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Abstract. Gluck proved that any finite group G has an abelian subgroup A
such that |G : A| is bounded by a polynomial function of the largest degree of
the complex irreducible characters of G. This improved on a previous bound
of Isaacs and Passman. In this paper, we present a variation of this result
that looks at the number of prime factors. All these results, in turn, may
be seen as variations on the classical theorem of Jordan on linear groups.
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1 Introduction

A classical theorem of Jordan (see Theorem 14.12 of [8]) asserts that a finite
group has an abelian subgroup of index bounded in terms of the degree of a
faithful complex irreducible character of G. This theorem has motivated a
number of results. For instance, the case when the field of complex numbers
is replaces by a field of characteristic p > 0, was considered in [1]. In a
different direction, it seems reasonable to ask whether there is an abelian
subgroup of index bounded in terms of the largest degree of the complex
irreducible characters. An affirmative answer to this question was provided
by M. Isaacs and D. Passman in [9]. Later, D. Gluck proved in [6] that in
fact there exists a polynomial bound.

Let G be a complex linear group of degree n. Much research has been
devoted to studying complex linear groups and, in particular, to classifying
the linear groups of “small” degree. The word small here has two different
meaning. One is the obvious one; that the absolute value of n is small.
The second meaning involves the prime factorization of n; n is “small” if it
has few prime divisors (counting multiplicities). This is the meaning we are
interested in here. For instance, the classification of nonsolvable complex
linear groups of prime degree has been recently considered in [4, 5].

Given an integer n = pa1
1 . . . pat

t as a product of powers of different primes,
we define ω(n) = a1+· · ·+an. It seems reasonable to ask whether every finite
linear group G of degree n has an abelian subgroup A such that ω(|G : A|) is
bounded in terms of ω(n). However, since for every prime p the symmetric
group of degree p+ 1 has an irreducible character of degree p, we have that
such a bound does not exist. Therefore, it is perhaps surprising that we can
prove the following variation of the theorems of Gluck and Isaacs-Passman.

Theorem A. There exist (universal) constants K1 and K2 such that if G
is a non-abelian finite group then G has an abelian subgroup A satisfying

ω(|G : A|) ≤ K1ω(G)2 logω(G) +K2

where ω(G) = max{ω(χ(1)) | χ ∈ Irr(G)}.

Our proof of Theorem A shows that if there is not any composition factor
that is a non-abelian alternating group, then the bound is quadratic in ω(G).
It is likely that such a quadratic bound exists in complete generality. We
will discuss this further in Section 2. However, it is not clear to us whether
or not there is a linear bound.

2



2 Simple groups

In Corollary 2.6 of [13], the following result was proved.

Theorem 2.1. Let G be a solvable group. Then there exists an abelian
subgroup A such that

ω(|G : A|) ≤ 23ω(G).

This result was obtained as a consequence of Theorem A of [13], where it
was proved that forG solvable there exist 19 irreducible characters χ1, . . . , χ19

such that |G : F (G)| divides χ1(1) . . . χ19(1). The goal of this section is to
prove the analogue results for simple groups. We begin with the sporadic
groups.

Lemma 2.2. Let G be a sporadic simple group or the Tits group 2F4(2)′.
Then there exist χ1, χ2, χ3, χ4 ∈ Irr(G) such that |G| divides χ1(1)χ2(1)χ3(1)χ4(1).
In particular,

ω(|G|) ≤ 4ω(G).

Proof. This follows from a routine but tedious inspection of the Atlas [3].

A more careful analysis shows that, in fact, 3 characters are enough if
G 6∼= M22. However, for this group 4 irreducible characters are necessary.

Next, we consider the simple groups of Lie type. First, we deal with the
classical groups.

Lemma 2.3. Let G be a classical simple group of Lie type. Then there
exist χ1, χ2, χ3, χ4 ∈ Irr(G) such that |G| divides χ1(1)χ2(1)χ3(1)χ4(1). In
particular,

ω(|G|) ≤ 4ω(G).

