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Abstract. We say that a finite group G is an NDAD-group (no di-
visibility among degrees) if for any 1 < a < b in the set of degrees of
the complex irreducible characters of G, a does not divide b. In this ar-
ticle, we determine the nonsolvable NDAD-groups. Together with [13]
this settles a problem raised by Berkovich and Zhmud’, which asks for
a classification of the NDAD-groups.

1. Introduction and statement of results

Let G be a finite group. We say that G is an NDAD-group (no divisibility
among degrees) if for any 1 < a < b in the set of degrees of the complex
irreducible characters of G, a does not divide b. Problem 58 of Berkovich and
Zhmud’ [1] asks for a classification of the NDAD-groups. Solvable NDAD-
groups where classified in [13]. In particular, it follows from the results
there that a solvable NDAD-group has at most 4 character degrees. It was
conjectured in [13] that there should exist a universal bound for the number
of character degrees of an arbitrary NDAD-group. The goal of this paper is
to classify the nonsolvable NDAD-groups, settling Berkovich and Zhmud’s
problem. The following is thus our main result.

Theorem A. Let G be a nonsolvable NDAD-group. Write C = CG(G′).
Then C = Z(G) and one of the following holds:

(i) G = S × C, where S is J1 or 2B2(22f+1) for some f > 1.
(ii) G′ = A7 and |G/CG′| ≤ 2.
(iii) G′ = 2B2(8) and |G/CG′| divides 3.
(iv) G′ = L3(4) and G/C = L3(4), L3(4).21, L3(4).3, or L3(4).6.
(v) G′ = L2(q) or SL2(q) and G/C = PGL2(q).
(vi) G′ is A6 or the 3-fold cover of A6 and G/C = M10.

Conversely, if C = Z(G) and any of (i)-(vi) holds, then G is a nonsolvable
NDAD-group.

As an immediate consequence of this theorem and the main result in [13],
we can prove Conjecture A of [13].

Corollary B. Let G be a finite NDAD-group. Then | cd(G)| ≤ 7.

As usual, given a group G we write cd(G) to denote the set of degrees
of the irreducible characters of G. B. Huppert [9] has conjectured that if
S is simple nonabelian and G is a finite group such that cd(S) = cd(G)
then G = S × A for some abelian group A. The goal of [9] was to prove
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this conjecture for the Suzuki simple groups and the fractional linear groups
L2(2f ) for any f > 1. As a by-product of the classification of the NDAD-
groups, we obtain a new proof of Huppert’s result (and a little bit more).

Corollary C (Huppert). If S = L2(2f ) for some f > 1, 2B2(22f+1) for
some f ≥ 1, L3(4), J1 or A7 and G is a finite group with cd(G) = cd(S),
then G = S ×A for some abelian group A.

In Section 2 we classify the almost simple NDAD-group, using the classifi-
cation of finite simple group. We prove in Section 3 that if G is a nonsolvable
NDAD-group, then G′ is a quasi-simple group. Finally, we complete the
proof of Theorem A in Section 4 and deduce corollaries B and C in Section
5.

Some of this work was done while the second author was visiting the Uni-
versity of Kaiserslautern. He thanks the Mathematics Department there for
its hospitality. The second author was partially supported by the FEDER,
the Spanish Ministerio de Educación y Ciencia, the Generalitat Valenciana
and Programa Ramón y Cajal.

2. Almost simple groups

Recall that a finite group G is almost simple if there exists a nonabelian
simple group S such that S ≤ G ≤ Aut(S). The goal of this section is to
determine the almost simple NDAD-groups. We first discard the alternating
groups:

Lemma 2.1. Let G be an almost simple group with F ∗(G) = An, n ≥ 8.
Then G is not an NDAD-group.

Proof. Let’s first consider the case where G = Sn is the symmetric group.
The irreducible characters of Sn are labelled by partitions of n, and we write
χλ for the character indexed by the partition λ. From the hook formula we
obtain the following list of character degrees:

λ (n− k, 1k) (n− 4, 4) (n− 4, 22)
χλ(1)

(
n−1
k−1

) n(n−1)(n−2)(n−7)
24

n(n−1)(n−4)(n−5)
12

If n 6≡ 3 (mod 4) then n − 1 divides n(n−1)(n−4)(n−5)
12 . If n 6≡ 1 (mod 3)

then n − 1 divides
(
n−1

3

)
. Finally, if n ≡ 7 (mod 12) then

(
n−1

2

)
divides

n(n − 1)(n − 2)(n − 7)/24. Note that the above partitions make sense for
any n ≥ 8. Moreover, they are different from the trivial partitions (n)
and (1n), so they label non-linear characters. Finally, for any n ≥ 8 the
two chosen degrees are different from each other. This shows the claim for
symmetric groups.

Now note that χλ restricts irreducibly to An unless λ is a self-dual parti-
tion. Again, for n ≥ 8 none of the partitions used above are self-dual, so we
obtain the desired conclusion for An as well. �

For groups of Lie type we need some preparations. Let G be a semisimple
algebraic group of adjoint type over the algebraic closure F̄q of a finite field
Fq, and let F : G → G be a Frobenius morphism on G. Let G := GF

denote the group of fixed points, a finite group of Lie type. Then any finite
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simple group of Lie type can be obtained as the derived group G′ of G for
a suitable choice of G and F .

Let W denote the Weyl group of G, that is, the group of fixed points
under F of the Weyl group of an F -stable maximal torus of G contained in
an F -stable Borel subgroup. There is a natural bijection φ 7→ χφ between
Irr(W ) and the set of constituents of the permutation character of G on the
Borel subgroup B of G. The latter are called the unipotent principal series
characters of G. Moreover the degree of χφ is a polynomial in q of the form

χφ(1) = baφ
qaφ + . . .+ bAφ

qAφ

with increasing exponents aφ < . . . < Aφ and rational coefficients bi such
that baφ

, bAφ
are non-zero. Here, aφ, the order of vanishing at q = 0, is the

so-called a-invariant aφ of χφ. (Note that this depends also on the Weyl
group of G, not just on W .)

Let ε ∈ Irr(W ) denote the sign-character of W . Then the unipotent
principal series character χφ⊗ε attached to φ⊗ ε is the Alvis-Curtis dual of
the unipotent character χφ attached to φ. It is known that the degrees of
χφ and its Alvis-Curtis dual only differ by a power of q.

Indeed, let L : W → N0 denote the length function on W and H =
H(W,L) the corresponding Iwahori-Hecke algebra of G, a deformation of
the group algebra of W . Then the degree of a principal series character
χφ is obtained from the Schur element cφ of the Hecke algebra as χφ(1) =
P/cφ, where P =

∑
w∈W qL(w) denotes the Poincaré-polynomial of G [5,

Cor. 9.3.6]. Let S′ denote a set of representatives for the conjugacy classes
of reflections in W and, for s ∈ S′, let Ns be the number of occurrences of
conjugates of s in any shortest expression for the longest element w0 of W .

