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Abstract. Given a groupG, Γ(G) is the graph whose vertices are the primes
that divide the degree of some irreducible character and two vertices p and
q are joined by an edge if pq divides the degree of some irreducible character
of G. By a definition of M. Lewis, a graph Γ has bounded Fitting height if
the Fitting height of any solvable group G with Γ(G) = Γ is bounded (in
terms of Γ). In this note, we prove that there exists a universal constant C
such that if Γ has bounded Fitting height and Γ(G) = Γ then h(G) ≤ C.
This solves a problem raised by Lewis.
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1 Introduction

There are many results that show that properties of the degrees of the
complex irreducible characters of finite groups give structural information
of the group G. A useful tool in these problems is the graph associated to
the character degrees. This graph, which we will denote Γ(G), is defined as
follows. Its vertices are the prime integers that divide the degree of some
irreducible character and two vertices p and q are joined by an edge if pq
divides the degree of some irreducible character. This graph has been widely
studied. For the most recent account of results on this graph see [4].

This graph tends to have many edges. For instance, it is known that it
has at most 3 connected components. Moreover, if G is solvable then it has
at most two connected components and in the case that it has two connected
components the Fitting height of the group G is at most 4. (See Theorem
19.6 of [6], for instance, for a proof of this result of P. Palfy.)

Motivated by this result, M. Lewis considered in [2] the following ques-
tion: which are the graphs Γ that have bounded Fitting height? Here the
phrase bounded Fitting height means, as one could expect, that there is
a bound for the Fitting height of the solvable groups with character de-
gree graph Γ. In that paper Lewis obtained a nice characterization of these
graphs. He proved that if Γ has n vertices for some integer n, then Γ has
bounded Fitting height if and only if it has at most one vertex of degree
n− 1. (Recall that the degree of a vertex is the number of edges that touch
the vertex.)

The bound that Lewis obtained for the Fitting height of the groups with
bounded Fitting height graph is linear in the number of vertices of the graph.
More precisely he proved that h(G) ≤ 4(n − 1) + 2. He suggested that it
is likely that there is a constant bound and that, in fact, he was not aware
of any solvable group G with bounded Fitting height graph and h(G) > 4.
(This fact has now been formally stated as a conjecture in [4].)

Further evidence for these facts was given in the subsequent paper [3],
where Lewis proved that this happens in a special case (when the vertices
of Γ are the primes in π1 ∪ π2 ∪ {p}, where this is a disjoint union, πi for
i = 1, 2 are nonempty sets of primes and no vertex in π1 is adjacent to any
vertex in π2). The goal of this note is to prove Lewis’ suggestion in full
generality. We obtain a universal constant bound for the Fitting height of
groups whose degree graphs have bounded Fitting height.

Theorem A. Let G be a solvable group with bounded Fitting height graph.
Then the Fitting height of G is h(G) ≤ 49. Furthermore, if |G| is odd then
h(G) ≤ 7.
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Certainly, the bounds given in this theorem are not best possible. Thus
the question of whether or not 4 is the “right” bound remains open.

Our proof of Theorem A is another application of the main results in [8].
(See [7] and the references in there for other applications of these results.)
The work in [8], in the case of even order solvable groups, gives useful
information only for groups of Fitting height larger than 10. This is the
reason why it is not possible to obtain sharp bounds with our techniques.

I thank the referee for a number of helpful comments.

2 Preliminary results

We begin by recalling the results from [8] that we will use. Recall that given
a group G, F (G) is the Fitting subgroup of G and we define the Fitting
series of G by means of F1(G) = F (G) and Fi+1(G)/Fi(G) = F (G/Fi(G))
for i ≥ 1. The Fitting height of the solvable group G, which we denote h(G),
is the smallest integer i such that Fi(G) = G.

Theorem 2.1. Let G be a solvable group. Then there exists χ ∈ Irr(G) such
that |G : F10(G)| divides χ(1). Furthermore, if |G| is odd, then we may take
χ ∈ Irr(G) such that |G : F3(G)||F2(G) : F (G)| divides χ(1).

Proof. This is part of Theorems C and D of [8].

We will also use the following deep result. As usual, if N is a normal
subgroup of a group G and θ ∈ Irr(N), we write Irr(G|θ) to denote the set
of irreducible constituents of θG.

Theorem 2.2 (Generalized Gluck-Wolf). Let G be a solvable group,
N be a normal subgroup of G and π a set of primes. Let θ ∈ Irr(N) and
assume that χ(1)/θ(1) is a π′-number for all χ ∈ Irr(G|θ). Then G/N has
an abelian Hall π-subgroup. In particular, G/N has π-length at most one.

