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Abstract. We prove that the number of different prime divisors of the order

of a finite group is bounded by a polynomial function of the maximum of the
number of different prime divisors of the element orders. This improves a

result of J. Zhang.

1. Introduction

Given a finite group G, let ρ(G) be the number of different prime divisors of
|G| and let α(G) be the maximum number of different prime divisors of the orders
of the elements of G. It was proved by J. Zhang in [5] that if G is solvable, then
ρ(G) is bounded by a quadratic function of α(G) and that for arbitrary G, ρ(G)
is bounded by a superexponential function of α(G). The result for solvable groups
was improved by T. M. Keller in [2], where he proved that ρ(G) is bounded by a
linear function of α(G). The purpose of this short note is to provide a proof of a
better bound in the case of arbitrary finite groups.

Theorem A. There exist universal (explicitly computable) constants C1 and C2

such that for every finite group G > 1 the inequality

ρ(G) ≤ C1α(G)4 log α(G) + C2

holds.

This result will be used in [3].

2. Proof

First, we prove that for simple groups there is an essentially cubic bound. We
begin with the alternating groups.

Lemma 2.1. There exists a constant C1 such that ρ(An) ≤ C1α(An)2 for every
n ≥ 5.

Proof. Let pj be the jth prime number. Let k be the maximum integer such that

4 +
k∑

j=2

pj ≤ n.

It is clear that the elements of An that can be written as the product of two 2-cycles,
one p2-cycle, one p3-cycle,. . . , one pk−1-cycle and one pk-cycle, with all these cycles
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pairwise disjoint are divisible by α(An) = k different primes. It follows from p. 190
of [4], for instance, that pj ≤ 10j log j. Therefore

α(An) ≥ max{l | 4 + 10
l∑

j=2

j log j ≤ n} ≥ max{l | 4 + 10l2 log l ≤ n} = t.

In particular, we have that n < 4 + 10(t + 1)2 log(t + 1). By p. 160 of [4], for
instance, we have that ρ(An) is bounded by a quadratic function of t. The result
follows. �

All the inequalities that appear in this proof have reversed inequalities of the
same order of magnitude. This implies that there exists for constant K1 such that
ρ(An) ≥ K1α(An) for every n ≥ 5. This means that it is not possible to improve
our cubic bound in Theorem A to anything better than a quadratic bound.

Next, we consider the simple groups of Lie type.

Lemma 2.2. There exists a constant C2 such that ρ(G) ≤ C2α(G)3 log α(G) when-
ever G is a simple group of Lie type.

Proof. It suffices to argue as in the proof of Lemma 5 of [5] using the proof of
Lemma 2.1 instead of the proof of Lemma 4 of [5]. �

Now, we are ready to prove Theorem A.

Proof of Theorem A. We know by [2] that there exists n0 > 1 such that if H is solv-
able and α(H) ≥ n0 then ρ(H) < 5α(H). We consider groups G with α(G) = k ≥
n0 and we want to prove that ρ(G) ≤ Ck4 log k, where C = 10max{C1, C2, C3, 5}
and C3 is defined in such a way that ρ(G) ≤ C3k

3 whenever α(G) = k < n0 or G
is sporadic.

Let G be a minimal (nonsolvable) counterexample. We define the series 1 =
S0 ≤ R1 < S1 < R2 < S2 < · · · < Rm < Sm ≤ Rm+1 = G as follows: R1 is the
largest normal solvable subgroup of G and for any i ≥ 1, Si/Ri is the socle of G/Ri

and Ri+1/Si is the largest normal solvable subgroup of G/Si. Notice that for i ≥ 1
Si/Ri is a direct product of non-abelian simple groups.

We claim that m ≤ 5k. In order to see this, we are going to prove first that there
exists a prime divisor qi of |Si/Ri| that is coprime to |G/Si||Ri| for i = 1, . . . ,m.
This argument is due to Zhang [5]. Let P be a Sylow 2-subgroup of Si. By
the Frattini argument, G = SiNG(P ). Put T = RiNG(P ). Then T is a proper
subgroup of G. If every prime divisor of |Si/Ri| divides |G/Si||Ri| then we would
have ρ(T ) = ρ(G). Since the theorem holds for T , it also holds for G. This
contradiction implies that such qi exists.

Now, let Qm be a qm-Sylow subgroup of G. We have that Qm acts coprimely
on Rm and using Glauberman’s Lemma (Lemma 13.8 of [1]), we deduce that there
exists Qm−1 ∈ Sylqm−1

(Rm) that is Qm- invariant. Now, we consider the action of
Qm−1Qm on Rm−1 and conclude that there exists a Qm−1Qm-invariant Sylow qm−2-
subgroup of G. In this way, we build a solvable subgroup H = QmQm−1 . . . Q1. By
[2], we have that m ≤ 5α(H) ≤ 5α(G), as claimed.

Using Lemmas 2.1 and 2.2 together with [2], we have that

ρ(Si/Si−1) ≤ (C/5)k3 log k.
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Finally we deduce that

ρ(G) ≤ m · max
i

ρ(Si/Si−1) ≤ Ck4 log k.

This contradiction completes the proof. �
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