Lemma 2.2. In the notation introduced above, let φ ∈ Irr(W ) denote an
irreducible character of the Weyl group W of G, φ̃ = φ⊗ε the tensor product
with the sign character. Let χ, χ̃ be the corresponding unipotent principal
series characters of G with a-values a, ã respectively. Then

χ̃(1) = qã−aχ(1)

where

ã− a =
∑
s∈S′

L(s)Ns
φ(s)
φ(1)

.

Proof. By [5, Prop. 9.4.1(b) and 9.4.3] we have

cφ̃ = ind(Tw0)z
−1
φ cφ

with
zφ =

∏
s∈S′

uNs(1+φ(s)/φ(1))
s

by [5, Th. 9.2.2]. Here us = qL(s) are the parameters of the Hecke algebra
H and

ind(Tw0) = qL(w0) = q
∑

s∈S′ L(s)Ns .

Thus
χ̃(1) =

P

cφ̃
=
P

cφ

zφ
ind(Tw0)

= χ(1)
∏
s∈S′

qL(s)Nsφ(s)/φ(1)
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as claimed. �

In particular, for any φ ∈ Irr(W ), one of the degrees χφ(1), χφ⊗ε(1) is a
multiple of the other. In order to obtain character degrees which are proper
multiples of each other it hence suffices to ensure that aφ⊗ε − aφ 6= 0 for
suitable φ ∈ Irr(W ). The most natural candidate, which moreover exists for
any Weyl group, is certainly the reflection character.

Lemma 2.3. In the notation introduced above, let ρ ∈ Irr(W ) denote the
reflection character of the Weyl group W of G, ρ̃ = ρ⊗ ε the tensor product
with the sign character. Let χ, χ̃ be the corresponding unipotent principal
series character of G. Then 1 < χ(1) < χ̃(1) and χ(1) divides χ̃(1), unless
W has rank 1 or 2.

Proof. Clearly, the value of ρ on reflections equals ρ(1)− 2, so we find that

aρ̃ − aρ =
ρ(1)− 2
ρ(1)

∑
s∈S′

L(s)Ns

by Lemma 2.2. This is positive if and only if ρ(1) > 2, that is, for W of
rank at least 3.

The degree χ(1), interpreted as a polynomial in q, is a product of cyclo-
tomic polynomials in q. At q = 1 it specializes to the degree ρ(1) ≥ 1 of ρ.
In particular, it is not divisible by the linear polynomial (q − 1). It is easy
to see that any other cyclotomic polynomial is strictly increasing on [1,∞]
(check the real factors of degree 2), thus χ(1), the value at q, is larger than
ρ(1), hence larger than 1. �

We next show that the particular unipotent characters considered above
extend to the full automorphism group. For this let Ĝ be a simply connected
covering group of G, that is, Ĝ is simply connected and has a morphism
Ĝ → G with central kernel. Let F̂ : Ĝ → Ĝ denote a lift of F to Ĝ, with
fixed point group Ĝ = ĜF̂ . Then we obtain an induced homomorphism Ĝ→
G. Let’s write G′ for the image of this homomorphism; it coincides with the
derived subgroup of G unless G′ is not simple. According to Lusztig’s theory,
the unipotent characters of Ĝ have Z(Ĝ) in their kernel. Thus they may be
considered as characters of G′, and they coincide with the restrictions to G′

of the unipotent characters of G. In particular, the unipotent characters of
G restrict irreducibly to G′.

Proposition 2.4. Let G,G′ be as above, χ the unipotent principal series
character of G indexed by the reflection character of the Weyl group W of
G and χ̃ its Alvis-Curtis dual. Then the (irreducible) restrictions to G′ of
both χ and χ̃ extend to Aut(G′).

Proof. By a result of Steinberg Out(G′) is a solvable group generated by
the diagonal automorphisms, the graph automorphisms and the field au-
tomorphisms of G′ (see [6, Th. 2.5.1]). The group G is just the subgroup
of Aut(G′) generated by G′ together with the group of diagonal automor-
phisms. We hence have to check that χ, χ̃ are invariant under graph and field
automorphisms and extend to Aut(G′). Now by construction the unipotent
characters are invariant under all field automorphisms. The graph automor-
phisms are induced by graph automorphisms of the Weyl group W which in



for personal use only 5

turn by definition fix the reflection representation. Thus the unipotent char-
acter corresponding to the reflection character of W is also invariant under
all graph automorphisms. The same reasoning applies to the sign character
of W , and hence to χ̃. It follows that χ, χ̃ are invariant in Aut(G′).

The group of field automorphisms is cyclic, thus we are done unless G has
non-trivial graph automorphisms. Assume that Γ is an F -invariant group
of graph automorphisms of G. Then according to Digne–Michel [4] there
exist generalized Deligne-Lusztig characters for the group of fixed points
(G.Γ)F of the disconnected group G.Γ. Unipotent characters can be defined
in the same way as in the connected case, and these are again invariant
under all field automorphisms. Moreover, their restrictions to G are just
the sums over Γ-orbits of unipotent characters of G. In particular, if χ is
a Γ-invariant unipotent character of G, it extends to a unipotent character
of (G.Γ)F which is still invariant under field automorphisms. The latter
extend further to the whole of Aut(G′) and we are done. �

To treat L2(q) we need the following easy observation:

Lemma 2.5. Let q = pf ≥ 16, f > 1, be a prime power.
(a) There exists s ∈ F×q such that s2 + s−2 is a primitive element of Fq.
(b) There exists s ∈ F×

q2 of norm 1 over Fq such that s2 + s−2 is a
primitive element of Fq2.

Proof. For (a) we estimate the number of elements of Fq lying in proper
subfields. The subfields of Fq are the fields Fpa for divisors a|f . Hence the
number m of non-primitive elements of Fq can be estimated by

m ≤
∑

a|f,a<f

pa ≤
f/2∑
a=1

pa ≤ 2pf/2.

The map F×q → F×q , s 7→ s2 +s−2, has fibers of size at most 4, and at most 2
if q is even. So at least q/4 elements of Fq are of the form s2 + s−2, and
at least q/2 if q is even. Hence there exist primitive elements of the form
s2 + s−2 if 2

√
q < q/4, that is, if q ≥ 65, and also for q ≥ 17 if q is even.

If q = p2, so f = 2, q − √q elements are primitive, so we are done when
q ≥ 25. In F27 only three elements are not primitive, which is less than
27/4. Explicit calculation shows that the statement holds when q = 16.

