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Abstract. In this note we prove that for any two integers r, s > 1 there exist

finite p-groups G of class 2 such that | cd(G)| = r and | cs(G)| = s.

1. Introduction

In the last decades a number of results have been proved concerning the sets
cs(G) of conjugacy class sizes and cd(G) of complex irreducible character degrees
of a finite group G. Many of the results about class sizes are dual to results
about character degrees, though the reason for the existence of this duality is not
understood yet. For instance, Isaacs [?] proved that given any set A of powers of
a prime number p containing 1, there exists a p-group G of class ≤ 2 such that
cd(G) = A. The dual result for class sizes has been recently obtained in [?] by
Cossey and Hawkes, who show that, for any set A as above, there always exists a
p-group of class ≤ 2 such that cs(G) = A. We raise more generally the following
question: for which sets A and B of powers of p containing 1 is it possible to find
a p-group G such that cd(G) = A and cs(G) = B? Of course, if any of the two
sets reduces to {1} so does the other, hence we will assume that |A|, |B| ≥ 2. Even
in this case it is easy to see that there must be some kind of relation between A
and B. As already pointed out by Burnside [?, page 126], if cs(G) = {1, p} then
|G′| = p and Theorem 7.5 in [?] yields that cd(G) = {1, |G : Z(G)|1/2}. On the
other hand, according to Theorem 12.11 of [?], if cd(G) = {1, p} then either G has
an abelian maximal subgroup or |G : Z(G)| = p3 and consequently | cs(G)| ≤ 3. In
this note we prove that, surprisingly enough, there is not any relation between the
number of character degrees and the number of class sizes.

Theorem. Given any two integers r and s greater than 1 there exists a p-group G
of class 2 such that | cd(G)| = r and | cs(G)| = s.

The proof of this theorem is elementary, but still we think that the result is
noteworthy and, together with the examples above, indicates that it may be very
difficult to find a complete answer to the question raised.
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2 GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ

2. Proof of the Theorem

We first prove that, for any n > 1, there exist p-groups of class 2 with n character
degrees and 2 class sizes and also groups with n class sizes and 2 character degrees.
The theorem will then be a straightforward consequence of these results.

Let us denote by Dp the variety of p-groups of class ≤ 2 and exponent p when
p is odd, and the variety generated by the dihedral group of order 8 when p = 2.
In our next lemma we see that the free groups in this variety provide examples for
our first case.

Lemma 2.1. Let Fn be the free group of rank n ≥ 2 in the variety Dp. Then
cd(Fn) = {1, p, . . . , p[n/2]} and cs(Fn) = {1, pn−1}.

Proof. As observed in [?], any two elements of Fn that are independent modulo
Φ(Fn) do not commute and, on the other hand, Φ(Fn) = Z(Fn) has index pn in
Fn. We derive from these facts that cs(Fn) = {1, pn−1}.

Let us examine now the character degrees of Fn. Since |Fn : Z(Fn)| = pn, we
deduce from Corollary 2.30 of [?] that χ(1) ≤ p[n/2] for any complex irreducible
character χ of Fn. Conversely, choose any positive integer i ≤ [n/2]. Since F2i is a
quotient of Fn, it suffices to show that pi ∈ cd(F2i). If we consider an appropriate
maximal subgroup N of F ′

2i then F2i/N is an extraspecial group of order p2i+1 and,
according to [?, Example 7.6], pi ∈ cd(F2i/N) ⊆ cd(F2i). The result follows. �

For the second case, we need an explicit construction. Recall from [?, Lemma
5.7] that if K and L are finite groups such that cd(K) = {1,m}, cd(L) = {1, n} and
K ′ ∼= L′, then any product G of K and L with K ′ and L′ amalgamated satisfies
that cd(G) = {1,mn}.

Lemma 2.2. Let Kn = 〈b〉[〈a1〉 × · · · × 〈an〉] be a semidirect product, where b has
order p, each ai has order p2 and the action of b is given by ab

i = a1+p
i . If Gl,n

denotes the canonical central product of l ≤ n copies of Kn then cd(Gl,n) = {1, pl}
and cs(Gl,n) = {1, p, . . . , pl, pn}.

