γ) acts faithfully and completely reducibly
on Irr(F (Γ)/Φ(Γ)). It follows from Theorem 1.1 that there exists λ ∈
Irr(F (Γ)/Φ(Γ)) such that T = CΓ(λ) ≤ F10(Γ). We know that F (Γ)
is a p′-group and, using Lemma 2.1 that |Fi+1(Γ) : Fi(Γ)|p ≤ p2n for
i = 1, . . . , 9. Hence, in order to complete the proof of the theorem, it
suffices to see that |Γ : T |p ≤ pn.

Let χ be any irreducible character of G lying over λ. Then every
irreducible character of Γ that lies over χ also lies over λ and hence has
degree divisible by |Γ : T |. But χ extends to its stabilizer in Γ and thus
some irreducible character of Γ lying over χ has degree χ(1)|A : CA(χ)|.
The p-part of |Γ : T |, therefore, divides |A : CA(χ)|, which is at most pn.
This completes the proof of the theorem.

We conjecture that the solvability assumption is not necessary.

Conjecture 2.2. Assume that a p-group A acts faithfully on a p′-group
G. Let n be an integer such that |A : CA(χ)| ≤ pn for all χ ∈ Irr(G).
Then

(i) |A| ≤ pf(n) for some function f .

(ii) The function f can be taken to be linear.

Now, we will see that Conjecture 2.2 holds for simple groups G. In
fact, there is a much stronger result in this case.

Theorem 2.3. Assume that a p-group A acts on a simple p′-group G.
Then there exists a regular orbit of A on the irreducible characters of G.
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Proof. It is well-known that if a simple group G has a non-trivial automor-
phism of coprime order then it is a group of Lie type and the automorphism
is, up to conjugation, a field automorphism (see [3]). This implies that
A is cyclic and the result follows from the fact that a non-trivial coprime
automorphism cannot fix all the irreducible characters.

The work in [16] was intended to prove Conjecture 4 of [12] for solvable
groups. With its help, we have proved that Conjecture 2.2 holds for
G solvable. Conversely, we will prove now that Conjecture 2.2 implies
Conjecture 4 of [12] for G p-solvable.

Theorem 2.4. Assume Conjecture 2.2(i). Then there exists a function g
such that |G : Op′,p(G)|p ≤ pg(ep(G)) for any p-solvable group G. Also, the
logarithm to the base of p of the largest degree of the irreducible characters
of a Sylow p-subgroup of G is bounded by a function of ep(G).

Proof. Without loss of generality, we may assume that Op′(G) = 1 and
G = Op′

(G). By Hall-Higman (see [4] and [1]) and Corollary 2.7 of [10]
(which asserts that the derived length of a Sylow p-subgroup of G is
bounded in terms of ep(G)), the p-length of G is bounded in terms of
ep(G).

Let R/Op(G) = Op′(G/Op(G)) and N/R = Op(G/R). By Conjecture
2.2(i), we have that logp |N/R| is bounded in terms of ep(G). We can
repeat this argument lp(G) times to deduce the result.

Now, we prove the second statement. We may also assume that
Op′(G) = 1. Let P be a Sylow p-subgroup of G. Since Op(G) E P ,
we have that

ep(P ) ≤ ep(Op(G)) logp |G : Op(G)|p ≤ ep(G) + g(ep(G)),

as wanted.

3 p-parts of character degrees and conjugacy classes

We begin with the proof of Theorem B.

Proof of Theorem B. Consider the ascending (p′, p)-series

1 = K0 < N0 < K1 < · · · < G,

so that Ni/Ki = Op′(G/Ki) and Ki+1/Ni = Op(G/Ni) for i ≥ 0. Observe
that F (G) ≤ N0 and F2(G) ≤ K1. Continuing this way, one can see that
F10(G) ≤ K5.
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By Gaschutz’s theorem, G/F (G) acts faithfully and completely re-
ducibly on Irr(F (G)/Φ(G)) = IBr(F (G)/Φ(G)). It follows from Theorem
1.1 that the inertia group of some Brauer character of F (G) is contained in
F10(G) ≤ K5. By Clifford’s correspondence (Theorem 8.9 of [17]), there is
some irreducible Brauer character of G that is induced from some Brauer
character of F10(G). Now, our hypothesis implies that |G : K5|p ≤ pn.