For (b) we may argue similarly, this time counting norm 1 elements lying
in proper subfields of Fq2 . The analogous estimate as above shows that there
are at most 2pf/3 such elements. With this, we are done when q ≥ 22. For
q = 16, the claim follows by direct calculation. �

Lemma 2.6. Let G be an almost simple group with F ∗(G) = L2(q), q =
pf > 4. If G is an NDAD-group then G = PGL2(q) or G = M10.

Proof. We may assume that q ≥ 11, since the other cases can be checked
from the Atlas (which leads in particular to the case M10 = A6 · 23). Let
S = F ∗(G) = L2(q). First assume that q = pf ≥ 11 is odd, q ≡ ε (mod 4)
with ε ∈ {±1}. Then the irreducible characters of S have degrees 1, q (one
each) q − 1 ((q − 1)/2 many), q + 1 ((q − 3)/2 many) and (q + ε)/2 (two).
Thus S itself does not satisfy NDAD. The outer automorphism group of S is
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the direct product of the group of diagonal automorphisms, of order 2, and
the group of field automorphisms of order f . The diagonal automorphism
of order two fuses the two characters of degree (q+ ε)/2 and leaves all other
characters invariant. Thus the extension PGL2(q) of S with the diagonal
automorphism is an NDAD-group.

We may hence assume that G is such that H := G/(G∩PGL2(q)) is non-
trivial (and necessarily cyclic). In particular q 6= p. Let σ denote a generator
of H; it acts like a non-trivial field automorphism γ on the characters of S
of degrees q ± 1. Let M± denote the set of characters of degree q ± 1 of S.
Then |M−| = |M+|+1. So, if γ acts faithfully on both M−, M+, then on at
least one of the two sets there must occur a non-regular orbit as well. But
then we obtain two different character degrees, one dividing the other. It is
sufficient to prove faithfulness in the case that γ is a generator of the group
of field automorphisms. The irreducible characters in M+ are parametrized
by elements of F×q of the form t = s2 + s−2, s4 6= 1, and γ acts by t 7→ tp.
Thus γ has a regular orbit if there exists a primitive element of Fq of the form
s2 + s−2. By Lemma 2.5(a), such elements exist for 11 ≤ q 6= p. Similarly,
irreducible characters in M− are parametrized by elements t = s2 + s−2,
where s ∈ F×

q2 has norm 1 and s4 6= 1. Again, regular γ-orbits exist by
Lemma 2.5(b).

Now let q ≥ 16 be even. In this case, S has irreducible characters of
degree 1, q (one each), q − 1 (q/2 many) and q + 1 ((q − 2)/2 many). In
particular S is an NDAD-group. The only outer automorphisms are field
automorphisms, and with Lemma 2.5 we may conclude that all G 6= S with
F ∗(G) = S are not NDAD. �

Lemma 2.7. Let G be an almost simple group with F ∗(G) = 2B2(22f+1),
f ≥ 1. If G is an NDAD-group then G = 2B2(22f+1) or G = 2B2(8).3

Proof. The case f = 1 can be checked from the Atlas so assume that f ≥ 2.
The group S = 2B2(q2), q2 = 22f+1, has unipotent characters of degrees
1,
√

2q(q2 − 1)/2 (2×) and q4, and further irreducible characters of degree
q4 + 1 ((q2 − 2)/2 many), (q2 − 1)(q2 ±

√
2q + 1) ((q2 ∓

√
2q)/4 many).

Thus S is NDAD. The outer automorphism group of S is cyclic of order
2f + 1 and consists of field automorphisms. So now assume that G/S is
nontrivial, generated by a field automorphism σ. The characters of degree
(q2 − 1)(q2 ∓

√
2q + 1) are indexed by elements of the cyclic maximal torus

T± of order (q2±
√

2q+1) modulo conjugation in its normalizer NS(T±) in
a way compatible with the action of field automorphisms. The normalizer
quotient NS(T±)/T± is cyclic and acts semiregularly on the nonidentity
elements of T±. Thus to show that G does not satisfy NDAD, it suffices
to produce two N(T±)-orbits of non-identity elements of T± with different
orbit length under σ. Note that q4 + 1 = 24f+2 + 1 ≡ 0 (mod 5), so one of
q2 ±

√
2q + 1 is divisible by 5. We let T denote the maximal torus whose

order is divisible by 5. All elements of order 5 in T are conjugate in NS(T ),
so this NS(T )-class of T is stable under all field automorphisms, and the
same holds for the corresponding irreducible character. On the other hand,
if we take a generator s of T , then its NS(T )-class is not stable under any
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nontrivial field automorphism (since q2 ≥ 32). Thus the same holds for the
associated character, and we have shown that G is not an NDAD-group. �

We are now ready to classify the almost simple NDAD-groups:

Theorem 2.8. Let G be an almost simple NDAD-group. Then G is one
of the following groups: PGL2(q), M10, L3(4), L3(4).21, L3(4).3, L3(4).6,
2B2(22f+1), 2B2(8).3, A7, S7 or J1.

Proof. Let G be almost simple, that is, the generalized Fitting subgroup
S = F ∗(G) is a finite simple group. By the classification S is an alternating
group, a group of Lie type or a sporadic group. The 26 sporadic groups can
be easily checked from the Atlas [3], leading to the single case of J1.

If S is an alternating group An, it is not NDAD for n ≥ 8 by Lemma 2.1.
The groups A5 and A6 are isomorphic to the Lie type groups L2(5), L2(9)
respectively, and A7,S7 are exceptions in the statement.

So now assume that S is of Lie type. Then S may be obtained as a group
G′ from the group of fixed points G of a simple algebraic group of adjoint
type G as explained above, unless S = 2F4(2)′. Again the latter group and
its automorphism group can be checked from [3]. Otherwise, first assume
that G is of rank at least 3. Then by Lemma 2.3 the group G is not NDAD,
and by Proposition 2.4 the same is true for all subgroups S ≤ K ≤ Aut(S).

If G has rank at most 2, then it is of one of the following types:

A1, A2,
2A2,

2A3,
2A4, B2,

2B2,
3D4,

2F4, G2,
2G2.

For G of type 2A3 or 2A4 we may take the Ennola-duals of the unipotent
characters that we chose for A3, A4 respectively, and these will do the job.
For type 2F4 we take the unipotent characters labelled by ε′, ε′′ in [2, p.489],
for type 3D4 we take those labelled by φ′1,3, φ

′′
1,3 in [2, p.478]. In all these

cases, the chosen characters extend to Aut(G′) by the same arguments as
those given in Proposition 2.4.

