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1 Introduction

A lot of research has been made on character degrees of finite groups since
the eighties. This is in large part due to the interest of B. Huppert and his
school in this type of problems. One of the main problems that Huppert
raised in the eighties was his well-known ρ-σ conjectures. Given a finite
group G, ρ(G) is the set of distinct primes that divide the degree of some
irreducible character of G and

σ(G) = max{σ(χ(1)) | χ ∈ Irr(G)},

where given an integer n, σ(n) is the number of different prime divisors of
n. Huppert’s ρ-σ conjectures say the following:

(i) There is a real-valued function f such that |ρ(G)| ≤ f(σ(G)) for every
finite group G.

(ii) If G is solvable, then |ρ(G)| ≤ 2σ(G).

Until now, both parts of this conjecture remained open. The first positive
answer to question (i) in the case of solvable groups was provided by M.
Isaacs in [5]. Isaacs obtained an exponential bound, which was subsequently
improved by D. Gluck, O. Manz and T. Wolf [4, 6, 8]. (See also [7] for a
detailed discussion of the known results on the ρ-σ conjectures.) The best
known bound to date in the case of solvable groups is |ρ(G)| ≤ 3σ(G) + 2
(see [8]). The goal of this paper is to settle part (i) of the conjecture. We
obtain a quadratic bound which is by no means best possible. We have not
tried to obtain the best possible bound attainable with our methods because
it would be far from the best possible bound.

Theorem A. For any finite group G,

|ρ(G)| ≤ σ(G)2 + 5σ(G) + 13.

2 Proof of Theorem A

We begin with several lemmas that will be necessary in the proof of Theorem
A. The first one gives a very crude bound for the number of different prime
divisors of the order of the automorphism group of a nonabelian simple
group that do not divide the order of the simple group.

Lemma 2.1. Let S be a nonabelian simple group. Then the number of
different prime divisors of |Out(S)| that do not divide |S| does not exceed
one-third of the number of different prime divisors of |S|.
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Proof. As it is well-known, any coprime automorphism of s non-abelian sim-
ple group is, up to conjugation, a field automorphism of a simple group of
Lie type over a finite field with, say, q = pe elements. The order of a Hall
subgroup of Out(S) for the primes that do not divide |S|, divides e. The
result follows using, for instance, Zsigmondy’s prime divisor theorem and
the order formulas of the simple groups (see Theorem 6.2 of [7] and [?]).

Next, we prove a surely well-known number theoretic fact. As usual
given a real number x, π(x) stands for the number of prime integers ≤ x.

Lemma 2.2. For any x > 41,

π(x/2) ≤ 2.5(π(x)− π(x/2)).

Proof. Using Corollary 1 and Corollary 3 of [9], we have

π(x/2) ≤ 1.25506(x/ log x) < 2.5(π(x)− π(x/2)),

as wanted.

Now, we state an elementary group theoretic fact.

Lemma 2.3. For 1 ≤ i ≤ t, let Ni be the direct product of some number
of copies of a nonabelian simple group Si. Assume that the groups Si are
pairwise nonisomorphic. Then

Aut(N1 × · · · ×Nt) ∼= Aut(N1)× · · · ×Aut(Nt).

and
Out(N1 × · · · ×Nt) ∼= Out(N1)× · · · ×Out(Nt).

Finally, we will need the following easy consequence of the results in [2]
and [10]. Following [2], recall that if G is a permutation group on Ω and µ
is a set of prime divisors of |G|, we say that Λ ⊆ Ω lies in a µ-semiregular
orbit if the intersection of µ and the set of prime divisors of |G| is contained
in the set of prime divisors of |G : GΛ|. We refer the reader to [2] for further
terminology.

Lemma 2.4. Let G be a permutation group on a set Ω. Let n be the degree
of the largest alternating or symmetric group that appears as a primitive
constituent of G and let µ be the set of primes p such that p ≤ max{32, (n+
1)/2}. Then G has a µ′-semiregular orbit on the power set of Ω.

