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1 Introduction

N. Chigira, N. Iiyori and H. Yamaki proved in the Main Theorem of their
Inventiones paper [4] that if a finite group of even order G does not have
any elements of order 2p, p a prime, then the Sylow p-subgroups of G are
abelian. The main result of this paper is an attempt to extend that theorem
to odd primes. Recall that given a set of primes π, Oπ′(G) is the largest
normal π′-subgroup of G.

Theorem A. Let G be a finite group and p 6= q prime integers. If G does
not have any elements of order pq, then one of the following holds:

(i) The Sylow p-subgroups or the Sylow q-subgroups of G are abelian.

(ii) G/O{p,q}′(G) = M and {p, q} = {5, 13} or {7, 13}.

The situation (ii) is a genuine exception because the sporadic simple
monster group M does not have any elements of order 65 or 91, while it has
nonabelian Sylow 5, 7 and 13-subgroups. One could perhaps think that if
p > q then, except for in the situation (ii), the Sylow p-subgroup is abelian.
This cannot be guaranteed however, since there are nonabelian groups that
admit fixed point free automorphisms of prime order q > 2.

As one could expect from the statement, the proof of Theorem A relies
on the classification of finite simple groups, but it does not depend on the
results in [4] and seems simpler. We will see that it is easy to give a new
proof of the theorem of Chigira, Iiyori and Yamaki using Theorem A.

In many cases, it turns out from the proof that we get a cyclic Sylow
p-subgroup or q-subgroup. However, it is not possible to replace the word
“abelian” by “cyclic” in the statement of the theorem. For instance, the
Frobenius group of order 72 does not have elements of order 6 and it has
noncyclic Sylow subgroups. There are also examples for odd primes apart
from (ii) above: the sporadic group He does not have elements of order 35
and it has noncyclic Sylow 5 and 7-subgroups. In Section 4 we will present
two infinite families of examples. However, it can be easily proved that if G
is solvable without elements of order pq and p and q are odd primes then a
Sylow p-subgroup or a Sylow q-subgroup of G is cyclic.

2 Almost simple groups

We begin with the proof of Theorem A for almost simple groups. First, we
consider the sporadic groups.
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Lemma 1. Suppose that S ≤ G ≤ Aut(S), where S is a sporadic group and
p 6= q are prime integers. If G does not have any elements of order pq, then
one of the following holds:

(i) The Sylow p-subgroups or the Sylow q-subgroups of G are abelian.

(ii) G = M and {p, q} = {5, 13} or {7, 13}.

Proof. It suffices to check the Atlas [5].

Lemma 2. Suppose that S ≤ G ≤ Aut(S), where S is an alternating group
of degree n ≥ 5. If G does not have any elements of order pq, then the Sylow
p-subgroups or the Sylow q-subgroups of G are abelian.

Proof. Assume first that 2 < p < q. We may assume that G = S (notice
that |Out(S)| = 2 or 4). If n ≥ p + q, then we can find a p-cycle x ∈ G and
a q-cycle y ∈ G with xy = yx of order pq. We deduce that n < p + q <
2q. Therefore the Sylow q-subgroup of G has order q and, in particular, is
abelian.

Hence, we may assume that p = 2 and we want to prove that a Sylow
q-subgroup of G is abelian. Again, we may assume that G = S. If n ≥ 4+q,
then we can find as before an element of order 2q. We deduce that n ≤
3 + q ≤ 2q and the Sylow q-subgroups of G have order ≤ q2 so in particular
they are abelian.

Finally, we consider the groups of Lie type. Let S be a finite simple
group of Lie type. Then there exists a simple algebraic group G of adjoint
type over the algebraic closure F̄q of a finite field, defined over Fq with
corresponding Frobenius endomorphism F : G → G, such that S is the
derived subgroup of the group of fixed points G := GF . Let W denote the
Weyl group of G with respect to some F -stable maximal torus T of G and
φ the automorphism of W induced by F . Since φ permutes the set of simple
reflections of W , it also defines a symmetry of the Dynkin diagram of G.