For the remaining types, there are no examples among unipotent charac-
ters, so we have to choose characters in other Lusztig series. For type 2G2

we take the two characters of degree q4 − q2 + 1, q2(q4 − q2 + 1) lying in the
Lusztig series of an involution in the dual group [17].

For G of type G2 take the characters of degrees q4 + q2 +1, q2(q4 + q2 +1)
corresponding to an involution in the dual group when q is odd, and the
characters of degrees q3 +ε, q3(q3 +ε) corresponding to an element of order 3
in the dual group when q ≡ ε (mod 3) is even.

For G of type B2, the four dimensional symplectic group, we take the
characters of degrees (q2 + 1)/2 and q2(q2 + 1)/2 corresponding to an invo-
lution in the dual group with centralizer of type A1×A1 when q is odd (the
first is a Weil character of G), and characters of degrees (q− 1)(q2 + 1) and
q(q − 1)(q2 + 1) corresponding to an element of order q + 1 with centralizer
of type A1(q) if q is even. For all three types 2G2, G2 and B2, the outer au-
tomorphism group is cyclic, and the characters we chose are invariant under
automorphisms, so they extend to the full automorphism group.

The dual group of G = PGL3(q) is G∗ = SL3(q). Let s ∈ G∗ be an
element of order q − 1 with centralizer GL2(q). (Such elements exists if
(q − 1)/ gcd(3, q − 1) 6= 1, so for q 6= 2, 4. But PGL3(2) ∼= L2(7) was
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already considered, and PGL3(4) occurs in the statement.) Then the Lusztig
series in Irr(G) corresponding to s contains irreducible characters of degrees
q2 + q + 1 and q(q2 + q + 1). Both characters behave the same under field
automorphisms. The graph automorphism has order 2; since G also has
characters of degrees (q − 1)(q2 + q + 1) and (q + 1)(q2 + q + 1), extensions
with the graph automorphism are also not NDAD-groups.

For G = PGU3(q) we choose an element s in the dual group G∗ = SU3(q)
of order q + 1 and with centralizer GU2(q). Such an element exists unless
(q + 1)/ gcd(3, q + 1) = 1, so unless q = 2. But PGU3(2) is solvable. Here,
the characters in the corresponding Lusztig series have degrees q2 − q + 1
and q(q2 − q + 1). The behaviour under automorphisms is the same as in
the previously treated case of PGL3(q).

Finally, for S = 2B2(22f+1) see Lemma 2.7, for S = L2(q) see Lemma 2.6.
�

3. The reduction

In this section, we prove that if G is a nonsolvable NDAD-group, then
G′ is a quasi-simple group, i.e., that it is perfect and G′/Z(G′) is simple
nonabelian. We begin by proving that G′ is perfect.

Lemma 3.1. Let G be a nonsolvable NDAD-group. Then G′ is perfect.

Proof. Assume not. Let U be the smallest normal subgroup of G such
that G/U is solvable. Take a chief factor U/V , which is a direct product of
copies of a nonabelian simple group S. We know that there exists α ∈ Irr(S)
nonprincipal that extends to Aut(S) (by Lemma 4.2 of [15], for instance).
Hence α× · · · × α ∈ Irr(U/V ) extends to τ ∈ Irr(G). If we take a nonlinear
character γ ∈ Irr(G/U) we have that γτ ∈ Irr(G) and τ(1) properly divides
γτ(1). This contradiction proves the lemma. �

Our next goal is to prove that any composition series of our nonsolvable
NDAD-group has a unique nonabelian composition factor. This is accom-
plished in the next two lemmas.

Lemma 3.2. Let U/V be a nonabelian chief factor of an NDAD-group G.
Then U/V is simple.

Proof. As before, U/V is a direct product of copies of a nonabelian simple
group S, and we can take α ∈ Irr(S) that extends to Aut(S). Assume that
U/V is not simple. Take β ∈ Irr(S) − {1S , α}. Put ϕ = α × 1S × · · · × 1S

and ψ = α × β × · · · × β. We have that T = IG(ϕ) ≥ IG(ψ). Furthermore,
ϕ(1) properly divides ψ(1) and ϕ extends to ν ∈ Irr(T ). Then νG ∈ Irr(G)
and νG(1) properly divides the degree of any irreducible constituent of ψG.
This is a contradiction. �

Lemma 3.3. Let G be a nonsolvable NDAD-group. Then any composition
series has a unique nonabelian composition factor.

Proof. Argue as in the proof of Lemma 3.1: if G/U is not solvable and U/V
is simple, then we can find some irreducible character of U/V that extends
to τ ∈ Irr(G). But now, for any nonlinear ψ ∈ Irr(G/U), χ = τψ ∈ Irr(G)
and τ(1) properly divides χ(1). �
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Now we have the following.

Corollary 3.4. Let G be a nonsolvable NDAD-group. Let G′/U be a chief
factor. Then G′/U = L3(4), J1, A7, 2B(22f+1) for some f ≥ 1 or L2(q) for
some q ≥ 4 and U is solvable.

Proof. By Lemma 3.1 and Lemma 3.2, G′/U is a nonabelian simple group.
Now, Lemma 3.3 implies that U is solvable. Write C/U = CG/U (G′/U).
Then G/C is an almost simple NDAD-group and G′C/C ∼= G′/U . Now the
list of possibilities for G′/U follows from Theorem 2.8. �

In the remainder of this section we will use the notation of Corollary 3.4.
In particular, G′/U will be a chief factor and C/U = CG/U (G′/U). Recall
also that G/C is one of the groups in the statement of Theorem 2.8. Our
next goal is to prove that any character of U is G′-invariant. We will argue
case by case according to the different possibilities for G′/U in Corollary
3.4.

Lemma 3.5. Let G be a nonsolvable NDAD-group and assume that G′/U =
L3(4). Then every irreducible character of U is G′- invariant.

Proof. Assume that there is some irreducible character λ of U that is not
G′-invariant and let T < G′ be the inertia group of λ in G′. We want to see
that in this case G is not an NDAD-group.

By Theorem 2.8G/C is L3(4), L3(4).21, L3(4).3, or L3(4).6. We claim that
in this case there is some irreducible character of G′ whose degree is a proper
multiple of some irreducible character degree of G/C. This will conclude
the proof. Since when ordered by divisibility the members of cd(L3(4).6)
are maximal members among the character degrees of our four possibilities
for G/C, we may assume that G/C = L3(4).6. The set of character degrees
of this group is

cd(L3(4).6) = {1, 20, 105, 90, 126, 64}.

Using the classification of the maximal subgroups of L3(4) in [3] we see
that the maximal subgroups of G′ that contain U have indices 280, 120, 56
and 21. If T is contained in a maximal subgroup of index 280 or 120, it
is clear that any irreducible character of G′ lying over λ will be a proper
multiple of 20. This proves the claim in this case. Hence we may assume
that T is contained in a maximal subgroup of G′ of index 56 or 21.

