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1 Introduction

Let G be a finite group and Irr(G) = {χ1, . . . , χk} the set of irreducible
characters of G. Put χi(1) = ni. Following B. Huppert [13], we say that
(n1, . . . , nk) is the degree pattern of G. In recent years much informa-
tion has been obtained on the possible sets of character degrees of finite
groups, especially in the solvable case (even though a complete classification
of such sets seems to be very far). However, as pointed out by Huppert,
almost nothing is known about Brauer’s Problem 1 (see [2]), which asks the
following: What are the possible degree patterns of finite groups? (This
problem also appears as Question 6.9 of [13] and as Question 1 of [12].) It
was mentioned in [13] that the only known restrictions are the obvious ones,
namely that the number of ni = 1 has to divide

∑k
i=1 n

2
i and that each ni

has to divide
∑k

i=1 n
2
i . As is well-known, if (n1, . . . , nk) is the degree pattern

of G, the complex group algebra of G is CG =
⊕k

i=1 Mni(C). So knowing
the possible degree patterns of finite groups is equivalent to knowing the
possible isomorphism types of complex group algebras.

Even though we think that with the present knowledge of representation
theory it is not possible to settle Brauer’s Problem 1, we think that it is
possible to obtain significant restrictions on the structure of the complex
group algebras. The goal of this paper is to provide the first such restriction.
For the sake of discussion, we state the following.

Conjecture A. The C-dimension of the complex group algebra of any fi-
nite group G is bounded in terms of the maximum number of isomorphic
summands in the decomposition CG =

⊕k
i=1 Mni(C).

In other words, Conjecture A says that the order of a finite group
is bounded in terms of the largest multiplicity of its character degrees.
Our main results are the following. As usual, we say that a quantity is
(a1, . . . , al)-bounded if it is bounded by some real valued function that de-
pends on a1, . . . , al.

Theorem B. Conjecture A holds for every finite group if it holds for the
symmetric groups.

Theorem C. Let G be a finite group and assume that G does not contain an
alternating group bigger than Alt(t) as a composition factor. If the largest
multiplicity of a character degree is m, then the order of G is (m, t)-bounded.

Unfortunately, we have been unable to prove that Conjecture A holds for
the symmetric groups. This seems to be a difficult number theoretical prob-
lem that will be discussed in Section 5. We describe it in an elementary way
in purely combinatorial terms; so that any reader will be able to understand
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it and think about it. Note that an immediate consequence of Theorem C is
that Conjecture A holds for solvable groups. (Actually, we prove this result
in our way toward a proof of Theorems B and C.) Some possible general-
izations of these results in different directions will be discussed in Section
6.

Following our proof, it would be possible to give explicit bounds in The-
orem C. However, we think that this would just increase the technicality of
the paper so we have not considered convenient to express these functions
or to try to obtain the best possible bounds.

I thank M. Isaacs, A. Jaikin-Zapirain, G. Malle, J. Sangroniz and B.
Srinivasan for helpful conversations. Most of this work was done while I was
visiting the University of Wisconsin, Madison, during the Fall of 2002. I
would like to take this opportunity to thank the Mathematics Department
for its hospitality. The results in this paper have been announced in [22]

2 Solvable groups

We begin work toward a proof of Conjecture A for solvable groups. We need
several lemmas. In the first of them, we show that the number of primes that
divide the order of a solvable group that satisfies the hypothesis is bounded.
It is an application of results and ideas from [6].

Lemma 2.1. Let G be a solvable group with at most m irreducible characters
of each degree and let p be a prime divisor of |G|. Then p is m-bounded.

Proof. We may assume that p ≥ 1 +mm. Since the hypothesis is inherited
by quotient groups, we may assume without loss of generality that G is a
semidirect product of a p′-group H > 1 and a minimal normal p-subgroup
V , on which H acts faithfully.