Proof. See Theorem 12.9 of [6] or [5].

We notice that this theorem is also implicitly used in the proof of Theo-
rem 3 of [2]. Lewis’s proof depends on a result of J. Pense [9], which in turn
relies on the Gluck-Wolf Theorem.

We will need Lewis’s characterization of graphs with bounded Fitting
height.

Theorem 2.3. Let Γ be a graph with n vertices. Then Γ has bounded Fitting
height if and only if it has at most one vertex of degree n− 1.
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Proof. This is the Main Theorem of [2].

In fact, we will just use the “only if” part of this theorem which is
quite straightforward: it suffices to observe that there are {p, q}-groups of
arbitrarily large Fitting height and that if Γ has two primes p and q of degree
n − 1 then for any group G with Γ(G) = Γ, the direct product G × R, for
any {p, q}-group R, has the same degree graph.

Finally, we need the following variations of Theorem 1 and Corollary 2
of [2]. Given an integer n, we write π(n) to denote the set of prime divisors
of n. For brevity, if G is a group, we will write π(G) = π(|G|). Given a set of
primes π, we write lπ(G) to denote the π-length of G. If π is the empty-set,
we will put lπ(G) = 0 for any group G.

Lemma 2.4. Let m ≥ 1 be an integer. Let G be a solvable group and assume
that π(G) = π1 ∪ · · · ∪ πm and that G has nilpotent Hall πi-subgroups for
every i. Then

h(G) ≤
m∑

i=1

lπi(G).

Proof. We argue by induction on |G|. Since h(G) = h(G/Φ(G)) (by Theo-
rem 1.12 of [6], for instance), we may assume that Φ(G) = 1, i.e., F = F (G)
is the direct product of the minimal normal subgroups of G. Assume first
that there are two different minimal normal subgroups N1 and N2. Since G
embeds into G/N1×G/N2, there exists i ∈ {1, 2} such that h(G) = h(G/Ni).
Now the result follows from the inductive hypothesis. Hence, we may assume
that F is the unique minimal normal subgroup of G. Assume that F is a p-
group for some prime p ∈ π1. Since G has a nilpotent Hall π1-subgroup, we
have F = Oπ1(G). We also know that Oπ′

1
(G) = 1, so lπ1(G) = lπ1(G/F )+1.

Also, lπi(G/F ) ≤ lπi(G) for i 6= 1. By the inductive hypothesis,

h(G) = h(G/F ) + 1 ≤
m∑

i=1

lπi(G/F ) + 1 ≤
m∑

i=1

lπi(G),

as desired.

Lemma 2.5. Let G be a solvable group and assume that π(G) = π1∪· · ·∪πn.
Then

lπn(G) ≤
n−1∑
i=1

lπi(G) + 1.

Moreover, this bound can be improved by one if Oπn(G) = 1.

Proof. We argue by induction on |G|. If G is a πn-group, then the result is
obvious. We assume that G is not a πn-group. Assume first that Oπn(G) =
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1. Suppose that G has at least two different minimal normal subgroups N1

and N2. For i = 1, 2, let Mi/Ni = Oπn(G/Ni). We claim that M1 ∩M2 = 1.
Otherwise, there exists a minimal normal subgroup L of G that is contained
in M1 ∩M2. But notice that for i = 1, 2, Ni is the unique minimal normal
subgroup of G contained in Mi. This implies that L is both N1 and N2.
This contradiction proves the claim. Hence G embeds in G/M1 × G/M2.
Using the inductive hypothesis, we deduce that

lπn(G) ≤ max{lπn(G/M1), lπn(G/M2)}

≤ max{
n−1∑
i=1

lπi(G/M1),
n−1∑
i=1

lπi(G/M2)}

≤
n−1∑
i=1

lπi(G),

as desired.

Hence, we may assume that G has a unique minimal normal subgroup
M . Thus there is a prime p 6∈ πn such that F (G) is a p-group. In particular,
F = F (G) is a πj-group for some j 6= n. This implies that O = Oπj (G) > 1
and Oπ′

j
(G) = 1. By the inductive hypothesis,

lπn(G) = lπn(G/O) ≤
n−1∑
i=1

lπi(G/O) + 1.

It is easy to see that lπj (G) = lπj (G/O) + 1. For every i 6= j, we have
lπi(G) ≥ lπi(G/O). Combining these formulas, the result follows.

Now, assume that Oπn(G) > 1. In this case, it suffices to apply the
inductive hypothesis to G/Oπn(G) to deduce the result.

Corollary 2.6. Let m ≥ 1 be an integer. Let G be a solvable group and
assume that π(G) = π1 ∪ · · · ∪πm ∪πm+1 and that |πm+1| ≤ 1. Assume also
that G has abelian Hall πi-subgroups for 1 ≤ i ≤ m. Then

h(G) ≤ 2m+ 1.

