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Abstract

Huppert’s ρ-σ conjecture asserts that any finite group has some
character degree that is divisible by “many” primes. In this note, we
consider a dual version of this problem, and we prove that for any finite
group there is some prime that divides “many” character degrees.

1 Introduction

One of the main problems on character degrees of finite groups is Huppert’s
ρ-σ conjecture, which roughly asserts that any finite group G has some
(complex) irreducible character whose degree is divisible by “many”, say
one-third, of the primes that divide some character degree of G. More
precisely, let ρ(G) be the set of primes that divide some character degree
of G and let σ(G) be the maximum number of different primes that divide
any given character degree of G. The weak ρ-σ conjecture asserts that
there exists an integer valued function g such that for any finite group G,
|ρ(G)| ≤ g(σ(G)). The strong ρ-σ conjecture asserts that |ρ(G)| ≤ 3σ(G), or
perhaps even there exists some additive constant C such that for any finite
group G, |ρ(G)| ≤ 2σ(G) + C and C can be taken to be 0 is G is solvable
(see p. 220 and Remarks 17.9(a) of [11]). The strong ρ-σ conjecture remains
open. The weak ρ-σ conjecture was finally settled in [14].

In this note, we consider a sort of converse to Huppert’s ρ-σ conjectures:
is it true that for any finite group G there is some prime that divides “many”
of the character degrees of G? Again, one can state two different versions
of this problem. We say that a finite group G satisfies property Pk if for any
prime p the number of different character degrees of G that are divisible by
p is at most k. The weak form asserts that there exists an integer valued
function f such that for any finite group that satisfies property Pk, the
number of character degrees of G is at most f(k). The strong form could
assert that the number of character degrees of a nonabelian group that
satisfies property Pk is at most 4k or even 3k+C for some universal constant
C, that can be taken to be 0 if G is solvable. In other words, given any
nonabelian finite group there is one prime that divides at least one-fourth
of the character degrees. A family of examples showing that the bound
| cd(G)| ≤ 3k would be sharp for infinitely many values of k and solvable
groups was constructed in [1]. (As usual, we write cd(G) to denote the set
of degrees of the irreducible characters of G.) This bound was suggested in
[1] and conjectured in [13]. It was proved in [1] for k ≤ 3 and in [13] for
k = 4. As the groups L2(2f ) show, this bound does not hold for arbitrary
finite groups.

Regarding the weak form of the problem it was proved in [1] that for
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solvable groups there is a quadratic bound. This was later improved in
McVey’s Ph.D. Thesis [12] but his bound is still quadratic. In this article,
we consider the problem for arbitrary finite groups for the first time, and
settle the weak form of the problem.

Theorem A. There exists an integer-valued function f such that if G is
a finite group with the property that for any prime p, there are at most k
members of cd(G) that are divisible by p, then | cd(G)| ≤ f(k).

Our methods would allow us to give an explicit bound. However, this
would probably be far from best possible so, for the sake of simplicity, we
have refrained from doing so. As usual, we will say that a quantity is k-
bounded if it is bounded by some real valued function that depends only
on k.

Now, we explain the structure of this paper. In Section 2 we prove
several elementary results that will be necessary in the proof of Theorem
A. In Section 3 we prove Theorem A and several related results for simple
groups and in Section 4 we complete the proof of Theorem A.

2 Preliminary results

We recall the following from the introduction:

Definition 2.1. We say that a finite group G satisfies property Pk if for any
prime p the number of different character degrees of G that are divisible by
p is at most k.

Our first result will be used many times in the remainder of this paper
without further explicit mention.

Lemma 2.2. Let N be a normal subgroup of a finite group G. If G satisfies
property Pk, then G/N satisfies property Pk.

Proof. This is an immediate consequence of the fact that cd(G/N) ⊆ cd(G).

The next three lemmas relate character degrees of a group and a normal
subgroup.

Lemma 2.3. Let G be a finite group with normal subgroup N . Then
| cd(G)| ≤ | cd(N)|Ω(|G/N |), where Ω(n) is the number of divisors of the
integer n.
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Proof. This follows from Corollary 11.29 of [4], for instance.