SinceG has at mostm irreducible characters of any given degree, we have
that [Q(χ) : Q] ≤ m for any χ ∈ Irr(G). (Otherwise, the Galois conjugates
of χ would provide more than m characters of degree χ(1).) In particular,
[Q(χ) ∩Qp : Q] ≤ m. (Here Qp = Q(ζp), where ζp is a primitive pth root of
unity.) For every divisor d of p−1 there is a unique intermediate field of the
extension Qp/Q that is an extension of Q of degree d. We have seen that
the extensions Q(χ)∩Qp/Q have degree at most m, so [K : Q] ≤ mm, where
K is the field of values of the whole character table at the p-elements of G.
Hence k = [Qp : K] is a divisor of p− 1 bigger than or equal to (p− 1)/mm.

For any n ∈ V , σ ∈ Gal(Qp/K) and χ ∈ Irr(G) we have that χ(n) =
χσ(n). Also, χ(n) = ε1 + · · ·+ εt where εj is a pth root of unity for every j
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and
χσ(n) = εi1 + · · ·+ εit = χ(ni)

for some i. But as σ runs over Gal(Qp/K), i runs over the subgroup of
order k = [Qp : K] of Cp−1. Therefore we have that χ(n) = χ(ni) for every
χ ∈ Irr(G) and every i in this subgroup. So for all such i, n and ni are
G-conjugate and we have that the action of H on V has the k-eigenvalue
property (see Definition 2.8 of [6]).

We have that V is an irreducible GF(p)H-module and let X be the cor-
responding irreducible GF(p)-representation. Let F be an algebraic closure
of GF(p). Let ψ be the F -character corresponding to the F -representation
XF . By Theorem 9.21 of [16], the characters that appear in the decom-
position of ψ as a sum of irreducible F -characters have the same degree.
Now, let φ be the p-Brauer character of H corresponding to ψ and note
that it decomposes as a sum of irreducible Brauer characters of the same
degree. Since p does not divide the order of H, we have that the set of (ir-
reducible) Brauer characters coincides with the set of (irreducible) ordinary
complex characters (by Theorem 15.13 of [16]), so using the hypothesis we
conclude that φ is a sum of at most m irreducible ordinary characters. In
particular, [Q(φ) : Q] ≤ mm. Now, we can apply Theorem 2.9 of [6] to
conclude that either p ≤

√
3mm or Q(φ) contains a primitive k/(4, k)th root

of unity. In the first case we are done and in the second case we deduce that
ϕ(k/(4, k)) ≤ mm. Thus k is bounded in terms of m and it follows from the
second paragraph of the proof that p is bounded in terms of m.

Given a group G, we write cd(G) to denote the set of degrees of the
irreducible characters of G.

Lemma 2.2. Let G be a finite group with at most m irreducible characters
of each degree. Then |G : G(i)| ≤ m4i

for all i.

Proof. We argue by induction on i. Since Irr(G/G′) is the group of linear
characters of G, we deduce that |G : G′| ≤ m ≤ m4. Assume that i > 1 and
|G : G(i−1)| ≤ m4i−1

. By Ito’s theorem (Theorem 6.15 of [16]) the degrees
of the characters of G/G(i) divide |G : G(i−1)| ≤ m4i−1

, so we conclude
that | cd(G/G(i))| ≤ m4i−1

and that the largest degree of the irreducible
characters of G/G(i) is b(G/G(i)) ≤ m4i−1

. Using the hypothesis and the
degrees equation we have that

|G : G(i)| ≤ m ·m4i−1 · (m4i−1
)2 ≤ m4i

,

as desired.

We also need the following result. If a group G acts on a module V , we
write r(G,V ) to denote the number of orbits of this action. We say that a
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finite module V for a group G has mixed characteristic if V is an abelian
group all of whose Sylow subgroups are elementary abelian groups. For a
solvable group G, we write dl(G) to denote the derived length of G.

Theorem 2.3. Let G be solvable and let V be a finite faithful completely
reducible G-module (possibly in mixed characteristic). Then there exist con-
stants C1 and C2 such that

dl(G) ≤ C1 log log r(G,V ) + C2.