Lemma 3. In the notation introduced above, assume that the Sylow p-
subgroups of G are non-abelian for some divisor p of |G|. Then either p|q
and G is not of type A1, or p divides the order of W .

Proof. It is shown in [2, Cor. 3.13], for example, that necessarily p divides
q|W 〈φ〉|. But note that when G is simple, the order of φ always divides the
order of W .
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In particular, if S = G′ has a non-abelian Sylow p-subgroup, then the
same conclusion holds. We will need a more precise criterion for non-abelian
Sylow subgroups. For this note that, by a result of Steinberg, in the above
setup there exists a product of cyclotomic polynomials

oG(X) = XN
∏
d

Φd(X)a(d) ∈ Z[X]

such that for any choice of Frobenius map F ′ : G → G defining an Fq′-
rational structure of G and with the same action on W , the order of the
group GF ′

is given by |GF ′ | = oG(q′) = q′N
∏

d Φd(q′)a(d) (see e.g. [2]).
Then we have:

Lemma 4. In the notation introduced above, assume that the Sylow p-
subgroups of G are non-abelian for some divisor p of |G|. Then either p|q
and G is not of type A1, or p divides at least two different factors Φd(q)
with a(d) > 0.

Proof. This is also shown in [2, Cor. 3.13].

We need the following well-known number theoretic result:

Lemma 5. Let q ≥ 1, p an odd prime not dividing q, and e the multiplicative
order of q mod p. Then p|Φf (q) if and only if f = epj for some j ≥ 0.

Proof. By assumption we have qe ≡ 1 (mod p). If p|Φf (q) then qf ≡ 1
(mod p), hence e|f by the definition of e. Now note that Φet(X) divides
Φt(Xe). Hence p|Φet(q) implies p|Φt(1), so p divides the norm of 1 − ζ for
some primitive tth root of unity ζ. This forces t to be a power of p (see [11,
p.12]), proving one direction.

Conversely, if qe = 1 + cpa with p 6 |c, a ≥ 1, then

qepj
= (1 + cpa)pj ≡ 1 + cpa+j (mod pa+j+1)

for all j ≥ 1 (since p > 2). Thus, if pa is the precise power dividing qe − 1,
then pa+j is the precise power dividing qepj − 1. In particular, (qepj −
1)/(qepj−1 − 1) is divisible by p. By the first part the only cyclotomic factor
of (qepj − 1)/(qepj−1 − 1) which can account for this divisibility is Φepj (q).
Thus Φepj (q) is divisible by p, which completes the proof.

Corollary 6. If p is odd and p|Φdi
(q) for i = 1, 2 with d1 < d2, then

d1 ≤ d2/p. Moreover, d1 and d2 have the same parity.
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We will use this corollary in conjunction with the order formulae for
classical groups of adjoint type (see e.g. [3, 1.19 and 2.9])

|PGLn(q)| = qn(n−1)/2
n∏

k=2

(qk − 1),

|PGUn(q)| = qn(n−1)/2
n∏

k=2

(qk − (−1)k),

|PCSp2n(q)| = |SO2n+1(q)| = qn2
n∏

k=1

(q2k − 1),

|PCO±
2n(q)◦| = qn(n−1)

n−1∏
k=1

(q2k − 1)(qn ∓ 1),

and the existence of certain natural subgroups of classical groups, namely

GLm(q)×GLn−m(q) ≤ GLn(q), m = bn + 1
2

c,

GUm(q)×GUn−m(q) ≤ GUn(q), m = bn + 1
2

c,

Sp2m(q)× Sp2(n−m)(q) ≤ Sp2n(q), m = bn
2
c,

SO2m+1(q)× SO+
2(n−m)(q) ≤ SO2n+1(q), m = bn

2
c,

SO±
2m(q)× SO+

2(n−m)(q) ≤ SO±
2n(q), m = bn

2
c,

which can be exhibited as stabilizers of suitable orthogonal decompositions
of the underlying space. The groups of adjoint type listed above contain
central quotients of the classical groups, thus they contain some central
quotient of the natural subgroups just described.

