On the number of constituents of products of characters

by
Maria Loukaki
Department of Applied Mathematics
University of Crete
Knosou Av. 74 GR-71409
Heraklion-Crete GREECE
E-mail: loukaki@tem.uoc.gr
and
Alexander Moretó
Departament d'Àlgebra
Universitat de València
46100 Burjassot. València SPAIN
E-mail: Alexander.Moreto@uv.es@

The second author was supported by the FEDER, the Spanish Ministerio de Ciencia y Tecnología and the Programa Ramón y Cajal.

Let φ and ψ be faithful characters of a finite p-group P. What can be said about the number of different irreducible constituents of the product $\varphi \psi$? At first sight, it does not seem reasonable to expect strong restrictions for the possible values of this number. However, in [1] it was proved that if the number of constituents of this product is bigger than one, then it is at least $(p+1) / 2$. (The proof of this result depends on some of the ideas of [2] and could be simplified following the argument of [2] more closely.)

It seems reasonable to ask what further restrictions can be found. In p. 237 of [1] it was conjectured that if the number of constituents of the product of two faithful characters of a finite p-group, for $p \geq 5$, is bigger than $(p+1) / 2$, then it is at least p. The goal of this note is to give a counterexample to this conjecture.

Theorem. Let $P=C_{p}$ 乙 C_{p} for $p \geq 5$. There exist $\varphi, \psi \in \operatorname{Irr}(P)$ faithful such that $\varphi \psi$ has exactly $p-1$ distinct irreducible constituents.

Proof. Write $P=C A$, where A is the base group, which is elementary abelian of order p^{p}. It is clear that the non-linear characters of P are induced from characters of A. In particular, they have degree p. Fix any nonprincipal character $\lambda \in \operatorname{Irr}\left(C_{p}\right)$. Then any character of A can be written in the form $\nu=\lambda^{i_{1}} \times \cdots \times \lambda^{i_{p}}$ for some integers $i_{j}=0, \ldots, p-1$. Thus, we can identify the character ν with the p-tuple (i_{1}, \ldots, i_{p}). It is clear that $\nu^{G} \in \operatorname{Irr}(G)$ if and only if not all the i_{j} 's are equal.

We have that $Z(P)=\left\{(x, \ldots, x) \mid x \in C_{p}\right\}$ is the unique minimal normal subgroup of P. Also, if $\nu^{G} \in \operatorname{Irr}(G)$, it follows from Lemma 5.11 of [3] that ν^{G} is faithful if and only if $(x, \ldots, x) \notin \operatorname{Ker} \nu^{G}$. Notice that if $\lambda(x)=\varepsilon$ for a primitive p th root of unity, then

$$
\nu^{G}(x, \ldots, x)=p \varepsilon^{i_{1}+\cdots+i_{p}} .
$$

Thus ν^{G} is faithful if and only if $\sum_{j=1}^{p} i_{j} \not \equiv 0(\bmod p)$.
Consider the characters of A associated to the p-tuples $(1,0,0, \ldots, 0)$ and $(1,1,0, \ldots, 0)$. They induce faithful irreducible characters of P, φ and ψ respectively. We claim that $\varphi \psi$ has $p-1$ distinct irreducible constituents.

The character φ_{A} decomposes as the sum of the characters associated to $(1,0,0, \ldots, 0),(0,1,0, \ldots, 0),(0,0,1, \ldots, 0), \ldots,(0,0,0, \ldots, 1)$. We can argue similarly with ψ_{A}. The product of two characters of A corresponds to the componentwise sum of the associated p-tuples and two characters of A are P-conjugate if and only we can go from the p-tuple associated to one of the characters to the other by a cyclic permutation of the components. Now, it is easy to see that the number of constituents of the character $\varphi \psi$ is the number of characters of P lying over the characters of A corresponding to the p-tuples $(2,1,0,0, \ldots, 0),(1,2,0,0, \cdots, 0),(1,1,1,0, \ldots, 0),(1,1,0,1, \ldots, 0), \ldots$,
$(1,1,0,0, \ldots, 1)$. Here we have p different p-tuples. The third of these p tuples and the last one correspond to P-conjugate characters of A, so they induce the same character of P. It is easy to see that no other pair of p-tuples are conjugate. The claim follows.

We have been unable to find any example where the number of constituents of the product of two faithful characters of a p-group has more than $(p+1) / 2$ distinct irreducible constituents but less than $p-1$. So the following modification of the conjecture could still be true.

Question. Let φ and ψ be faithful irreducible characters of a finite p-group P. Assume that $\varphi \psi$ has more than $(p+1) / 2$ distinct irreducible constituents. Does it necessarily have at least $p-1$ irreducible constituents?

References

[1] E. Adan-Bante, Products of characters and finite p-groups, J. Algebra 277 (2004), 236-255.
[2] E. Adan-Bante, M. Loukaki, A. Moretó, Homogeneous products of characters, J. Algebra 274 (2004), 587-593.
[3] M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994.

