# ON THE NUMBER OF DIFFERENT PRIME DIVISORS OF ELEMENT ORDERS 

ALEXANDER MORETÓ


#### Abstract

We prove that the number of different prime divisors of the order of a finite group is bounded by a polynomial function of the maximum of the number of different prime divisors of the element orders. This improves a result of J. Zhang.


## 1. Introduction

Given a finite group $G$, let $\rho(G)$ be the number of different prime divisors of $|G|$ and let $\alpha(G)$ be the maximum number of different prime divisors of the orders of the elements of $G$. It was proved by J. Zhang in [5] that if $G$ is solvable, then $\rho(G)$ is bounded by a quadratic function of $\alpha(G)$ and that for arbitrary $G, \rho(G)$ is bounded by a superexponential function of $\alpha(G)$. The result for solvable groups was improved by T. M. Keller in [2], where he proved that $\rho(G)$ is bounded by a linear function of $\alpha(G)$. The purpose of this short note is to provide a proof of a better bound in the case of arbitrary finite groups.

Theorem A. There exist universal (explicitly computable) constants $C_{1}$ and $C_{2}$ such that for every finite group $G>1$ the inequality

$$
\rho(G) \leq C_{1} \alpha(G)^{4} \log \alpha(G)+C_{2}
$$

holds.
This result will be used in [3].

## 2. Proof

First, we prove that for simple groups there is an essentially cubic bound. We begin with the alternating groups.

Lemma 2.1. There exists a constant $C_{1}$ such that $\rho\left(A_{n}\right) \leq C_{1} \alpha\left(A_{n}\right)^{2}$ for every $n \geq 5$.

Proof. Let $p_{j}$ be the $j$ th prime number. Let $k$ be the maximum integer such that

$$
4+\sum_{j=2}^{k} p_{j} \leq n
$$

It is clear that the elements of $A_{n}$ that can be written as the product of two 2-cycles, one $p_{2}$-cycle, one $p_{3}$-cycle, $\ldots$, one $p_{k-1}$-cycle and one $p_{k}$-cycle, with all these cycles

[^0]pairwise disjoint are divisible by $\alpha\left(A_{n}\right)=k$ different primes. It follows from p. 190 of [4], for instance, that $p_{j} \leq 10 j \log j$. Therefore
$$
\alpha\left(A_{n}\right) \geq \max \left\{l \mid 4+10 \sum_{j=2}^{l} j \log j \leq n\right\} \geq \max \left\{l \mid 4+10 l^{2} \log l \leq n\right\}=t
$$

In particular, we have that $n<4+10(t+1)^{2} \log (t+1)$. By p. 160 of [4], for instance, we have that $\rho\left(A_{n}\right)$ is bounded by a quadratic function of $t$. The result follows.

All the inequalities that appear in this proof have reversed inequalities of the same order of magnitude. This implies that there exists for constant $K_{1}$ such that $\rho\left(A_{n}\right) \geq K_{1} \alpha\left(A_{n}\right)$ for every $n \geq 5$. This means that it is not possible to improve our cubic bound in Theorem A to anything better than a quadratic bound.

Next, we consider the simple groups of Lie type.
Lemma 2.2. There exists a constant $C_{2}$ such that $\rho(G) \leq C_{2} \alpha(G)^{3} \log \alpha(G)$ whenever $G$ is a simple group of Lie type.

Proof. It suffices to argue as in the proof of Lemma 5 of [5] using the proof of Lemma 2.1 instead of the proof of Lemma 4 of [5].

Now, we are ready to prove Theorem A.
Proof of Theorem A. We know by [2] that there exists $n_{0}>1$ such that if $H$ is solvable and $\alpha(H) \geq n_{0}$ then $\rho(H)<5 \alpha(H)$. We consider groups $G$ with $\alpha(G)=k \geq$ $n_{0}$ and we want to prove that $\rho(G) \leq C k^{4} \log k$, where $C=10 \max \left\{C_{1}, C_{2}, C_{3}, 5\right\}$ and $C_{3}$ is defined in such a way that $\rho(G) \leq C_{3} k^{3}$ whenever $\alpha(G)=k<n_{0}$ or $G$ is sporadic.