Lemma 7. In the notation introduced above, assume that the Sylow p-
subgroups of Aut(S) are non-abelian for some divisor p of |Aut(S)|. Then
one of the following holds:

(a) p|q is the defining characteristic, or

(b) p divides |W |, or

(c) p divides the order of some field automorphism of S.

Proof. According to [6, 1.15, Th. 2.5.12 and 2.5.14], for example, Out(S)
is generated by the diagonal automorphisms, the field automorphisms and
the graph automorphisms of S. The group of diagonal automorphisms is
already contained inside G. The group of graph automorphisms is either
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trivial, cyclic of order 2, or a symmetric group of degree 3 if G is of type
D4. But note that in all cases the order of graph automorphisms always
divides the order of the Weyl group of G. Thus the assertion follows from
Lemma 3.

Lemma 8. In the notation introduced above, assume that H with S ≤ H ≤
Aut(S) has non-abelian Sylow pi-subgroups for two different primes p1, p2,
with p1 not dividing q|W |. Then there exist elements of order p1p2 in H.

Proof. By Lemma 7 the prime p1 divides the order of some field automor-
phism of S, and by Lemma 3 the group H must contain a conjugate of a field
automorphism σ of S of order p1. The centralizer in S of σ is a group of the
same type as S, in particular with the same Weyl group as S and over a field
of the same characteristic. Thus its order is divisible by all prime divisors
of |G| for which the Sylow subgroups of G are non-abelian, by Lemma 3.
On the other hand, if p2 is the order of some other field automorphism of
S, then the fact that the group of field automorphisms is cyclic allows to
conclude.

Theorem 9. Let S be a simple group of Lie type and S ≤ H ≤ Aut(S).
Assume that p1 6= p2 are prime divisors of |H| such that there is no element
of order p1p2 in H. Then either the Sylow p1-subgroup or the Sylow p2-
subgroup of H is abelian.

Proof. We treat the various possibilities for S. If H is a counterexample
to the assertion, then there exist two prime divisors p1, p2 of |H| for both
of which the Sylow subgroups are non-abelian, and there is no element of
order p1p2 in H. Moreover, by Lemmas 3–8 we may assume that p1, p2 both
divide q|W |. We’ll rule out this possibility.

If S is a Suzuki-group or a Ree-group 2G2(q2), then only the primes 2
and 3 divide q|W |. But the Suzuki-groups have order prime to 3, while the
Sylow 2-subgroup of Aut(2G2(q2)) is elementary abelian of order 8. Thus in
both cases the Sylow subgroups are abelian for all but one prime.

For the Ree groups 2F4(q2), only the primes 2 and 3 matter. But the
Tits group 2F4(2)′ is contained in 2F4(q2) and contains elements of order 6.

For S of type G2, 3D4 or F4, only the primes 2,3 and the defining char-
acteristic p are candidates for p1, p2. But in groups of type G2 over fields of
odd order there exist involutions with centralizer of type A1 ◦A1, hence con-
taining unipotent elements, and over fields of characteristic different from 3
there exist elements of order 3 with centralizer of type A2 or 2A2, both con-
taining elements of order 2 and unipotent elements (of order p). This deals
with G2(q). Now we have containments G2(q) ≤ 3D4(q) ≤ F4(q), thus the
latter two groups contain elements of the required orders.
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For S of type E6, 2E6 and E7, the primes 2,3,5 and the defining char-
acteristic p have to be considered. Since F4(q) ≤ (2)E6(q) ≤ E7(q) only
the prime 5 needs attention. By Lemma 5 and the order formula for E6(q)
(see [3, 2.9]) the Sylow 5-subgroup of G = E6(q) is abelian unless 5|(q − 1).
But there exist elements of order q − 1 with centralizer of type D5(q) in G.
Similarly, the Sylow 5-subgroup of G = 2E6(q) is abelian unless 5|(q + 1),
and there exist elements of order q + 1 with centralizer of type 2D5(q) in
G. Finally, if the Sylow 5-subgroup of E7(q) is non-abelian, then 5|(q2 − 1),
and we are done by the previous two cases.