Proof. The result about cd(Gl,n) follows from the remark before the lemma, since
cd(Kn) = {1, p} by Ito’s Theorem [?, Theorem 6.15]. We prove the claim about
cs(Gl,n) by induction on l. For l = 1, G1,n = Kn and the result is clear. We assume
now that l > 1 and cs(Gl−1,n) = {1, p, . . . , pl−1, pn}.

We have that Gl,n is the quotient of the direct product T = Gl−1,n × Kn by
the normal subgroup N = {(x, x−1) | x ∈ Z(Kn)}, after identifying the centre of
Gl−1,n with the centre of Kn. Let us use the bar notation in Gl,n. Since the class
of an element does not increase its size when passing to a quotient, for x ∈ Gl−1,n,
y ∈ Kn we have that

|ClGl,n
((x, y))| ≤ |ClT ((x, y))| = |ClGl−1,n

(x)||ClKn
(y)|.

On the other hand,

|ClGl,n
((x, y))| ≥ |{(x, y)

(g,1)
| g ∈ Gl−1,n}|

= |{(xg, 1) | g ∈ Gl−1,n}| = |ClGl−1,n
(x)|

and similarly |ClGl,n
((x, y))| ≥ |ClKn(y)|. Therefore

max{|ClGl−1,n
(x)|, |ClKn

(y)|} ≤ |ClGl,n
((x, y))| ≤ |ClGl−1,n

(x)||ClKn
(y)|. (1)
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If we use (??) with y = 1, we deduce that the size of the class of (x, 1) in Gl,n is
the same as that of the class of x in Gl−1,n. Hence {1, p, . . . , pl−1, pn} ⊆ cs(Gl,n).
On the other hand, if we take into acount that cs(Kn) = {1, p, pn}, the induction
hypothesis and that the size of a class in Gl,n is at most |G′

l,n| = pn, it also follows
from (??) that cs(Gl,n) ⊆ {1, p, . . . , pl, pn}.

So the theorem will be proved once we show that pl ∈ cs(Gl,n). Let x be an
element whose class in Gl−1,n has size pl−1. Since Z(Kn) = K ′

n is an elementary
abelian group of order pn generated by the commutators [ai, b] and l− 1 < n, some
[ai, b] is not contained in [x,Gl−1,n]. Then

|ClGl,n
((x, ai))| = |[x,Gl−1,n]× [ai,Kn]| = pl,

as we wanted to prove. �

Finally, we proceed to prove our theorem. In the proof, En will stand for an ex-
traspecial group of order p2n+1 and Un will denote a Sylow p-subgroup of SL(3, pn).
Then |Un| = p3n and, according to [?, Lemma 4], Un is a semiextraspecial group
(that is, the quotient by any maximal subgroup of the centre is extraspecial) with
centre of order pn. It follows from Theorem A in [?] that cd(Un) = cs(Un) = {1, pn}.

Proof of the Theorem. If r ≤ s it suffices to consider the group G = Gn,n × En ×
r−2· · · × En, where n = s− r + 1.

Assume now that s ≤ r. If s = 2l is even then for any n ≥ l the group

G = F2n × E1 ×
l−1· · · × E1 satisfies that | cs(G)| = 2l and | cd(G)| = n + l, so we

are done by choosing n = r − l. If s = 2l + 1 > 3 is odd then for n ≥ l the group
Gl−1,2n × F2n+1 has 2l + 1 class sizes and n + l character degrees, and again it
suffices to take n = r − l. Lastly, for s = 3 consider the groups F2n+1 × F2n+1 and
U2n × F2n+1, where n ≥ 1. The number of class sizes is 3 for any of these groups
and, on the other hand, the number of character degrees is respectively 2n + 1 and
2n + 2, hence it may equal any r ≥ 3. �
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E-mail address: mtpfealg@lg.ehu.es
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