Given a normal subgroup N of a finite group G and n ∈ cd(N) we
write cd(G|N,n) to denote the set of character degrees of G that lie over
characters of N of degree n.

Lemma 2.4. Let G be a finite group satisfying property Pk. Let N be a
normal subgroup of G and 1 < n ∈ cd(N). Then | cd(G|N,n)| ≤ k.

Proof. This is a straightforward consequence of the fact that all the members
of cd(G|N,n) are multiples of n.

Property Pk is not inherited by normal subgroups, but we have the
following.

Lemma 2.5. Let G be a finite group satisfying property Pk. If N is a
normal subgroup of G and the number of divisors of |G : N | is l, then N
satisfies property Pkl

Proof. Assume that a prime p divides kl + 1 character degrees of N . It
follows from property Pk that the number of character degrees of G lying
over these kl + 1 character degrees of N is at most k. This means that for
some of these at most k degrees of G, the number of character degrees of N
lying under it is bigger than l. But this is impossible.

The next lemma will allow us to “forget” the character degrees that are
multiples of a given finite number of primes.

Lemma 2.6. Let G be a finite group satisfying property Pk. If π is a finite
set of primes and G has m character degrees of π′-degree, then | cd(G)| ≤
m+ |π|k.

Proof. For any prime p ∈ π, G has at most k character degrees that are
divisible by p. If d ∈ cd(G) is not divisible by any prime in π, then it has
π′-degree and the result follows.

Our last result in this section is probably known. Since we have not been
able to find a reference in the literature, we include a short proof, which is
based on the ideas of Lemma 2.5 of [14]. If a group G acts on a set Ω, we
say that X ⊆ Ω lies in a regular orbit if the size of its orbit is |G/KerG Ω|.

Lemma 2.7. Assume that a finite abelian group G acts on a set Ω. Then
G has a regular orbit on P(Ω).
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Proof. We argue by induction on |Ω|. Assume first that the action is not
transitive and let Ω = Ω1 ∪Ω2 be a decomposition of Ω as the union of two
proper disjoint G-invariant subsets. By the inductive hypothesis, there exist
X1 ⊆ Ω1 and X2 ⊆ Ω2 in regular orbits under the action of G/KerG Ω1 and
G/KerG Ω2, respectively. Let X = X1 ∪X2. Hence X ⊆ Ω lies in a regular
orbit under the action of G. Therefore we may assume that the action of G
on Ω is transitive. Also, we may assume that this action is faithful.

If G is primitive on Ω, then it is of prime order and the statement is
trivial. Now, assume that G is imprimitive and let B = {B1, . . . , Bt} be a
nontrivial system of blocks. For 1 ≤ i ≤ t, let GBi be the stabilizer of the
block Bi. Then G/ ∩i GBi is a permutation group on B. By the inductive
hypothesis, it has a regular orbit on P(B), say the orbit of {B1, . . . , Bs},
where s < t. Also, for every i, there exists Xi ⊆ Bi such that Xi lies in a
regular orbit under the action of GBi . Hence, X1 ∪ · · · ∪Xs lies in a regular
orbit under the action of G, as desired.

3 Simple groups

In this section we prove Theorem A and some related results for simple
groups. All results except for Proposition 3.7, Corollary 3.8 and Lemma 3.9
are of an asymptotic nature. Hence, in their proofs, we may (and will) ignore
any finite number of simple groups, like the sporadic groups, the Tits group,
groups of Lie type with exceptional Schur multiplier, and alternating groups
An for all n ≤ n0, for some bound n0.

Proposition 3.1. For all n ≥ 3 we have:

n/2 ≤ min{k | An satisfies Pk} ≤ | cd(An)| ≤ n!
n/2 ≤ min{k | Sn satisfies Pk} ≤ | cd(Sn)| ≤ n!

Proof. The irreducible characters of the symmetric group Sn are parame-
terized by partitions λ of n, and their degrees are given by the so-called
hook formula. In particular, for the hook partitions λk = (n − k, 1k) of n,
where 0 ≤ k < n/2, the degree of χλ is equal to

(
n
k

)
. It is obvious that(

n
k

)
are all different for 0 ≤ k < n/2. An irreducible character χλ of Sn

remains irreducible upon restriction to the alternating group An if λ is not
self-dual. Again, it is obvious that the hook partitions are not self-dual,
for 0 ≤ k < n/2. Thus, min{k | An satisfies Pk} ≥ n/2 as claimed. The
remaining inequalities are obvious.