The subgroups of index 56 of G′/U are isomorphic to L2(9). Assume
first that T/U is one of these subgroups. We are interested in the degrees
of the characters of T lying over λ. Using a character isomorphism triple
(see Chapter 11 of [11]), we may assume that U is central in T . Looking at
the character degrees of the central extensions of L2(9) in the Atlas, we see
that T has some character of degree either 8 or 9 lying over λ. Since this
character induces irreducibly to G′ we conclude that G′ has some character
of degree either 56 · 8 · λ(1) (which is a proper multiple of 64) or 56 · 9 · λ(1)
(which is a proper multiple of 126). Hence we may assume that T is a
proper subgroup of a maximal subgroup of G′ of index 56. The indices of
the maximal subgroups of L2(9) are 15, 10 and 6. Since 56 ·15 and 56 ·10 are
proper multiples of 20, we may assume that T is contained in some subgroup
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of index 56 · 6 = 24 · 3 · 7 of G′. The subgroups of G′/U of this index that
are contained in some subgroup isomorphic to L2(9) are isomorphic to A5.
Assume for the moment that T/U is isomorphic to A5. Using a character
isomorphism triple again we may assume that U is central in T and looking
at the character degrees of the central extensions of A5 in the Atlas we
deduce that T has some character of degree 4λ(1) lying over λ. Hence G′

has some character of degree 26 ·3·7·λ(1) lying over λ. Since this is a multiple
of 64, the claim follows in this case. Finally, we may assume that T/U is
a proper subgroup of our second maximal subgroup of G′/U isomorphic to
A5. Since either 3 or 5 divides the index of any proper subgroup of A5, we
deduce in any case that there is some character of G′ lying over λ that is a
proper multiple of some character degree of G/C.

Finally, we may assume that T is contained in some subgroup of L3(4) of
index 21. The subgroups of L3(4) of this index are isomorphic to the perfect
group 24 : A5. Assume first that T/U = 24 : A5. As before, we may assume
that U is cyclic and central in T and that λ is faithful. Write N to denote
the normal subgroup of T such that N/U = 24. Clearly, N is nilpotent.
If N is not abelian, then 2λ(1) divides the degree of any character ψ of N
lying over λ. If ψ is T -invariant then, again as before, we see that 5ψ(1) or
6ψ(1) divides the degree of some character of T lying over ψ. Hence 2 ·5 ·21
or 2 · 6 · 21 divides the degree of some character of G′ lying over λ. Since
these numbers are proper multiples of 105 and 126 respectively, we conclude
the result in this case. If ψ is not T -invariant either 5 or 6 divides the index
in T of the inertia group of ψ. We deduce that again either 2 · 5 · 21 or
2 · 6 · 21 divides the degree of some irreducible character of G′ lying over λ.
Hence, we may assume that N is abelian. If N can be written as a direct
product of U and another subgroup V ∼= 24, then we can take the character
λ × ν, for any nonprincipal character ν of V . Since we know that A5 acts
transitively on the nonprincipal characters of V , we deduce that λ × ν lies
in a T -orbit of size 15. We conclude that 15 · 21 divides the degree of some
irreducible character of G′ lying over λ and this is a proper multiple of 105.
Thus we may assume that the abelian group N cannot be written as a direct
product of U and another subgroup. In particular, 4 divides the exponent of
N and the order of any character τ of N lying over λ is a multiple of 4. We
also have that the characters of N of order 2 are exactly the nonprincipal
characters of N whose kernel contains U . Recall that T acts transitively on
these characters. Also, since τ o(τ)/2 has order 2, we deduce that the size of
the T -orbit of τ is a multiple of 15. Again, we conclude that 15 · 21 divides
the degree of some irreducible character of G′ lying over λ.

Now, we may assume that T/U is a proper subgroup of 24 : A5. The
maximal subgroups of this latter group have indices 16, 10, 6 and 5. If T
is contained in some of the subgroups whose index is 10, 6, or 5, it is easy
to find some character of G′ lying over λ whose degree is a proper multiple
of 105 or 126. Hence, we may assume that T is contained in one of the
subgroups of index 16. Notice that these subgroups are isomorphic to A5

and have already been excluded before. �

Lemma 3.6. Let G be a nonsolvable NDAD-group and assume that G′/U =
J1. Then every irreducible character of U is G′-invariant.
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Proof. In this case, one can easily check in the Atlas that the index of every
maximal subgroup of G′/U = J1 is a proper multiple of the degree of some
irreducible character of J1. Since the character degrees of J1 are character
degrees of G (because Out(J1) = 1), we deduce that all the irreducible
characters of U are G′-invariant, as desired. �

Lemma 3.7. Let G be a nonsolvable NDAD-group and assume that G′/U =
A7. Then every irreducible character of U is G′- invariant.

Proof. Now, we have G/C = A7 or S7. Assume that there is some irre-
ducible character λ of U that is not G′-invariant and let T < G′ be the
inertia group of λ in G′. We want to see that in this case G is not an
NDAD-group. We claim that in this case there is some irreducible character
of G′ whose degree is a proper multiple of some irreducible character degree
of G/C. This will conclude the proof.

As in the case when G′/U was L3(4), we may assume that

cd(G/C) = cd(S7) = {1, 14, 15, 20, 21, 35}.
The maximal subgroups of A7 have indices 7, 15, 21 and 35. The indices

15, 21, 35 coincide with character degrees of G/C and the subgroups of
these indices are not abelian. The claim follows in this case from Gallagher’s
Theorem (Corollary 6.17 of [11]) and Clifford’s Theorem (Theorem 6.11 of
[11]). Thus, we may assume that T is contained in a subgroup of index 7
of A7. These subgroups are isomorphic to A6. If T = A6 then we can find
arguing as before characters of T lying over λ whose degree is a multiple of
6 or 8. This yields characters of G′ lying over λ whose degree is a multiple
of 6 · 7 or 8 · 7 and both of these numbers are proper multiples of 14.

If T is proper in A6 it suffices to note that the indices of the maximal
subgroups of A6 are 6, 10 and 15. �

Lemma 3.8. Let G be a nonsolvable NDAD-group and assume that G′/U =
2B2(q2), where q2 = 22f+1 for some f ≥ 1. Then every irreducible character
of U is G′-invariant.

Proof. As in the previous lemma, assume that there is some irreducible
character λ of U that is not G′-invariant and let T < G′ be the inertia group
of λ in G′.