Proof. If G is of type A1, then G has characters of degree q − 1, q and
q + 1 and the product of these three integers is a multiple of the order of
the group. Then we may assume that G is of one of the types considered in
Table 1 of [10]. We use most of the notation in [10]. In particular, G will be
a simple linear algebraic group of adjoint type and σ an endomorphism of
G so that the set Gσ of fixed points is finite and the derived subgroup of Gσ

is isomorphic to G. By Section 12.1 of [2], we know that the degrees of the
unipotent characters of Gσ and G are the same. By Corollary 11.29 of [8], we
know that if ϕ ∈ Irr(G) lies under ψ ∈ Irr(Gσ), then ψ(1)/χ(1) divides d =
|Gσ : G|. Let χ ∈ Irr(G) be a semisimple character lying under χs ∈ Irr(Gσ),
where χs is the same character as in Table 2 of [10] and let χu ∈ Irr(G) be
a unipotent character of degree given by the unipotent degrees in Table 2
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of [10]. Then it is easy to check that |G| divides χ(1)2χu(1) St(1), where
St ∈ Irr(G) is the Steinberg character. The result follows.

Now, we consider the exceptional groups of Lie type.

Lemma 2.4. Let G be an exceptional simple group of Lie type. Then there
exist χ1, χ2, χ3, χ4, χ5 ∈ Irr(G) such that |G| divides χ1(1)χ2(1)χ3(1)χ4(1)χ5(1).
In particular,

ω(|G|) ≤ 5ω(G).

Proof. The degrees in Table 4 of [10] correspond to degrees of unipotent
characters, and are therefore degrees of the simple group G. It is routine
to check that taking suitable products of degrees these characters together
with |G|p, the degree of the Steinberg character, yields the result.

Finally, we will consider the alternating groups. The bound that we
obtain here is much worse.

Lemma 2.5. There exists a (universal) constant C such that if G is an
alternating group of degree n ≥ 5, then

ω(|G|) ≤ Cω(G) logω(G).

Proof. Let i be an integer such that 5i ≤ n < 5i+1. We have that

5(5i−1)/4 = (5i!)5 ≤ (n!)5 = |G|5.

By [7], we know that G has a 5-block of defect zero. Therefore, ω(|G|5) ≤
ω(G), so

(5i − 1)/4 ≤ ω(G)

and we conclude that i ≤ log5(4ω(G) + 1). Therefore,

n ≤ 5(4ω(G) + 1)

and
ω(|G|) < ω(n!) ≤ ω((5(4ω(G) + 1))!) ≤ ω((25ω(G))!).

Given an integer k, ω(k) ≤ log2 k, and we deduce that

ω(|G|) ≤ log2((25ω(G))!).

By Stirling’s formula, we know that for any integer k, k! ≤ Dkk exp(−k)
√

2πn
for some constant D. It follows that

ω(|G|) ≤ Cω(G) logω(G)

for some constant C. This completes the proof.
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It would be interesting to decide whether, as happens with the other
families of simple groups, there exists a fixed number C of characters of an
alternating group such that the order of the group divides the product of
the degrees C characters of Alt(n) is a multiple of |Alt(n)|. In particular,
is it possible to take C = 4?

We will use the following result.

Lemma 2.6. Let G be a non-abelian simple group. Then there exists a
non-principal irreducible character of G that extends to Aut(G).

Proof. This is Lemma 4.2 of [12].

We conclude this section with an observation on the orders of the simple
groups and their automorphism groups.

Lemma 2.7. Let G be a simple group. Then

ω(|Aut(G)|) ≤ 2ω(|G|).

Proof. It suffices to see that ω(|Out(G)|) ≤ ω(|G|). This follows easily from
[3] (using Zsigmondy’s prime theorem (Theorem 6.2 of [11]) for the case of
Lie type groups, for instance).