Proof. This immediate consequence of Theorem 2.4 of [18] appears as The-
orem 7.2 of [23]

Finally, we need the following result, which is the nilpotent case of Con-
jecture A.

Theorem 2.4. Let G be a nilpotent group and assume that the largest mul-
tiplicity of a character degree is m. Then |G| is m-bounded.

Proof. This is Corollary 1.12 of [17]. Following that proof it is possible to
give an explicit bound.

Now, we are ready to prove Conjecture A for solvable groups.

Theorem 2.5. Let G be a solvable group and assume that the largest mul-
tiplicity of a character degree is m. Then |G| is m-bounded.

Proof. First, assume that the derived length of the quotient by the Fitting
subgroup of any group that satisfies the hypothesis of the theorem does not
exceed a fixed integer s. Then Lemma 2.2 yields that |G : F (G)| ≤ m4s

.
Now we claim that F (G) does not have more than m2·4s+1 characters of any
given degree. Assume not. Then F (G) has more than m2·4s+1 irreducible
characters of some given degree d. The number of G-conjugates of any such
character is at most m4s

, so we deduce that the number of G-orbits of
irreducible characters of F (G) of degree d is bigger than

m2·4s+1/m4s
= m4s+1.

For any such G-orbit there is at least one irreducible character of G lying
over the members of the orbit, i.e., the number of irreducible characters of G
lying over characters of degree d of F (G) is bigger than m4s+1. Now, we can
use Corollary 11.29 of [16] do deduce that the degree of any such character
is d · c, where c is some divisor of |G : F (G)|. In particular, the number of
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possible degrees for these characters does not exceed m4s
. We conclude that

G has more than
m4s+1/m4s

= m

irreducible characters of the same degree. This contradiction proves our
claim. By Theorem 2.4, we have that |F (G)|, and hence |G|, is bounded in
terms of m.

This means that if the theorem is false, then we can find a group G
that satisfies the hypothesis and whose quotient by the Fitting subgroup
has arbitrarily large derived length n. Write H = G/F (G). It is clear that
H satisfies the hypothesis of the theorem. Using Lemma 2.2, we deduce that
|H : H(i)| ≤ m4i

for every i > 0. Since H acts faithfully and completely
reducibly on Irr(F (G)/Φ(G)) (by Satz III.4.2 and III.4.5 of [11]), we can
use Theorem 2.3 to deduce that H has at least exp(exp(n−C2

C1
)) orbits on

Irr(F (G)/Φ(G)), for some constants C1, C2 > 0.

The degree of any character of G that lies over a character of F (G)/Φ(G)
divides |G : F (G)| = |H| ≤ m4n

. Write |H| = pa1
1 . . . pat

t as a product of
powers of different primes. We have that the number of divisors of |H| is

d(|H|) = (a1 + 1) . . . (at + 1) ≤ 2ta1 . . . at ≤ 2t(log2m
4n

)t

≤ (2 · 4n log2m)f(m),

where we have used that by Lemma 2.1, t ≤ f(m) for some function f .

Since different H-orbits of characters of F (G)/Φ(G) lie under different
characters of G, we deduce that the multiplicity of some character degree of
G is at least exp(exp(n−C1

C2
))/(2 · 4n log2m)f(m). Observe that this quotient

goes to infinity as n goes to infinity. Since n is arbitrarily large, it follows
that we can make the multiplicity of some character degree to be larger than
m. This contradiction completes the proof of the theorem.

3 Groups of Lie type

In this section we prove that Conjecture A holds for simple groups of Lie
type. We will present a proof, due to G. Malle, that gives pretty good
explicit bounds. We will give the proof in a series of lemmas.

Lemma 3.1. Let s ∈ GL(n,Fq) be semisimple. Then s is conjugate to at
most n! of its powers. If moreover all eigenvalues of s are powers of one
among them, then s is conjugate to at most n of its powers.