For S of type E8, the primes 2,3,5,7 and the defining characteristic p
have to be considered. Using E7(q) ≤ E8(q), we are left with the prime 5
when 5 6 |(q2 − 1), and the prime 7. By Lemma 5 the Sylow 7-subgroups are
abelian unless 7|(q2−1). A subgroup of type E6 ◦A2 shows that in this case
all orders of the form 7p2 with p2 ∈ {2, 3, 5, p} occur. A subgroup of type
A4 ◦A4 shows that all orders of the form 5p2, p2 ∈ {2, 3, p} occur.

This completes the investigation of groups of exceptional type. If S is of
type A1, only the Sylow 2-subgroups can be non-abelian. For the remaining
classical groups of Lie type, we make use of the natural subgroups introduced
above. For G = PGLn(q), n ≥ 3, assume that 2 6= p 6 |q is such that the Sylow
p-subgroup of G is non-abelian. Thus, by Lemma 4, p divides at least two
factors (qki − 1), k1 < k2 ≤ n, and by Corollary 6, k1 ≤ k2/3 ≤ n/3. In
particular, p divides a factor qk − 1 with k ≤ m := b(n + 1)/2c. Hence
any odd p different from the defining characteristic for which the Sylow p-
subgroups of G are non-abelian divides the order of GLm(q). Clearly, that
order is also divisible by 2 and the defining prime. The central quotient of
GLm(q)×GLn−m(q) in G thus contains elements of all required orders.

For G = PGUn(q), n ≥ 3, we may argue similarly, using that the expo-
nents k1, k2 above have the same parity by Corollary 6.

The same argument applies if G is of symplectic or odd dimensional or-
thogonal type. Any prime with non-abelian Sylow subgroup already divides
the order of Sp2m(q), respectively SO2m+1(q), and the natural subgroup
produces all necessary product orders.

The case of even-dimensional orthogonal groups is again similar.

3 Proof of Theorem A

Now we are ready to complete the proof of Theorem A, which we restate.

Theorem 10. Let G be a finite group and p 6= q prime integers. If G does
not have any elements of order pq, then one of the following holds:
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(i) The Sylow p-subgroups or the Sylow q-subgroups of G are abelian.

(ii) G/O{p,q}′(G) = M and {p, q} = {5, 13} or {7, 13}.

Proof. First, we notice that the hypothesis is inherited by quotients and
subgroups. We argue by induction on |G|. Let N be a normal subgroup of
G. Assume first that neither p nor q divides |N |. Hence N ≤ O{p,q}′(G).
By the inductive hypothesis either (i) holds for G/N , and hence for G, or

M ∼=
G/N

O{p,q}′(G/N)
∼= G/O{p,q}′(G) and {p, q} = {5, 13} or {7, 13},

as desired.

Now we may assume that, for instance, p divides |N |. Assume that q
does not divide |N |. Let Q be a Sylow q-subgroup of G. We have that Q acts
coprimely on N and we deduce that N has a Q-invariant Sylow p-subgroup
P . Thus QP is a subgroup of G. By our hypothesis, the action of Q on P
is Frobenius. This implies, by 12.6.15 of [9], for instance, that Q is cyclic or
generalized quaternion. In the first case we are done so we may assume that
Q is generalized quaternion and q = 2. By the Brauer-Suzuki theorem (see
Theorem 45.1 of [7]), |Z(G/O2′(G))| = 2. It follows from our hypothesis that
p does not divide |G/O2′(G)| so a Sylow p-subgroup of O2′(G) is a Sylow
p-subgroup of G. Since Q acts coprimely on O2′(G), we deduce that there
exists a Q-invariant Sylow p-subgroup R of O2′(G). Now, QR is a Frobenius
group with kernel R. Since R admits a fixed point free automorphism of
order 2, we have that R is abelian, as desired. This means that we may
assume that pq divides the order of any non-trivial normal subgroup of G.