Let $G$ be a minimal (nonsolvable) counterexample. We define the series $1=$ $S_{0} \leq R_{1}<S_{1}<R_{2}<S_{2}<\cdots<R_{m}<S_{m} \leq R_{m+1}=G$ as follows: $R_{1}$ is the largest normal solvable subgroup of $G$ and for any $i \geq 1, S_{i} / R_{i}$ is the socle of $G / R_{i}$ and $R_{i+1} / S_{i}$ is the largest normal solvable subgroup of $G / S_{i}$. Notice that for $i \geq 1$ $S_{i} / R_{i}$ is a direct product of non-abelian simple groups.

We claim that $m \leq 5 k$. In order to see this, we are going to prove first that there exists a prime divisor $q_{i}$ of $\left|S_{i} / R_{i}\right|$ that is coprime to $\left|G / S_{i} \| R_{i}\right|$ for $i=1, \ldots, m$. This argument is due to Zhang [5]. Let $P$ be a Sylow 2-subgroup of $S_{i}$. By the Frattini argument, $G=S_{i} N_{G}(P)$. Put $T=R_{i} N_{G}(P)$. Then $T$ is a proper subgroup of $G$. If every prime divisor of $\left|S_{i} / R_{i}\right|$ divides $\left|G / S_{i}\right|\left|R_{i}\right|$ then we would have $\rho(T)=\rho(G)$. Since the theorem holds for $T$, it also holds for $G$. This contradiction implies that such $q_{i}$ exists.

Now, let $Q_{m}$ be a $q_{m}$-Sylow subgroup of $G$. We have that $Q_{m}$ acts coprimely on $R_{m}$ and using Glauberman's Lemma (Lemma 13.8 of [1]), we deduce that there exists $Q_{m-1} \in \operatorname{Syl}_{q_{m-1}}\left(R_{m}\right)$ that is $Q_{m^{-}}$invariant. Now, we consider the action of $Q_{m-1} Q_{m}$ on $R_{m-1}$ and conclude that there exists a $Q_{m-1} Q_{m}$-invariant Sylow $q_{m-2^{-}}$ subgroup of $G$. In this way, we build a solvable subgroup $H=Q_{m} Q_{m-1} \ldots Q_{1}$. By [2], we have that $m \leq 5 \alpha(H) \leq 5 \alpha(G)$, as claimed.

Using Lemmas 2.1 and 2.2 together with [2], we have that

$$
\rho\left(S_{i} / S_{i-1}\right) \leq(C / 5) k^{3} \log k
$$

Finally we deduce that

$$
\rho(G) \leq m \cdot \max _{i} \rho\left(S_{i} / S_{i-1}\right) \leq C k^{4} \log k
$$

This contradiction completes the proof.

## References

[1] I. M. Isaacs, "Character Theory of Finite Groups", Academic Press, New York, 1976.
[2] T. M. Keller, A linear bound for $\rho(n)$, J. Algebra 178 (1995), 643-652.
[3] A. Moretó, G. Qian, W. Shi, Finite groups whose conjugacy class graphs have few vertices, in preparation.
[4] P. Ribenboim, "The Book of Prime Number Records", Springer-Verlag, New York, 1988.
[5] J. Zhang, Arithmetical conditions on element orders and group structure, Proc. Amer. Math. Soc. 123 (1995), 39-44.

Departament d'Àlgebra, Universitat de València, 46100 Burjassot. València. SPAIN E-mail address: Alexander.Moreto@uv.es


[^0]:    1991 Mathematics Subject Classification. Primary 20D60 Secondary 20D06.
    Research supported by the Basque Government, the Spanish Ministerio de Ciencia y Tecnología, grant BFM2001-0180, and the FEDER.