First, we assume that G/C = 2B2(q2) = G′/U . Then, by [10, Theorem
XI.5.10] and the Atlas,

cd(G/C) = {1, q4, q4+1, (q2−1)(q2−2r+1), (q2−1)(q2+2r+1), (q2−1)2f},
where r = 2f . By [16] or [10, Remarks XI.3.12e] any subgroup of G′/U is
isomorphic to some subgroup of 2B2(s2), when q2 is some power of s2, or to
a subgroup of some subgroup of index q4+1, q4(q4+1)/2, q4(q2−1)(q2−2r+
1)/4 or q4(q2−1)(q2 +2r+1)/4. The last three indices are proper multiples
of character degrees of G/C. If T is properly contained in some subgroup
of index q4 + 1, then the result also follows easily. If T/U is one of these
subgroups, it suffices to note that they are not abelian (they are isomorphic
to the semidirect product of the additive group of the field GF(q4) and the
multiplicative group of GF(q2)). Hence, we may assume that T is contained
in some smaller Suzuki group 2B2(s2). If T/U = 2B2(s2) and s2 6= 8 then
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the Schur multiplier of T/U is 1 (by [3]). Then we can find a character of
T lying over λ whose degree is a multiple of the degree of the Steinberg
character of T/U . The result follows. If s = 8, then the Schur multiplier is
elementary abelian of order 4. One can check in the Atlas that there is also
a character of T lying over λ whose degree is a multiple of 64. If T is not a
Suzuki group, it suffices to consider again the indices of the other maximal
subgroups of Suzuki groups to conclude the result.

Next, we assume that G/C = 2B2(8).3. Then G′/U = 2B2(8) and we
have

cd(G/C) = {1, 14, 105, 64, 195, 91}.

Let µ ∈ Irr(C) lying over λ. Let Q be the inertia group of µ in G′C. The
indices of the maximal subgroups of G′C that contain C are 2080, 1456, 560
and 65. If Q is contained in some subgroup of G′C of index 560, then the
degrees of the characters of G′C lying over µ are proper multiples of 14. If
Q is contained in some subgroup of G′C of index 560, then the degrees of
the characters of G′C lying over λ are proper multiples of 91. Assume now
that Q is contained in some subgroup of G′C of index 2080 = 25 · 5 · 13.
The subgroups of G′C/C of this index are isomorphic to the dihedral group
of order 14. It is clear that we can find some character of G′C lying over
µ whose degree is a multiple of either 2 · 2080 or 7 · 2080. Both of these
numbers are proper multiples of some character degree of G/C. The result
follows in this case. Finally, we may assume that Q is contained in some
subgroup of G′C of index 65. The result is clear if µ is not invariant under
any of the elements of order 3 of G/U (because the subgroups of index 65
are not abelian). Hence, we may assume that µ is invariant under some
Sylow 3-subgroup of G. Similarly, we may assume that µ is invariant under
some Sylow 7-subgroup of G. Hence, the inertia group I of µ in G contains
a Hall {3, 7}-subgroup of G/C. We conclude that

3 · 7 | |I/C| | 26 · 3 · 7.

Also, we may assume that I/C is not a 2’-group. One can check in the Atlas
that the structure of a Hall {2, 3, 7}-subgroup of G/C is 23+3 : 7 : 3. We
claim that µ extends to a Sylow 2-subgroup of I/C. Let W/C be the normal
Sylow 2-subgroup of I/C. If µ does not extend to W , then 2 divides the
degree of the characters of W lying over µ. Then either 2 · 3 or 2 · 7 divides
the degree of some of the characters of I lying over µ. It follows that either
2 · 3 · 65 or 2 · 7 · 65 divides the degree of some irreducible character of G
lying over µ. Both numbers are proper multiples of some character degree
of G/C. The same argument shows that we may assume that W/C is a
Sylow 2-subgroup of G/C. Hence, I/C = 23+3 : 7 : 3. Let γ be an extension
of µ to W . If γ does not extend to the Sylow 7-subgroup of I/W , then we
are done (because 7 · 65 would divide some character degree). Hence, we
may assume that γ (and hence µ) extends to β ∈ Irr(X), where |X/W | = 7.
Take α ∈ Irr(X/C) with α(1) = 7 and put δ = αβ ∈ Irr(X). We have that
δ lies over µ and its degree is a multiple of 7. Thus the degree of any of the
characters of G lying over δ is a multiple of 7 · 65. This completes the proof
in this case. �
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Finally, we consider the case when G′/U = L2(q). Since all the necessary
ideas have already appeared in the previous lemmas, we will be much more
sketchy in the proof.

Lemma 3.9. Let G be a nonsolvable NDAD-group and assume that G′/U =
L2(q) for some q ≥ 4. Then every irreducible character of U is G′-invariant.

Proof. As in the previous lemmas, assume that there is some irreducible
character λ of U that is not G′-invariant and let T < G′ be the inertia group
of λ in G′.

First, assume that G/C = PGL2(q). Then

cd(G/C) = {1, q − 1, q, q + 1}.
The subgroups of L2(q) are described in [8, Hauptsatz II.8.27]. If T is one
of the groups of type 1, 2, 3 or 7, it is easy to check that the degrees of the
characters of G′ lying over λ are proper multiples of some character degree
of G/C. The groups of type 4,5 and 6 can be handled with the same ideas
we have already used for the other possibilities of G/C. If it is of type 8, we
can use the same argument we used with the Suzuki groups.

Finally, ifG/C = M10 thenG′/C = A6. We have cd(G/C) = {1, 9, 10, 16}
and the maximal subgroups of A6 have indices 6, 10 and 15. If the inertia
subgroup of λ in G′ is contained in some of the subgroups of index 10, then
it is easy to see that there are characters of G lying over λ whose degree is a
proper multiple of 10. So we may assume that the inertia group I of λ in G′

is contained in some of the subgroups of index either 6 or 15 of G′. Assume
first that it is a subgroup of index 6, and hence I/U = A5. As before, we can
find a character of I lying over λ whose degree is a multiple of 3. Hence 18
divides the degree of some character of G lying over λ. It is also easy to see
that G is not an NDAD-group if the inertia subgroup is a proper subgroup
of any of these maximal subgroups of index 6. Thus we may assume that
it is contained in a maximal subgroup of G′ of index 15. The subgroups of
this index of A6 are isomorphic to S4 and it is easy to see that in this case
G is not an NDAD-group either. This completes the proof. �

Now we can conclude the proof of the main result of this section.

Theorem 3.10. Let G be a nonsolvable NDAD-group and G′/U the non-
abelian chief factor of G. Then U is central in G′.