Proof. Without loss of generality, we may assume that s is of diagonal form.
Clearly, any conjugate of s has the same eigenvalues, and all powers are
again diagonal. The first assertion follows.
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In the second case, the image of the generating eigenvalue already de-
termines the image of all eigenvalues. There are at most n possibilities for
this image.

Lemma 3.2. The group GL(n, q) contains a semisimple element s of order
qn − 1 all of whose eigenvalues are powers of one among them.

Proof. Choose an Fq-basis of Fqn . This defines an action of the multiplica-
tive group of Fqn on Fn

q (via multiplication). Let ζ be a generator of F×qn .
Then the image of ζ in GL(n, q) has order qn − 1 and its eigenvalues are
ζ, ζq, ζq2

, . . . .

Lemma 3.3. Let G = SL(n, q),SU(n, q),Sp(2n, q),SO(2n+1, q),SO+(2n, q),
SO−(2n, q). Then G contains a semisimple element of order (qn − 1)/(q −
1), q[n/2]−1, qn−1, qn−1, qn−1, qn−1−1 conjugate to at most n, n, 2n, 2n+
1, 2n, 2n of its powers.

Proof. For SL(n, q) take the (q − 1)st power of the element of GL(n, q)
constructed in the proof of Lemma 3.2.

For SU(n, q) use the embeddings GL([n/2], q) ≤ SU(n, q) ≤ GL(n, q2)
together with Lemmas 3.1 and 3.2. Similarly, in the remaining cases use the
embeddings GL(n, q) ≤ Sp(2n, q) ≤ GL(2n, q), GL(n, q) ≤ SO(2n + 1, q) ≤
GL(2n + 1, q), GL(n, q) ≤ SO+(2n, q) ≤ GL(2n, q) and GL(n − 1, q) ≤
SO−(2n, q) ≤ GL(2n, q). (The first embedding is clear from the Dynkin
diagram, see p. 40 of [4], for instance, or alternatively it is the stabilizer of a
maximal totally isotropic subspace. The second embedding is obvious.)

Corollary 3.4. Let G = PSL(n, q),PSU(n, q),PSp(2n, q),PSO(2n+ 1, q),
PSO+(2n, q),PSO−(2n, q). Then G contains a semisimple element of order
at least (qn−1)/n(q−1), (q[n/2]−1)/n, (qn−1)/2, (qn−1)/2, (qn−1)/2, (qn−1−
1)/2 conjugate to at most n, n, 2n, 2n+ 1, 2n, 2n of its powers.

Proof. Take the image of s from Lemma 3.3.

Now, we can prove the main result for the classical groups of Lie type.

Theorem 3.5. Let G = PSL(n, q),PSU(n, q),PSp(2n, q),PSO(2n+ 1, q),
PSO+(2n, q),PSO−(2n, q). Then the largest multiplicity of the character de-
grees of G is at least ϕ(qn−1)/n2(q−1), ϕ(q[n/2]−1)/n2, ϕ(qn−1)/4n, ϕ(qn−
1)/2(2n+ 1), ϕ(qn − 1)/4n, ϕ(qn−1 − 1)/4n.

Proof. Let G̃ be the corresponding group of simply connected type; so G̃ =
SL(n, q),SU(n, q), . . . ,Spin−(2n, q) and G = G̃/Z(G̃). Let G̃∗ be the dual
group of G̃. By Corollary 3.4, the derived group (G̃∗)′ contains a certain
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semisimple element s. By the Deligne-Lusztig theory, to s is associated the
semisimple character χs of G̃ (see Section 8.4 of [3]), an irreducible character
of G̃ which has Z(G̃) in its kernel (since s ∈ (G̃∗)′). Thus it is a character
of G. Each conjugacy class of semisimple elements in G̃∗ defines a different
character. The degree only depends on |CG̃(s)| (see Theorem 8.4.8 of [3]).
Thus all primitive powers of s give characters of the same degree. Now, the
result follows from Corollary 3.4.