Proof. Let (H,∆) be a primitive constituent of (G, Ω). If H does not contain
Alt(∆), then it follows from [10] that H has a µ′-semiregular orbit on the
power set of ∆. If H contains Alt(∆), then we can take Λ to be any subset of
∆ of cardinality [|∆|/2]. It is easy to see that the orbit of Λ is µ′-semiregular.
Now the result follows from Corollary 1 of [2].
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Now, we are ready to complete the proof of the theorem. We will use re-
peatedly, and without further explicit notice, that if N is a normal subgroup
of G, then σ(N) ≤ σ(G) and σ(G/N) ≤ σ(G).

Proof of Theorem A. Let σ = σ(G) be the maximum number of different
prime divisors of an irreducible character of G. Let A be the product of
the normal abelian Sylow subgroups of G. By the Ito-Michler theorem (see
Theorem 19.10 and Remark 19.11 of [3]), we know that ρ(G) is the number
of different prime divisors of |G/A|.

Let R be the largest normal solvable subgroup of G. By Theorem 1.4
of [8], we have that the number of different prime divisors of R does not
exceed 3σ + 2. Now, let T/R be the socle of G/R. We know that T/R
is a direct product of nonabelian simple groups. Now, we have that G/T
is isomorphic to a subgroup of Out(T/R), and we view it as a subgroup
of this group. Let U/T be the intersection of G/T and the direct product
of the outer automorphism groups of the simple groups involved in T/R
(note that by Lemma 2.3 this is a subgroup of Out(T/R)). Therefore, U/R
is a direct product of almost simple groups. Assume that we can find σ
almost simple groups S1, . . . , Sσ and σ pairwise different primes p1, . . . , pσ

such that pi divides |Si| for i = 1, . . . , σ. If a new prime p divides the order
of some other almost simple group S that appears as a direct factor, then
we can take a suitable product of characters of S, S1, . . . , Sσ to deduce that
σ(U/R) > σ. This contradiction implies that we cannot find such a new
prime that divides the order of a new direct factor.

Now, we take a prime q1 that divides the order of |U/R|. Then q1 divides
the order of some (almost simple) direct factor U1/R. If there is some prime
that divides |U/R| but does not divide |U1/R|, we take such a prime, say
q2, and a direct factor U2/R of U/R. We repeat this process until we have
covered all the prime divisors of U/R. The previous paragraph guarantees
that this will happen in at most σ steps.

Using Lemma 2.1 and Theorem A of [1], we have that

|ρ(Uj/R)| ≤ 4σ(Uj/R) ≤ 4σ

for every j. It follows that the number of different prime divisors of U/R
does not exceed 4σ2.

Finally, we have that G/U is a permutation group on the set Ω of direct
factors of T/R. With the notation of Lemma 2.4, we have that G/U has
a µ′-semiregular orbit on the power set of this set. This means that if Λ
lies in such an orbit, and we take a character ϕ of T/R that is a product of
copies of the principal character in the positions corresponding to indices in
Λ and non-principal characters elsewhere, then the degree of any character
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in Irr(G) lying over ϕ will be a multiple of all the primes in µ′. This means
that the number of prime divisors of |G/U | bigger than max{32, (n + 1)/2}
does not exceed σ. If n ≤ 63, then the number of prime divisors of |G/U | is
either ≤ σ + 11 (note that π(32) = 11). In other case,

π(n− 1)− π((n + 1)/2) ≤ σ

and we deduce using Lemma 2.2 that

π(n/2) ≤ 2.5(π(n)− π(n/2)) ≤ 2.5(π(n− 1)− π((n + 1)/2) + 2) ≤ σ + 5.

We see that, in any case, the number of prime divisors of |G/U | does not
exceed 2σ + 11.

Putting everything together, we have

|ρ(G)| ≤ (3σ + 2) + 4σ2 + (2σ + 11) = σ2 + 5σ + 13,

as desired. This concludes the proof.

From the proof above, it seems clear that it should be easy to obtain
a linear bound. This linear bound is known in the case of almost simple
groups and, using this proof, one only needs to consider the case of a direct
product of almost simple groups. However, we have not pursued this further
because the linear bound that one can likely obtain with these methods is
of the form |ρ(G)| ≤ 9σ(G) + C, where C is a universal constant. However,
it seems likely that a bound of the form |ρ(G)| ≤ 3σ(G) + C holds and it
is even possible that the multiplicative constant can be lowered to 2 (see
[7, 8]).
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