The bounds obtained in this proof are very weak, and much better
bounds could be established.
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We next prove a similar statement for the character degrees of groups of
Lie type. The last inequality has been obtained in Theorem 1.5 of [7], but
for completeness we include a proof.

Proposition 3.2. There exists a monotonous function f2 : N −→ N such
that whenever G is a finite group of Lie type of rank n then

f1(n) := n/2− 5 ≤ min{k | G satisfies Pk} ≤ | cd(G)| ≤ f2(n).

Proof. We consider the following setup. Let G be a simple algebraic group
defined over a finite field Fq and F : G → G the corresponding Frobenius
endomorphism. Then the group of fixed points G := GF is, by definition, a
finite group of Lie type.

The fundamental results of Lusztig [8] on the classification of the complex
irreducible characters of finite groups of Lie type show the following. The
set Irr(G) is partitioned into so-called Lusztig series E(G, s), where s runs
over a system of representatives of semisimple elements in the dual group
G∗ of G. Furthermore, the degrees of characters χ ∈ E(G, s) only depend
on the structure of CG∗(s). In particular, cd(G) is controlled by the various
CG∗(s). Fix s ∈ G∗ and let C := CG∗(s). The connected component C◦

of C is a connected reductive subgroup of G∗, hence completely determined
by its root system. Now C/C◦ is a subgroup of the relative Weyl group in
G∗ of the root system of C◦, which is a section of the Weyl group of G∗. In
particular, for a given C◦ there is only a finite number of possible C’s.

Now, for a given root system of G (and hence of G∗) there only exist a
finite number of sub-root systems which can give rise to a connected central-
izer C◦. Hence, the number of different connected centralizers is bounded by
a function in the root system of G. Our previous argument then shows that
the number of different centralizers CG∗(s), up to conjugation, is bounded
by a function in the root system of G. Finally, the number of characters
in E(G, s) only depends on the structure of CG∗(s), and thus | cd(G)| is
bounded in terms of a function in the root system of G, independent of the
order of the underlying field. In turn, for a fixed rank n there only exist
finitely many different root systems of algebraic groups of rank n, hence we
have established the existence of the upper bound f2.

The relation between min{k | G satisfies Pk} and | cd(G)| is trivial. For
the lower bound we consider the elements of E(G, 1), the so-called unipotent
characters. By Lusztig’s description of E(G, 1), the cardinality |E(G, 1)| only
depends on the root system of G, and it tends to infinity with the rank of
G. Indeed, there is a subset E of E(G, 1), the so-called principal series
unipotent characters, which is in bijection with Irr(W ), such that that the
degree polynomials of characters in E specialize to the character degrees
in Irr(W ). In particular, there are at least as many different degrees of
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unipotent characters as there are different degrees in Irr(W ). For the finitely
many exceptional types, the lower bound is now easily proved by inspection.

So now assume that G is of classical type. Then, if G has rank n,
Irr(W ) has the symmetric group Sn as a quotient, so indeed we find at
least n/2 different character degrees by Proposition 3.1. Moreover, all ex-
cept possibly five of the degrees of unipotent characters are divisible by the
defining characteristic of G (see [10, Lemma 2.12], for example). So we have
n/2 − 5 ≤ min{k | G satisfies Pk}. This proves the validity of the lower
bound.

Lemma 3.3. If G is a quasisimple group of Lie type, then | cd(G)| is bounded
by some function of | cd(G/Z(G))|.

Proof. We keep the setup from the proof of Proposition 3.2. If G is chosen
to be simply-connected, then the group of fixed points G := GF is the
universal covering group of the simple group S := G/Z(G), except for a
finite number of cases, and all finite simple groups of Lie type occur among
as such an S, except for the Tits group. Clearly, Irr(S) ⊂ Irr(G) in a natural
way, and in order to prove the assertion, it is enough to establish a function
bounding | cd(G)| in terms of | cd(S)|. Now the unipotent characters E(G, 1)
have Z(G) in their kernel, so descend to characters of S. Thus, if n denotes
the rank of G, then by Proposition 3.2 we have | cd(S)| ≥ n/2 − 5, which
tends to infinity with n, while | cd(G)| ≤ f2(n). So our claim follows.