Theorem 3.6. Conjecture A holds for simple groups of Lie type.

Proof. For classical groups, this follows easily from Theorem 3.5 using the
fact that for any ε > 0, ϕ(k)/k1−ε →∞ when k →∞ (see Theorem 327 of
[10]).

For exceptional groups, we can use, for example, that (P ) SL(2, q) ≤ G(q)
for G(q) of exceptional type different from 2B2(q) (see Dynkin diagram) and
G(q) ≤ GL(a, q) for some small a. For instance, (P ) SL(2, q) ≤ E8(q) ≤
GL(248, q) (see p. 43 of [4]). Now, argue as in the proof of Lemma 3.3 using
the first part of Lemma 3.1 to get that E8(q) contains a semisimple element
of order (q − 1)/2 conjugate to at most (248)! of its powers. Now, argue as
in the proof of Theorem 3.5.

Finally, we consider the groups 2B2(q). It is well-known that they have
(q − 2)/2 characters of degree q2 + 1 (see Theorem XI.5.10 of [14]). The
result follows.

Much better bounds could be obtained for the exceptional groups with
a little more work.

4 Arbitrary groups

In order to prove Theorems B and C, we need two lemmas. The first one is
a non-trivial number-theoretic result. Given an integer n, we write d(n) to
denote the number of divisors of n.

Lemma 4.1. (i) If ε > 0, then d(n) < 2(1+ε) log n/ log log n for all n > n0(ε)

(ii)

lim
n→∞

d(n!)

2
c log n!

(log log n!)2

= 1,

where c is some constant.

Proof. The first part is Theorem 317 of [10]. The second part is in [5].
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We need one more lemma on the characters of the simple groups.

Lemma 4.2. Let S be a finite simple group. Then there exist a non-principal
irreducible character of S that extends to Aut(S).

Proof. If S is an alternating group on n letters for n 6= 6 , a sporadic
group or the Tits group 2F4(2)′, then |Out(S)| ≤ 2, so we may assume
that |Out(S)| = 2. If the only character of S that extends to Aut(S) is
the principal character, then we would have that the multiplicity of any
character degree other than 1 of S is even. Using the degree equation, we
would have that the order of S is odd, a contradiction.

Finally, we may assume that S is a simple group of Lie type (note that
A6

∼= L2(9) is of Lie type). In this case, it is well-known that the p-Steinberg
character of S, where p is the defining characteristic, extends to Aut(S) (see
[7]).

Before proceeding to prove Theorems B and C we state the following
result.

Theorem 4.3. Let G be a permutation group on a set Ω of cardinality k
and assume that G does not contain any alternating group bigger than Alt(t)
as a composition factor. Then the number of orbits of G on the power set
P(Ω) is at least ak/t where a > 1 is some constant.

Proof. This appears in [1]

Proof of Theorem C. Let O∞(G) be the largest normal solvable subgroup
of G. Using Theorem 2.5 and Clifford theory, it is easy to see that it suffices
to prove that |G : O∞(G)| is (m, t)-bounded. Since G/O∞(G) satisfies the
hypotheses of the theorem, we may assume without loss of generality that
O∞(G) = 1.

Thus the generalized Fitting subgroup F ∗(G) is a direct product of min-
imal normal subgroups of G, each of which is a direct product of non-abelian
simple groups. Since CG(F ∗(G)) = 1, G embeds into Aut(F ∗(G)) and we
have that in order to bound |G|, it is enough to bound |F ∗(G)|.