3 Proof of Theorem A

We begin with an easy lemma.

Lemma 3.1. The number of non-abelian simple groups in a composition
series of a finite group G does not exceed ω(G).

Proof. Let G be a minimal counterexample and let N be a maximal normal
subgroup of G. Then the number of non-abelian simple groups in a compo-
sition series of N does not exceed ω(N) ≤ ω(G). We deduce that G/N is
simple non-abelian. It suffices to chack that ω(N) < ω(G).

Let ϕ ∈ Irr(N) such that ω(ϕ(1)) = ω(N). If ϕ extends to ϕ̃ ∈ Irr(G)
then, by Gallagher’s theorem (Corollary 6.17 of [8]), we have that ϕ̃χ ∈
Irr(G) for every χ ∈ Irr(G/N). It suffices to take any non-linear χ to see
that ω(N) < ω(G). Otherwise, it suffices to take any irreducible constituent
of ϕG to see that ω(N) < ω(G). This contradiction completes the proof.

Next, we prove Theorem A (with a better bound) for groups with one
non-abelian chief factor that is the socle. Given a group G, we write S(G)
to denote the socle of G.
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Lemma 3.2. There exists a universal constant E such that if G is a group
with G/S(G) solvable and S(G) a minimal normal subgroup of G, then

ω(|G|) ≤ Eω(G) logω(G).

Proof. We have that G/S(G) is isomorphic to a solvable subgroup of

Out(S(G)) ∼= Out(S) o St,

where S is the non-abelian simple group that appears in a composition
series of G and t is the number of times that it appears. By Lemmas 2.2,
2.3, 2.4 and 2.5, we know that there exists a constant C such that ω(|S|) ≤
Cω(S) logω(S). It follows that ω(|S(G)|) ≤ Cω(S(G)) logω(S(G)).

We may view G as a subgroup of Aut(S(G)). Then G∩Aut(S)t is a nor-
mal subgroup of G and G/(G∩Aut(S)t) is a primitive solvable permutation
group on t letters. It follows from Lemma 2.7 and the previous paragraph
that

ω(|G ∩Aut(S)t|) ≤ 2Cω(S(G)) logω(S(G)).

By Gluck’s theorem of primitive solvable permutation groups, we have
that G/(G ∩ Aut(S)t) has a regular orbit on the power set of {1, . . . , t}
except for in the few cases listed in Theorem 5.6 of [11]. In the exceptional
cases, the number of prime divisors (counting multiplicites) of the order of
the group does not exceed 5. Therefore we may assume, without loss of
generality, that there is a regular orbit. Let ϕ ∈ Irr(S) be a non-principal
character that extends to Aut(S) (it exists by Lemma 2.6). Thus if we take
a character of S(G) that is an appropriate product of copies of the principal
character 1S and ϕ, we have that the inertia group in G of such character is
G∩Aut(S)t. By Clifford’s correspondence (Theorem 6.11 of [8]), we deduce
that |G/(G ∩ Aut(S)t)| divides the degree of some irreducible character of
G. It follows that

ω(|G|) = ω(|G/(G∩Aut(S)t)|)+ω(|G∩Aut(S)t|) ≤ ω(G)+2Cω(G) logω(G),

as desired.

Now, we are ready to complete the proof of Theorem A.

Proof of Theorem A. Let G be a group such that ω(G) ≤ n. We want to
see that G has an abelian subgroup A such that ω(|G : A|) is bounded by a
function of the order of n2 log n.

Let G1 be a maximal normal subgroup of G such that G/G1 is not
solvable. Then G/G1 satisfies the hypotheses of Lemma 3.2 and we deduce
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that ω(|G/G1|) ≤ Eω(G) logω(G). We can do the same with G1 and find a
new subnormal subgroup G2. Iterating this process it follows from Lemma
3.1 that Gn is solvable. We have that

ω(|G : Gn|) ≤ En2 log n.

Now, the result follows from Theorem 2.1.
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