Suppose that N1 and N2 are two different minimal normal subgroups of
G. We know that there exists n1 ∈ N1 of order p and n2 ∈ N2 of order q,
so the order of n1n2 is pq. This contradicts our hypothesis, so we conclude
that G has a unique minimal normal subgroup N .

Since pq divides |N |, we deduce that N is a direct product of copies
of a non-abelian simple group S. In particular, pq divides |S| and, the
argument in the previous paragraph shows that N = S. This implies that
G is isomorphic to a subgroup of Aut(S) containing S and the result follows
from Lemmas 1, 2 and Theorem 9.

4 Applications and Examples

We begin this section giving our new proof of the Theorem of Chigira, Iiyori
and Yamaki [4].
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Corollary 11 (Chigira, Iiyori and Yamaki). Every non-abelian Sylow
subgroup of a finite group of even order contains a non-trivial element that
commutes with an involution.

Proof. If a Sylow p-subgroup of a finite group of even order does not have
any elements that commute with an involution, then the group does not
have elements of order 2p and p > 2. If we are taking a non-abelian Sylow
p-subgroup then, by Theorem A, we have that the Sylow 2-subgroups of
G are abelian. By Walter’s characterization of groups with abelian Sylow
2-subgroups, we have that G has normal subgroups N ≤ M such that N =
O2′(G), M/N is the direct product of an abelian 2-group and non-abelian
simple groups with abelian Sylow 2-subgroups and G/M has odd order.
Furthermore, the non-abelian simple groups with abelian Sylow 2-subgroups
are PSL(2, 2f ), PSL(2, q) where q ≡ 3 (mod 8) or q ≡ 5 (mod 8), J1 or a
Ree group 2G2(q). (See [10] or Theorem XI.13.7 of [8] and [1]).

We want to see that the Sylow p-subgroups of G are abelian. This
contradiction will complete the proof of the corollary. Assume first that
p divides |N |. Let S a Sylow 2-subgroup of G. By coprime action, there
exists an S-invariant Sylow p-subgroup R of N . Then SR is a subgroup of
G without elements of order 2p. This implies that the action of S on R is
Frobenius. Hence, since we knew that S is abelian, we deduce from 12.6.15
of [9] that S is cyclic. But this implies that M/N is a cyclic 2-group. It is
easy to see that this implies that G = M . Hence, R is a Sylow p-subgroup
of G that admits a fixed point free automorphism of order 2. We conclude,
as desired, that the Sylow p-subgroups of G are abelian.

Therefore we may assume that N = 1 and even that F (G) = 1. Also,
we may assume that p divides the order of each of the non-abelian simple
groups that appear as direct factors of M . Hence, we deduce (as in the proof
of Theorem A) that M is a non-abelian simple group and G ≤ Aut(M).

Now note that all Sylow subgroups of J1 = Aut(J1) are abelian. By
Lemma 7 the groups Aut(PSL2(q)) and Aut(2G2(q)) have abelian Sylow
p-subgroups for p > 2 except possibly if p is the order of some field auto-
morphism of PSL2(q). But any field automorphism centralizes the group
over the prime field, which is of even order.

For the Ree groups 2G2(q) it suffices to note that it has abelian Sylow
p-subgroups for every p 6= 3 and that it has elements of order 6.

Finally, we give two infinite families of counterexamples that show that
we cannot replace the word “abelian” by “cyclic” in the statement of The-
orem A. For the simple group G = F4(q), q any prime power, let p1, p2, p3

be Zsigmondy-primes dividing Φ3(q), Φ4(q), Φ6(q) respectively. Then the

9



Sylow pi-subgroups of G are homocyclic of rank 2, and G doesn’t contain
elements of order pipj for any i 6= j. Similarly, for G = E8(q) we may take
Zsigmondy primes p1, p2 dividing Φ5(q), Φ8(q) respectively.
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