Lemma 3.4. There exists an integer valued function f3 such that if an
almost simple group G with socle S satisfies property Pk, then S satisfies
property Pf3(k).

Proof. First consider groups of Lie type. By Proposition 3.2 the minimal k
such that S has property Pk is bounded above by a function only depending
on the rank of G. Hence, we may assume that the rank is larger than 8, so
that G is of classical type. Now the unipotent characters of S are invari-
ant under diagonal and field automorphisms of S by Lusztig’s results [8].
Furthermore, the subgroup of Aut(S) generated by inner, diagonal and field
automorphisms has index at most 6 in Aut(S). (The factor group consists
of the graph automorphisms, of which there are at most six.)

Since all but at most five unipotent characters have degree divisible by
p, the defining characteristic of S (see [10, Lemma 2.12]), and the number
of different unipotent character degrees goes to infinity with the rank, this
proves the claim for groups of Lie type.

For alternating groups, the claim follows directly from Proposition 3.1
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Lemma 3.5. There exists an integer valued function f4 such that whenever
S ≤ G ≤ Aut(S), where S is a nonabelian simple group, and G satisfies
property Pk, then | cd(G)| ≤ f4(k).

Proof. This is just Proposition 3.1 for alternating groups. We may hence
assume that S is of Lie type. Assume that G is almost simple with socle S
and satisfies Pk. Then S satisfies Pf3(k) by Lemma 3.4, so f3(k) ≥ n/2 − 5
by Proposition 3.2, where n denotes the rank of S. Thus n ≤ 2(f3(k) + 5).
By Lemma 2.4 we also have that

| cd(G)| ≤ k(| cd(S)| − 1) + | cd(G/S)|.

Furthermore, | cd(S)| ≤ f2(n), where n denotes the Lie-rank of S, again by
Proposition 3.2. Since G/S is solvable and satisfies property Pk, [1, Th. A]
implies that the quantity | cd(G/S)| is bounded by a function g(k). (Alter-
natively, this follows directly from the explicit knowledge of the structure of
Out(S).) Hence

| cd(G)| ≤k(| cd(S)| − 1) + | cd(G/S)|
≤k f2(n) + g(k) ≤ k f2(2(f3(k) + 5)) + g(k)

is k-bounded.

Lemma 3.6. There exists an integer valued function f5 such that if S is a
nonabelian simple group that satisfies property Pk, then there exists a prime
divisor p of |S| such that the number of indices of the maximal subgroups of
S of p′-index is at most f5(k).

Proof. First assume that S is of Lie type, with Weyl group W of rank n. If
S satisfies property Pk then k ≥ f1(n) by Proposition 3.2. If M is a maximal
subgroup of S, then either |S : M | is divisible by the defining characteristic p
of S, orM is a maximal parabolic subgroup (see for example [3, Thm. 3.1.3]).
Conjugacy classes of parabolic subgroups correspond to subsets of the set of
nodes of the Dynkin diagram for W , hence the number of classes of maximal
parabolic subgroups of S is at most equal to n if W has rank n. Since f1(n)
tends to infinity, this proves the claim for groups of Lie type.

It remains to consider alternating groups. Here, by [6, Th.] maximal
subgroups of odd index of An, n ≥ 9, are either intransitive (Sk×Sn−k)∩An

or imprimitive Sk o Sn/k ∩ An. Clearly, the number of such subgroups is
bounded in n, and n is bounded in k by Proposition 3.1.

Proposition 3.7. Let S be a finite nonabelian simple group, S 6∼= L2(3f ).
Then there exist nonlinear characters ϕ,ψ ∈ Irr(S) of different degrees that
extend to Aut(S).
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Proof. For sporadic groups and the Tits group, this can be checked from
the known character tables. For the alternating groups An, n ≥ 7, take the
characters parameterized by the partitions (n − 1, 1) and (n − 2, 2). (Note
that A6 = L2(9), and A5 can be checked easily.) For S of Lie type it is shown
in [9, Thm. 2.4] that all unipotent characters extend to their inertia groups
in Aut(S), and it is known that there are at least two nonlinear unipotent
characters of different degree which are invariant in Aut(S) if S is not of
type A1.