Now, it suffices to see that |Ki+1 : Ki|p ≤ p19n for i = 0, . . . , 4. By
hypothesis, the action of Ki+1/Ni on Ni/Ki satisfies the hypothesis of
Theorem A. Now, the result follows from Theorem A.

As an immediate consequence of Theorem B, we have the following.

Corollary 3.1. Let G be a finite solvable group with Op(G) = 1 and write
ep(G) = n. Then |G|p ≤ p96n. Then

(i) ep(G) ≤ 96n;

(ii) The largest degree of the characters of a Sylow p-subgroup of G is
less than p48n;

(iii) The derived length of a Sylow p-subgroup of G is bounded by a loga-
rithmic function of n.

It was known that the derived length of a Sylow p-subgroup ofG/Op(G)
is bounded by a function of the order of n log n (see [19] or Corollary 14.15
of [11]). Our result here improves considerably the order of magnitude of
the bound.

Now, we prove the analogous result replacing the hypothesis on Brauer
character degrees by an hypothesis on the sizes of the conjugacy classes
of p-regular elements.

Theorem 3.2. Let G be a solvable group with Op(G) = 1. Let n be
an integer such that |C|p ≤ pn for every conjugacy class C of p-regular
elements. Then |G|p ≤ p683n. In particular, ep(G) ≤ 683n, the largest
degree of the characters of a Sylow p-subgroup of G is less than p683n/2

and its derived length is bounded by a logarithmic function of n.

Proof. We will use the notation of the first paragraph of the proof of
Theorem B. By the proof of Theorem C′ of [16], there exists a p-regular
element x ∈ F (G) such that CG(x) ≤ F10(G), so |G : F10(G)|p ≤ pn.
Now, it suffices to see that |K5|p ≤ p682n.

The p-group K1/N0 acts faithfully on N0. By hypothesis, the orbits of
this action have size ≤ pn, so by [6], for instance, |K1/N0| ≤ p2n. By Hall-
Higman’s Lemma 1.2.3 Ki+1/Ni acts faithfully and coprimely Ni/Ki for
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all i > 0. Similarly, Ni+1/Ki+1 acts faithfully and coprimely on Ki+1/Ni.
Now, we can apply Theorem 1 of [18] repeatedly to deduce that |N1 :
K1| ≤ p4n, |K2 : N1| ≤ p8n and, more generally, |Ki+1 : Ni| ≤ p22i+1n. We
conclude that

|K5|p =
4∏

i=0

|Ki+1 : Ni| ≤
4∏

i=0

p(22i+1)n = p(
∑4

i=0 22i+1)n = p682n,

as desired.

4 Ordinary and Brauer character degrees

In this section we prove Theorem C. The ideas of the proof are those
involved in the proofs of the other results of this paper, so we will just
sketch it.

Proof of Theorem C. We use the notation of the first paragraph of the
proof of Theorem B. As in the proof of Theorem B, there exists an irre-
ducible Brauer character that is induced from F10(G), so

τ(|G/K5|) ≤ τ(|G/F10(G)|) ≤ τp(G).

By Theorem A, we know that |Ki+1 : Ni| ≤ p19τp(G) for all i. This
implies, using Theorem 1 of [18] again, that |Ni : Ki| ≤ p38τp(G) for all
i ≥ 1. In particular,

τ(|Ki+1/Ni|) ≤ 19τp(G)

and
τ(|Ni/Ki|) ≤ log2 p

38τp(G) = 38τp(G) log2 p.

We conclude that

τ(G) ≤ τ(|G/K5|) + τ(|K5/N0|) + τ(|N0|)
≤ τp(G) + 95τp(G) + 152τp(G) log2 p+ τp(G)
= (152 log2 p+ 97)τp(G).

As in the case of Theorem B, there is an analogous statement replacing
the hypothesis on Brauer character degrees by the corresponding hypoth-
esis of class sizes of p-regular elements. Since the proof is routine, we will
omit it.
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