Proof. Let G be a minimal counterexample. Write G′/U = S. By Corollary
3.4 we know that S = L2(q), L3(4), 2B2(22f+1), A7 or J1. By Lemmas
3.5–3.9, every irreducible character of U is G′-invariant. Thus, by Brauer’s
Theorem on character tables (Theorem 6.32 of [11]), G′ fixes all the conju-
gacy classes of U . In particular, S is isomorphic to a subgroup of the group
of outer automorphisms of U that fix all the conjugacy classes of U . By
a result of Burnside (see [8, I.4 Aufgabe 12]), we know that all the prime
divisors of |S| divide |U |. By Corollary 3.4, U is solvable. Let V be a min-
imal normal subgroup of G contained in U . By the inductive hypothesis,
U/V is central in G′/V . Looking at the Schur multipliers of the different
possibilities for S and taking into account that |U | should have at least three
different prime divisors (and hence |U/V | has at least 2 different prime divi-
sors), we deduce that S is isomorphic to L2(9), L3(4) or A7. But the Schur
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multiplier of L3(4) has order 24 · 3, while the order of L3(4) is a multiple of
4 different prime integers. The same happens with A7. We deduce that S
is isomorphic to L2(9) ∼= A6. In this case, we have that V is an elementary
abelian 5-group. Now by Corollary 5(a) of [7], we deduce that CG′(V ) con-
tains a Sylow 5-subgroup of G′ (because the elements of order 5 of G′ are
automorphisms of V that fix all the conjugacy classes of V ). But it is also
normal in G′. We deduce that V is central in G′. But then U is nilpotent.
Since U/V is a {2, 3}-group and V is a 5-group, we deduce that U is abelian
and central in G′, as desired. �

Now we summarize the results obtained so far.

Corollary 3.11. Let G be a nonsolvable NDAD-group. Then G′ is quasi-
simple and G′/Z(G′) = L2(q), L3(4), 2B2(22f+1), A7 or J1.

Proof. This follows form Corollary 3.4 and Theorem 3.10. �

4. Proof of Theorem A

In the proof of Theorem A we will use, without further explicit mention,
the following well-known result. As usual, given a normal subgroup N of
a group G, we write Irr(G|N) = {χ ∈ Irr(G) | N 6≤ Kerχ}. Also, given
λ ∈ Irr(N) we write Irr(G|λ) = {χ ∈ Irr(G) | [χN , λ] 6= 0} and cd(G|λ) =
{χ(1) | χ ∈ Irr(G|λ)}. We will use the following known result.

Lemma 4.1. Let G be the central product of the groups X and Y with
respect to Z = X ∩ Y , i.e., G = XY , [X,Y ] = 1 and Z = X ∩ Y is central
in G. Then for any λ ∈ Irr(Z) we have

cd(G|λ) = {ϕ(1)ψ(1) | ϕ ∈ Irr(X|λ), ψ ∈ Irr(Y |λ)}.
In particular, if X is abelian then cd(G) = cd(Y ).

Proof. This follows from Lemma 5.1 of [12], for instance. �

We also need the following easy lemma.

Lemma 4.2. Let G be a nonsolvable NDAD-group and C = CG(G′). Then
G/C is an almost simple NDAD-group.

Proof. It is clear that G/C is an NDAD-group, so we have to show that
it is almost simple. Since G′ is quasi-simple, we know that G′C/C is a
nonabelian simple group. We have to prove that CG/C(G′C/C) = 1. Let
a ∈ G − C and assume that [a,G′] ≤ C. Then [a,G′, G′] = 1. Similarly,
[G′, a,G′] = 1. By the three subgroups lemma, we have [G′, G′, a] = 1. But
[G′, G′] = G′′ = G′, since G′ is perfect. We deduce that [G′, a] = 1 so a ∈ C.
This contradiction implies that CG/C(G′C/C) = 1, as desired. �

Now we can conclude the proof of Theorem A, which we restate.

Theorem 4.3. Let G be a nonsolvable NDAD-group. Write C = CG(G′).
Then C = Z(G) and one of the following holds:

(i) G = S × C, where S is J1 or 2B2(22f+1) for some f > 1;
(ii) G′ = A7 and |G/CG′| ≤ 2.
(iii) G′ = 2B2(8) and |G/CG′| divides 3.
(iv) G′ = L3(4) and G/C = L3(4), L3(4).21, L3(4).3, or L3(4).6.
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(v) G′ = L2(q) or SL2(q) and G/C = PGL2(q).
(vi) G′ is A6 or the 3-fold cover of A6 and G/C = M10.

Conversely, if C = Z(G) and any of (i)-(vi) holds, then G is a nonsolvable
NDAD-group.

Proof. By Corollary 3.11 we know that G′ is quasi-simple and G′/Z(G′) =
L2(q), L3(4), 2B2(22f+1), A7 or J1. Observe also that G/C is an almost
simple NDAD-group by Lemma 4.2. Assume first that G′/Z(G′) = J1 or
2B2(22f+1) for some f > 1. Since these groups have trivial Schur multiplier,
we know that Z(G′) = 1. We have that C × G′ ≤ G. Since G/C is an
almost simple NDAD-group, it follows from Theorem 2.8 that G/C = J1 or
2B2(22f+1). Thus (i) holds.

Next, assume thatG′/Z(G′) = A7. By Theorem 2.8, we know thatG/C =
A7 or S7 In both cases, we have that 6 ∈ cd(G/C). Assume now that
Z(G′) > 1. One can check in the Atlas that 24 or 36 ∈ cd(G′). If we
choose χ ∈ Irr(G) lying over some irreducible character of G′ of degree 24
or 36, we see that 6 is a proper divisor of χ(1). It follows that G is not an
NDAD-group. Hence Z(G′) = 1. We deduce that (ii) holds.

Now, assume that G′/Z(G′) = 2B2(8). By Theorem 2.8, we know that
G/C = 2B2(8) or 2B2(8).3. In both cases, we have that 14 ∈ cd(G/C).
Assume now that Z(G′) > 1. One can check in the Atlas that 56 ∈ cd(G′).
If we choose χ ∈ Irr(G) lying over some irreducible character of G′ of degree
56, we see that 14 is a proper divisor of χ(1). It follows that G is not an
NDAD-group. Hence Z(G′) = 1. We deduce that (iii) holds.

Now, assume that G′/Z(G′) = L3(4). By Theorem 2.8, we know that
G/C = L3(4), L3(4).21, L3(4).3, or L3(4).6. The subgroup CG′ is the central
product of C and G′ with respect to Z(G′).

If 3 divides |Z(G′)| we can check in the Atlas that 21 and 84 belong to
cd(G′). We have that for any γ ∈ Irr(C) lying over a linear character of
Z(G′) of order 3, 21γ(1) and 84γ(1) ∈ cd(CG′). Since G/CG′ is a cyclic
group whose order divides 6 and the characters of G′ of degree 21 and 84
are G-invariant, it follows that G is not an NDAD-group.