So finally assume that S = L2(q) for q ≥ 7, q 6≡ 0 (mod 3). Let χ1

denote the Steinberg character of S, of degree q. This extends to Aut(S)
by [2]. Let χ2 be a character corresponding to a semisimple element of
order 3 in the dual group, of degree q + ε if q ≡ ε (mod 3). It is shown in
[5, Lemma 15.2] that χ2 extends to Aut(S).

It can be checked easily that the groups L2(3f ) constitute counterexam-
ples to the conclusion of the proposition. Still, we have the following:

Corollary 3.8. Let S be a nonabelian finite simple group. Then there exist
non-linear ϕ,ψ ∈ Irr(S) of different degree such that ϕ extends to Aut(S)
and ψ extends to its inertia subgroup in Aut(S).

Finally, we will need the following well-known fact.

Lemma 3.9. Let S be a nonabelian simple group. Write n to denote the
rank of S if S is of Lie type and put n = 3 otherwise. Let π be the set of
primes smaller than max{4, n + 2}. Then Out(S) has a cyclic and normal
Hall π′-subgroup.

Proof. If S is not of Lie type, then Out(S) is cyclic, so we may assume that
S is of Lie type.

The group of diagonal automorphisms is either the Klein four group or it
is cyclic of order at most n+ 1. Thus its automorphism group is a π-group.
The group of graph automorphisms has order divisible by 6, so again it is a π-
group. Since the group of outer automorphisms is a semidirect product of the
group of diagonal automorphisms with the field and graph automorphisms, a
Hall π′-subgroup of Out(S) consists of some field automorphisms that form
a normal subgroup in Out(S).

4 Proof of Theorem A

Now, we are ready to prove Theorem A. We split the proof in two parts.
The argument of the first part is essentially contained in [1]
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Theorem 4.1. There exists an integer-valued function f6 such that for any
finite group G satisfying property Pk and which has some nonabelian solvable
quotient, we have | cd(G)| ≤ f6(k).

Proof. Let L be a maximal normal subgroup of G such that G/L is a non-
abelian solvable group. By Lemma 12.3 of [4], G/L is a p-group for some
prime p, or a Frobenius group with elementary abelian kernel and cyclic
complement. (Note that an abelian Frobenius complement is cyclic.)

Assume first that G/L is a p-group. We know that G has at most k
character degrees that are divisible by p, so it suffices to bound the character
degrees of G that are p′-numbers. If χ ∈ Irr(G) has p′-degree, then χL is also
irreducible (by Corollary 11.29 of [4], for instance). Hence, by Gallagher’s
Theorem (Corollary 6.17 of [4]), χψ ∈ Irr(G) for any ψ ∈ Irr(G/L). If we
take a nonlinear ψ, it follows that for any d ∈ cd(G) that is a p′-number,
dψ(1) also belongs to cd(G). This implies that the number of character
degrees of G that are p′-numbers bigger than 1 is at most k. Therefore, we
have proved that | cd(G)| ≤ 2k + 1.

Now, we assume that G/L is a Frobenius group with elementary abelian
kernel K/L of order qa and cyclic complement of order f . Then cd(G/L) =
{1, f}. We know that G has at most k character degrees that are divisible
by q, so it suffices to bound the number of irreducible characters of G of q′-
degree. Assume that ϕ ∈ Irr(L) is nonlinear of q′-degree and extends to K
(otherwise, the irreducible characters of G lying over ϕ would have degrees
divisible by q). Since the Frobenius complement is cyclic, by Corollaries
11.22 and 11.31 of [4], we deduce that ϕ extends to its inertia subgroup in
G. Now, by Clifford’s Correspondence and Gallagher’s Theorem, we obtain
that fϕ(1) ∈ cd(G). It follows that the number of degrees of the nonlinear
irreducible characters of L of q′-degree that extend to K is at most k. By
Lemma 2.4, we obtain that the number of character degrees of G lying over
these irreducible characters is at most k2. It remains to consider the number
of character degrees of G lying over linear irreducible characters of L. In
other words, it remains to bound | cd(G/L′)|. But G/L′ is solvable and
satisfies property Pk, so the result follows from Theorem A of [1].