First, we want to prove that the number of times that a given simple
group S appears as a direct factor of F ∗(G) is m-bounded. Let N be a
normal subgroup of G isomorphic to the direct product of k copies of a
non-abelian simple group S. We will bound k in terms of m. We have that
G/CG(N) embeds into Aut(N) ∼= Aut(S) oSk. Put H = G/CG(N) and view
this group as a subgroup of Aut(S) o Sk. Let B = H ∩ Aut(S)k and note
that H/B is a permutation group on k letters. Fix a non-linear character
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ϕ ∈ Irr(S) that extends to Aut(S) (it exists by Lemma 4.2). Note that the
hypotheses of Theorem 4.3 hold. It follows from this result that for some
s, the number of orbits of H/B on the subsets of cardinality s is at least
ak/t/(k + 1). Considering the characters of B that extend products of s
copies of ϕ and k − s copies of the principal character of S, we deduce that
there are at least ak/t/(k+1) H-orbits of characters of B of the same degree.
Using Corollary 11.29 of [16], it follows that H (and hence G) has at least
ak/t/(k + 1)d(k!) characters of the same degree. Using part (ii) of Lemma
4.1 and Stirling’s formula, one can see that this quotient goes to infinity as
k goes to infinity. It follows that k has to be bounded in terms of m.

Next, we prove that the order of each of the simple groups S that ap-
pears in F ∗(G) is bounded in terms of t and m. By hypothesis and the
classification of finite simple groups, we may assume that S is a group of Lie
type. We want to bound |S| in terms of m. We will write N = S × · · · × S
to denote a minimal normal subgroup of G that contains S and more gen-
erally we will also use the same notation of the preceding paragraph. By
Schreier’s conjecture, B/N (which is isomorphic to a subgroup of Out(S)k)
is solvable. If its order were not m-bounded, then it would have arbitrarily
many characters of the same degree and since |H : B| is m-bounded, the
same would happen with H. Therefore |B : N | is m-bounded, so |H : N |
is m-bounded. Using Theorem 3.6, we have that if |S| is not m-bounded,
then S would have arbitrarily many characters of the same degree. Hence,
the same happens with N and, since |H : N | is m-bounded, the same would
happen with H, a contradiction. We conclude that |S| is m-bounded, as
desired. This completes the proof.

Now, Theorem B will be an immediate consequence of the following
lemma. Given a group G, we write m(G) to denote the largest multiplicity
of the character degrees of G.

Lemma 4.4. Assume that Alt(t) is a composition factor of a finite group
G for some t > 6. Then

m(G) ≥ m(Alt(t))/4.

Proof. Let M/N be a chief factor of G that is a direct product of copies of
Alt(t). We may assume, without loss of generality, that N = 1. Also, we
may assume that CG(M) = 1. Therefore, G is isomorphic to a subgroup of
Γ = St oSk, where k is the number of copies of Alt(t) in M . We will view G
as a subgroup of Γ.

Fix an integer d such that Alt(t) has m(Alt(t)) characters of degree
d. Let ψi ∈ Irr(Alt(t)) with ψi(1) = d for i = 1, . . . ,m(Alt(t)). For i =
1, . . . ,m(Alt(t)), let θ1 = ψi×· · ·×ψi. Assume first that at least one-half of
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the characters ψi extend to St. Let ϕ ∈ Irr(St) be one such extension. We
have that ϕ × · · · × ϕ ∈ Irr((St)k) is Γ-invariant so by [20], for instance, it
extends to Γ and therefore to G. In this way we obtain at least m(Alt(t))/2
of the characters θi extend to G, so m(G) ≥ m(Alt(t))/2.

Now, we may assume that at least m(Alt(t))/2 of the characters ψi do
not extend to St. Let ψi be one of these characters. Then we have that
T = IΓ(θi) = Alt(t) o Sk. Using [20] again, we see that θi extends to its
inertia group. Furthermore, we have that IG(θi) = T ∩ G does not depend
on θi. Using Clifford theory, we can find characters χi ∈ Irr(G|θi) of the
same degree. It is clear that any of the characters θi cannot have more than
two G-conjugates and we conclude that the number of different characters
among the χi’s is at least m(Alt(t))/4. This completes the proof of the
lemma.