Proof. Since G has abelian Hall πi-subgroups for i ≤ m, we have lπi(G) ≤ 1
for i ≤ m. Hence using Lemmas 2.4 and 2.5, we have

h(G) ≤ m+ lπm+1(G) ≤ m+
m∑

i=1

lπi(G) + 1 ≤ 2m+ 1,

as desired.
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3 Proof of Theorem A

Now, we are ready to complete the proof of Theorem A. We will write ρ(G)
to denote the set of prime integers that divide the degree of some irreducible
character of G, i.e., ρ(G) is the set of vertices of Γ(G). Notice that by Ito’s
theorem (Corollary 12.34 of [1]), if G is solvable then ρ(G) is the set of prime
divisors of |G| for which G does not have a normal abelian Sylow subgroup.
This implies that ρ(G) = π(G/F (G)) ∪ ρ(F (G)).

Proof of Theorem A. Put F0 = 1, F = F (G) and Fi = Fi(G) for i ≥ 1.
Since F is nilpotent, there exists β1 ∈ Irr(F ) such that π(β1(1)) = ρ(F ). By
page 254 of [6], there exist βi ∈ Irr(Fi) such that

π(|Fi : Fi−1|) = π(βi(1))

for all 2 ≤ i ≤ 10. This implies that

ρ(F10) = π(β1(1) . . . β10(1)).

On the other hand, by Theorem 2.1, there exists ψ ∈ Irr(G) such that
|G : F10| divides ψ(1). In particular,

ρ(G) = π(ψ(1)) ∪ π(β1(1)) ∪ · · · ∪ π(β10(1)).

For i = 1, . . . , 10, we define

πi = {p | |G : F10| | p divides χ(1)/βi(1) for some χ ∈ Irr(G|βi)}.

By the Generalized Gluck-Wolf Theorem, G/F10 has an abelian Hall π′i-
subgroup for every i = 1, . . . , 10.

Assume that p belongs to πi for all i = 1, . . . , 10. Then there exist
χi ∈ Irr(G|βi) such that p divides χi(1)/βi(1) for all i. Also, p divides ψ(1).
This means that p is joined to all the other primes in ρ(G), i.e., p is a vertex
of Γ(G) of degree |ρ(G)| − 1. By Theorem 2.3, p is the unique such vertex.
This means that

|
10⋂
i=1

πi| ≤ 1,

so
⋃10

i=1 π
′
i contains all the primes in π(G/F10) except for at most one of

them. If there is one prime missing, let this prime be q. Otherwise, choose
a prime q that does not divide |G/F10|. Set Q ∈ Sylq(G/F10) and put
τi = π′i ∩ π(G/F10) for every i. We can write G/F10 = H1 . . .H10Q, where
Hi is an abelian Hall τi-subgroup of G/F10 for i = 1, . . . , 10. In particular,
G/F10 has τi-length at most one for every i. By Corollary 2.6, we have

h(G) = h(G/F10) + 10 ≤ (2 · 10 + 1) + 10 = 31.
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This concludes the proof of the first part of the theorem.

For the second part, we argue in a similar way using the more precise
results obtained for odd order groups in [8].

Now we have that |G| is odd. As before, there exists β ∈ Irr(F ) such
that π(β(1)) = ρ(F ). By Theorem 2.1, there exists ψ1 ∈ Irr(G) such that
|G : F3||F2 : F | divides ψ1(1). Applying Theorem 2.1 to the group G/F , we
get that there exist ψ2 ∈ Irr(G) such that |G : F4||F3 : F2| divides ψ2(1). In
particular,

ρ(G) = π(ψ1(1)) ∪ π(ψ2(1)) ∪ π(β(1))

and the prime divisors of |G : F4| are joined to all the vertices in Γ(G) except
for possibly those that divide β(1). Put

π = {p | |G : F4| | p divides χ(1)/β(1) for some χ ∈ Irr(G|β)}.

By the Generalized Gluck-Wolf Theorem, G has an abelian Hall π′-subgroup.

It is clear that if p belongs to π, then p is joined in Γ(G) to all the
prime divisors of β(1). In particular, |π| ≤ 1. Since G has an abelian Hall
π′-subgroup, we may assume that π consists of one prime, say q. Thus
G/F4 = QA, where Q is a Sylow q-subgroup of G/F4 and A is an abelian
Hall q′-subgroup of G/F4.

By Corollary 2.6, we have

h(G) = h(G/F4) + 4 ≤ 2 + 1 + 4 = 7.

This concludes the proof of the theorem.
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