Given a normal subgroup N of a finite group G, we write Irr(G|N) to
denote the set of irreducible characters of G which do not contain N in their
kernel. The notation cd(G|N) stands for the degrees of the characters in
Irr(G|N).

Theorem 4.2. There exists an integer-valued function f7 such that for any
finite group G satisfying property Pk and which has no nonabelian solvable
quotients, we have | cd(G)| ≤ f7(k).
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Proof. Let L be a maximal normal subgroup of G such that G/L is not
abelian. Write K = G′L. Observe that K/L is a nonabelian chief factor of
G and C/L = CG/L(K/L) = L/L. We have that K/L is a direct product of,
say l, copies of a nonabelian simple group S. Since C = L, we have that G/L
is isomorphic to a subgroup of Γ = Aut(S) oSl. Put U = Aut(S)l ∩G E G,
so that G/U is isomorphic to a subgroup of Sl.

Now, we split the proof in several steps.

Step 1. We claim that l is k-bounded.

Since G/K is abelian, we have that G/U is an abelian permutation group
on the set Ω = {S1, . . . , Sl} consisting by l copies of S. By Lemma 2.7, G/U
has a regular orbit on P(Ω), say the orbit of ∆ ⊆ Ω. Since Ω−∆ also lies in
a regular orbit we may assume, without loss of generality, that |∆| ≥ |Ω|/2.
Thus, it suffices to show that |∆| is k-bounded. We may assume, without
loss of generality, that ∆ = {S1, . . . , Su} for some u ≥ l/2.

By Corollary 3.8, Si has two nonlinear irreducible characters ϕi and ψi

of different degrees such that ϕi extends to Aut(Si) and ψi extends to its
inertia subgroup in Aut(Si). (We identify the characters ϕi and ϕj for every
i, j and the same with the characters ψi and ψj .) For each 1 ≤ k ≤ u, we
consider

µk = ϕ1 × · · · × ϕk × 1Sk+1
× · · · × 1Su × ψu+1 × · · · × ψl ∈ Irr(K/L).

The number of different degrees among these characters is u. By the way
we have chosen them, their inertia subgroup is contained in U . In fact, the
inertia subgroup I := IG(µk) of µk is

I = Aut(S1)× · · · ×Aut(Su)× IAut(Su+1)(ψu+1)× · · · × IAut(Sl)(ψl) ∩ U,

which does not depend on k.

Since ϕi, ψi and 1Si extend to their inertia subgroup in Aut(Si), we
conclude that µk extends to its inertia subgroup in G for every k. Write
µ̂k ∈ Irr(I) to denote the extension of µk. By Clifford’s correspondence,
µ̂G

k ∈ Irr(G). These u induced irreducible characters provide u different
character degrees of G all of them being multiples of ϕ(1). It follows that
|∆| = u ≤ k, as desired.

Step 2. We may assume that G has a nonabelian almost simple quotient
with socle S.

Since G/U is a subgroup of Sl and l is k-bounded, the number of divisors
of the order of this group is k-bounded, and by Lemmas 2.5 and 2.3 we may
assume that G = U . This implies that G has a normal subgroup M such
that G/M is almost simple with socle S.
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Write R/M = Soc(G/M). We know from Lemma 3.5 that | cd(G/M)| ≤
f4(k). It remains to prove that | cd(G|M)| is bounded by some integer valued
function of k.

We split the set cd(G|M) in three subsets. Write cd1(G|M) to denote
the set of degrees of the irreducible characters of G lying over irreducible
characters of M that are not R-invariant, cd2(G|M) to denote the set of
degrees of the irreducible characters of G lying over irreducible characters
of M that are R-invariant but do not extend to R and cd3(G|M) to denote
the set of degrees of the irreducible characters of G lying over nonprincipal
irreducible characters of M that extend to R. Then

cd(G|M) = cd1(G|M) ∪ cd2(G|M) ∪ cd3(G|M),

and it suffices to bound | cdi(G|M)| for i = 1, 2, 3. This is what we will do
in the next three steps.

Step 3. | cd1(G|M)| is k-bounded.