Proof of Theorem B. We are assuming that Conjecture A holds for the sym-
metric groups. We want to prove that it holds for every finite group. Since
for every t, Alt(t) is a normal subgroup of the symmetric group of degree t of
index 2, we may assume that Conjecture A holds for the alternating groups
(using Clifford’s theory). By Theorem C, it suffices to see that if Alt(t) is
the largest alternating group that appears as a composition factor of G, then
t is m-bounded. This follows from the assumption that Conjecture A holds
for alternating groups and Lemma 4.4

5 Symmetric groups

There is a well-known formula for the character degrees of the symmetric
group. As was proved by A. Young at the beginning of the 20th century there
is a nice correspondence between the irreducible characters of the symmetric
group Sn and the partitions of n. Given a partition of n, µ = (a1, . . . , at),
with a1 ≥ a2 ≥ · · · ≥ at, the Young diagram associated to µ is an array of
n nodes with ai nodes in the ith row. We assign numbers to the rows and
columns and coordinates to the nodes. The hook number H(i, j) of the node
(i, j) is the number of nodes to the right and below the node (i, j), including
the node (i, j). The degree of the character χµ associated to the partition
µ is given by the hook length formula

χµ(1) =
n!∏

i,j H(i, j)
.

This description of the degrees was obtained by J. Frame, G. de B. Robinson
and R. Thrall in [8].
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So our Conjecture A reduces to the following problem. Given a partition
µ of an integer n, let

P (µ) =
∏
i,j

H(i, j)

be the product of the hook numbers and

M(n) = max
m≥1

#{µ ∈ Part(n) | P (µ) = m}

be the maximum number of partitions of n with the same product of hook
numbers. Conjecture A is now equivalent to the following.

Conjecture A′. M(n) →∞ as n→∞.

The first few values of M(n) are given in the following graphic, where
we have joined the dots between the different integers.
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Figure 1: The function M(n).

It seems clear from the graphic that this wants to be an increasing
function but it is also clear that this function is far from being weakly
monotonic. It would also be interesting to prove weaker results, like that
lim supM(n) = ∞.

6 Further comments

We begin with an application of Theorem C that might have some applica-
tion in the context of [21]. We recall that a group G is an Ml-group if every
irreducible character is induced from a character of degree at most l of some
subgroup of G.

Corollary 6.1. Let G be an Ml-group for some integer l. If the largest
multiplicity of any character degree of G is m, then the order of G is (m, l)-
bounded.

Proof. By Proposition 4.1 of [21] (which is an easy consequence of Jordan’s
theorem on linear groups and results of Isaacs [15]), we have that G does not
contain (as a composition factor) an alternating group bigger that Alt(cl)
for some constant c. The result follows from Theorem C.

Our results indicate that a large group has some character degree that
occurs with large multiplicity. For solvable groups, it might be true that
the average multiplicity of the character degrees of a large group is large.
More precisely, we ask the following, where k(G) is the number of conjugacy
classes of G and cd(G) = {χ(1) | χ ∈ Irr(G)}.

Question 1. Let G be a solvable group. Is it true that k(G)/| cd(G)| → ∞
as |G| → ∞?
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In p. 249 of [24], L. Pyber asked whether there exists an infinite sequence
of p-groups of increasing order such that k(P ) ≤ c logp |P | for some constant
c = c(p). It is easy to see that an affirmative answer to Question 1 for
p-groups follows from a negative answer to Pyber’s question. In fact, as the
following result shows, Question 1 is equivalent to Pyber’s question in the
p-group case. This result is due to Jaikin-Zapirain.

Theorem 6.2. Let P be a group of order pm. Then

k(P ) ≥ Ckpm/k,

where k = | cd(P )| and C is a positive constant. In particular, an affirmative
answer to Question 1 implies a negative answer to Pyber’s question.