Next, assume that 4 divides the exponent of Z(G′). Then we can check
in the Atlas that 80 ∈ cd(G′), so there is some multiple of 80 in cd(G). On
the other hand, 20 ∈ cd(G/C). Thus G is not an NDAD-group.

Assume now that the exponent of Z(G′) is 2. We can see in the Atlas
that in this case

cd(G′) = cd(G′/Z(G′)) ∪ {10, 28, 36, 70, 90}.

We claim that C is abelian. Otherwise, C has an irreducible character of
2-power degree lying over a nonprincipal character of Z(G′). It follows that
2 · 90 divides the degree of some irreducible character of CG′ and hence of
some irreducible character of G. But 20 ∈ cd(G/C) so it follows that G is
not an NDAD-group. This contradiction proves our claim. In particular,
cd(CG′) = cd(G′). Next, we claim that C is central in G. Assume not.
Clearly, C is central in CG′ and C/Z(G′) is central in G/Z(G′). Then there
exists some nonprincipal character of Irr(C|Z(G′)) whose inertia group is a
proper subgroup of G that contains CG′. Since |G/CG| divides 6, we deduce
that either a multiple of 2 · 90 or a multiple of 3 · 90 belongs to cd(G). But
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20 and either 45 or 90 belong to cd(G/C). In any case, we deduce that G
is not an NDAD-group. This is again a contradiction. We conclude that
C = Z(G)

Next, we consider the case when Z(G′) = 2 × 2. Assume that 3 divides
|G/CG′|. Then there is an element of order 3 of G/CG′ that permutes
transitively the 3 subgroups of order 2 of Z(G′). This implies that a multiple
of 270 belongs to cd(G). But G/C has some irreducible character of degree
90 or 45. This contradiction implies that |G/CG| divides 2. If Z(G′) is
cyclic of order 2, then one can see in the Atlas that |G/CG′| also divides 2.
Since CG′ is not an NDAD-group, we deduce that |G/CG′| = 2. But then
one can check in the Atlas that 35 and 70 belong to cd(G). Thus G is not
an NDAD-group either.

Hence Z(G′) = 1 and it is easy to see that (iv) holds.
Finally, we may assume that G′/Z(G′) = L2(q). Then G/C = PGL2(q)

or M10. Assume that Z(G′) = 1. Then clearly C = Z(G) and (v) or (vi)
holds. Hence, we may assume that Z(G′) > 1. In particular, we may assume
that q ≥ 5 is odd. First, we consider the case q 6= 9. Then |Z(G′)| = 2.
Arguing as in the case of L3(4) one can see that C = Z(G) and (v) holds.

Thus we may assume that q = 9. Assume first that G/C = PGL2(9).
Then cd(G/C) = {1, 8, 9, 10}. If 3 divides |Z(G′)|, then 3 and 9 belong to
cd(G′). Hence, it is not difficult to see that G is not an NDAD-group. Thus,
we may assume that |Z(G′)| = 2. Now one can conclude that C = Z(G)
and (v) holds.

Finally, we assume that G/C = M10. Then cd(G/C) = {1, 9, 10, 16}.
Using the information in the Atlas one can see that in this case if 2 divides
|Z(G′)| then G is not an NDAD-group. Thus we may assume that |Z(G′)| =
3 or |Z(G′)| = 1. We know that G′ has an irreducible character of degree 15.
If C is not central in G, then we can find some irreducible character of G
of degree a multiple of 30. But this implies that G is not an NDAD-group.
We conclude that C = Z(G) and (vi) holds.

Now we prove that if C = Z(G) and any of (i)-(vi) holds, then G is an
NDAD-group. In fact, it is easy to determine explicitly the sets of char-
acter degrees of these groups. It suffices to observe that in any of the
cases cd(G) = cd(G/C), so the set of character degrees of a nonsolvable
NDAD-group coincides with the set of character degrees of an almost sim-
ple NDAD-groups. More precisely, if (i) holds then

cd(G) = {1, 56, 76, 77, 120, 133, 209}

or

cd(G) = {1, q4, q4 +1, (q2−1)(q2−2r+1), (q2−1)(q2 +2r+1), (q2−1) ·2f},

where q2 = 22f+1 and r = 2f . If (ii) holds, then

cd(G) = {1, 6, 10, 14, 15, 21, 35}

or
cd(G) = {1, 6, 14, 15, 20, 21, 35}.

If (iii) holds, then
cd(G) = {1, 14, 35, 64, 65, 91}
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or
cd(G) = {1, 14, 64, 91, 105, 195}.

If (iv) holds, then cd(G) = cd(G/C) and one can see in the Atlas that these
are:

cd(L3(4)) = {1, 20, 35, 45, 63, 64},

cd(L3(4).21) = {1, 20, 35, 90, 126, 64},

cd(L3(4).3) = {1, 20, 105, 45, 63, 64},
or

cd(L3(4).6) = {1, 20, 105, 90, 126, 64}.
If (v) holds, then

cd(G) = {1, q − 1, q, q + 1}
with q = pf ≥ 4 a prime power. If (vi) holds, then

cd(G) = {1, 9, 10, 16}

or
cd(G) = {1, 6, 9, 10, 15, 16}.

�

5. Proof of Corollaries B and C

The following corollary solves Conjecture A of [13].

Corollary 5.1. Let G be a finite NDAD-group. Then | cd(G)| ≤ 7.

Proof. It was proved in Corollary C of [13] that if G is a solvable NDAD-
group, then | cd(G)| ≤ 4. In the proof of Theorem A, we have explicitly
determined the possible sets of character degrees of the nonsolvable NDAD-
groups. One can easily see that in any case | cd(G)| ≤ 7. �

Finally, we prove Corollary C.

Corollary 5.2 (Huppert). If S = L2(2f ) for some f > 1, 2B2(22f+1) for
some f ≥ 1, L3(4), J1 or A7 and G is a finite group with cd(G) = cd(S),
then G = S ×A for some abelian group A.

Proof. Observe that all these simple groups are NDAD-groups. Assume
first that for some nonsolvable group cd(G) = cd(S) with cd(G) = cd(S).
Hence, G is one of the groups that appear in the statement of Theorem A.
The result follows from the determination of the sets of character degrees of
the nonsolvable NDAD-groups given at the end of the proof of Theorem A.

Now, assume that cd(G) = cd(S) for some solvable group G. By Theorem
B of [13], we know that | cd(G)| ≤ 3 or | cd(G)| = 4 and cd(G) contains at
least two multiples of some prime number p. Since for any of our simple
groups (and in fact for any simple group) | cd(G)| ≥ 4 and if | cd(G)| = 4
then cd(G) is a set of pairwise coprime integers, we obtain a contradiction.
This completes the proof of the corollary. �
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