Since G/M satisfies property Pk, Lemma 3.4 implies that R/M satisfies
property Pf3(k). Since the characters of M we are looking at are not R-
invariant, their inertia subgroup in R is contained in some maximal subgroup
of R that contains M . In particular, by Clifford’s Correspondence, the
degrees of the irreducible characters of R lying over the characters of M
we are considering are multiples of the index of some maximal subgroup of
R/M . Since R is normal in G, the same happens with the degrees of the
irreducible characters of G lying over these characters of M .

Now, Lemma 2.4 implies that for any maximal subgroup U/M of R/M ,
the number of character degrees of G that are multiples of |R/U | is at most
k. By Lemma 3.6, there is a prime p such that the number of indices
of maximal subgroups of S of p′-index is at most f5(f3(k)). Hence, the
number of character degrees of G lying over these characters of M is at
most f5(f3(k))k + k (the latter k corresponds to the at most k character
degrees that are multiples of p).

Step 4. | cd2(G|M)| is k-bounded.

Now, we consider the characters of M that are R-invariant but do not
extend to R. Recall that R satisfies property Pf3(k). Using a character
triple isomorphism (Theorem 11.28 of [4]), Lemma 3.3 and Proposition 3.1,
it follows that there is a set of primes of k-bounded size such that any
character degree of R arising from any of these characters of M is a multiple
of some of them. The same happens with the degrees of the irreducible
characters of G lying over these characters of M . As before, we obtain that
the number of character degrees of G that is obtained this way is k-bounded.

Step 5. | cd3(G|M)| is k-bounded.
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Finally, we consider the irreducible characters of M that extend irre-
ducibly to R. Let ψ be such a character. If ψ is linear, then the character
degrees of G lying over ψ belong to cd(G/G′′). By Benjamin’s result, the
cardinality of this set is k-bounded. Hence, we may assume that ψ is not
linear. Let K/R be a Hall π′-subgroup of G/R, where π is the same as
in Lemma 3.9. By Proposition 3.2, |π| is bounded in terms of k and by
Lemma 2.6, it suffices to bound the number of character degrees of G that
are π′-numbers. Hence, we may assume that G = K.

Since R/M is perfect, it follows from Gallagher’s Theorem that ψ has a
unique extension ψ̂ ∈ Irr(R). Since G/R is cyclic, ψ̂ extends to its inertia
subgroup in G. Using Clifford’s Theorem, we have shown that for any
ψ ∈ Irr(M) that extends to R, ψ(1)|G : IG(ψ̂)| ∈ cd(G), where ψ̂ is the
unique extension of ψ to R. But by Gallagher’s theorem, ψ(1)|G : IG(ψ̂)|d ∈
cd(G), where 1 < d is the degree of some irreducible character of R/M that
extends to Aut(R/M). Therefore, the number of different possibilities for
ψ(1)|G : IG(ψ̂)| as ψ runs over the nonlinear irreducible characters of M
that extend to R is at most k.

Write d1, . . . , dw for the w ≤ k different possibilities for ψ(1)|G : IG(ψ̂)|
as ψ runs over the nonlinear irreducible characters of M that extend to R.
We deduce from Clifford’s Correspondence and Gallagher’s Theorem that
the character degrees of G lying over irreducible characters of M that extend
to R have the form dit, where t is a character degree of some almost simple
group with socle S. It follows from our hypothesis that for any i, the number
of degrees of the form dit is at most k. We conclude that the number of
character degrees of G lying over nonlinear irreducible characters of M that
extend to R is at most k2. This completes the proof.

Proof of Theorem A. It suffices to take f = max{f6, f7}.
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[10] G. Malle, A. E. Zalesskĭı, Prime power degree representations of
quasi-simple groups. Archiv Math. 77 (2001), 461–468.

[11] O. Manz, T. R. Wolf, Representations of Solvable Groups. Cam-
bridge University Press, Cambridge, 1993.

[12] J. K. McVey, Bounding the number of character degrees using general-
ized relative primeness conditions. Ph.D. Thesis, Kent State University,
2001.

[13] J. K. McVey, Prime divisibility among character degrees. Comm. Al-
gebra 32 (2004), 3391–3402.
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