Proof. Let cd(P ) = {1 = pa0 , pa1 , . . . , pak−1}. Let {Pi}k
i=1 be a descending

series of normal subgroups of P such that |P : Pi| = p2ai for i < k and
Pk = 1. Put |P : Pi| = pbi for i = 0, . . . , k. Note that the degree of the
characters of P/Pi does not exceed pai−1 , so

|P/Pi| =
∑

χ∈Irr(P/Pi−1)

χ(1)2 +
∑

χ∈Irr(P/Pi|P/Pi−1)

χ(1)2

≤ |P/Pi−1|+ p2ai−1(| Irr(P/Pi)| − | Irr(P/Pi−1)|)
= |P/Pi−1|+ p2ai−1(k(P/Pi)− k(P/Pi−1)),

where Irr(P/Pi|P/Pi−1) is the set of irreducible characters of P/Pi whose
kernel does not contain P/Pi−1. Now, we have that

pbi − pbi−1 = |P/Pi| − |P/Pi−1| ≤ p2ai−1(k(P/Pi)− k(P/Pi−1))

and it follows that

k(P/Pi)− k(P/Pi−1) ≥ pbi−bi−1 − 1 ≥ Cpbi−bi−1 .

Adding for i = 1, . . . , k and using the fact that the multiplicative mean does
not exceed the arithmetic mean, we conclude that

k(P ) ≥ C
k∑

i=1

pbi−bi−1 ≥ Ck(p
∑k

i=1(bi−bi−1))1/k = Ckpm/k,

as desired.

Now, assume that Pyber’s question has an affirmative answer. We will
show that this implies that our question has a negative answer. We have a
sequence of groups of increasing order {Pm} with |Pm| = pm and k(Pm) ≤
Dm for some constant D. Let km = | cd(Pm)|. then

Ckmp
m/km ≤ k(Pm) ≤ Dm
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so (km/m)p(m/km) ≤ D/C is bounded by a constant, and so is m/km. Since
k(Pm) ≤ Dm, this would yield that our question has a negative answer, as
we wanted to prove.

Using MAGMA, we have checked that 1.75 ≤ k(Sn)/| cd(Sn)| ≤ 2.525
for all 5 ≤ n < 55 and that this function is far from being monotonic (at
least for these small values of n). This might indicate that the asymptotic
behaviour of the number of character degrees of the symmetric groups is
similar to that of the number of partitions, but it would be interesting to
confirm this.

When this paper was in the final stages of its preparation, we received a
preprint of M. Liebeck and A. Shalev [19] were they prove that k(G)/| cd(G)| →
∞ when |G| → ∞ for groups G of Lie type.

A more difficult question would be the following. Is it true that if G
is solvable then k(G)/d(|G|) → ∞ as |G| → ∞? This is a reformulation
of Pyber’s question in the p-group case. This is true, for instance, for the
exceptional groups of Lie type. In fact, we can prove a bit more.

Given a group G, k∗(G) denotes the number of orbits of elements of G
under the action of Aut(G).

Lemma 6.3. The following holds:

k∗(S)
d(|Aut(S)|)

→∞ as S = Gl(q) is a simple group of Lie type and q →∞.

Proof. Let S be a simple group of Lie type of rank l over the field with q
elements. It was proved in Lemma 4.2 of [24] that if l ≤ 4, then k∗(S) ≥
ql/2/120 log q and that if l > 4, then k∗(S) ≥ ql/2−2/24 log q. As claimed
in p. 246 of [24], |Aut(S)| ≤ q4l2 . Now the result follows using part (i) of
Lemma 4.1.

However, the quotient k(Sn)/d(|Sn|) goes to 0 as n goes to infinity. In
order to see this it suffices to use the classical result of Hardy and Ramanujan
[9] on the number of partitions and part (ii) of Lemma 4.1 (together with
Stirling’s formula).

One reason why many different characters have the same degree is that
any two Galois conjugate characters have the same degree. It would be
interesting to decide whether or not it is possible to extend these results in
the following direction. Given an integer n, Ω(n) is the number of prime
divisors of n counting multiplicities.
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Question 2. Assume that G is a solvable group and that for any n ∈ cd(G)
the number of Galois conjugacy classes of characters of degree n does not
exceed k. Is Ω(|G|) k-bounded?
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