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1. Introduction

This paper concerns the arithmetical structure of the character degrees of a finite
group. A useful tool in these problems is the character degree graph. Given a group
G, the vertices in this graph are the prime divisors of the degrees of the complex
irreducible characters of G, and two vertices p and q are joined by an edge if pq
divides the degree of some irreducible character of G. This graph was first introduced
in 1988 by O. Manz, R. Staszewski and W. Willems [?]. Since then many results have
been proved. Usually, these theorems indicate that the character degrees of a finite
group are closely related in certain sense. For a long time the main focus was on the
case of solvable groups, but in very recent years these results are being extended to
arbitrary finite groups. We refer the reader to [?] for a survey on character degree
graphs.

One of the main results on the character degree graph is Palfy’s theorem, which
asserts that given 3 vertices of the character degree graph of a solvable group, at least
two of them are joined or equivalently, without using the graph theoretic terminology,
given a set π of 3 prime divisors of character degrees of a solvable group, we can choose
two of them such that their product divides some character degree (see [?] or [?,
Theorem 18.7]). Of course, the solvability hypothesis cannot be removed (consider
for instance the alternating group A5 and π = {2, 3, 5}). But we can prove the
following result for arbitrary finite groups.

Main Theorem. Let G be a finite group and π a set of four prime divisors of
irreducible character degrees of G. Then there are primes p and q in π such that pq
divides the degree of some irreducible character of G.

Our proof of Main Theorem depends on the classification of finite simple groups and
the Deligne-Lusztig theory of irreducible characters of finite groups of Lie type. Once
a theorem for character degrees is proved, it is natural to ask if the same result for
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conjugacy classes holds (and conversely). In this case, an analogue of Main Theorem
for conjugacy class sizes has been recently proved by S. Dolfi [?]. His result, which
also depends on the classification of finite simple groups, shows that if we consider
conjugacy class sizes instead of character degrees, then we can take the set π of
cardinality 3.

We will prove a few results related to finite simple groups in §2. With the help of
these theorems, we complete the proof of Main Theorem in §3.

2. Simple groups

We begin by proving several lemmas. The first one is a well-known observation.

Lemma 2.1. Let Φ and Ψ be two permutation representations of a finite cyclic group
A with the same character. Then they have the same number of regular orbits.

Proof. Let χ denote the character of Φ and let λ denote a faithful irreducible character
of A. Consider any orbit O of A and let ρ denote the permutation character of A
acting on this orbit. Observe that, if |O| = n/d < n := |A|, then ρ is trivial at the
(unique) subgroup of order d of A and so (ρ, λ) = 0. Therefore the number of regular
orbits of Φ equals (χ, λ), whence the statement follows. �

The next lemma is convenient when we work with semisimple elements in excep-
tional finite groups of Lie type. If G is an algebraic group then G◦ denotes the
connected component of G.

Lemma 2.2. Let G be a simple algebraic group defined over a field of characteristic
` > 0 and F a Frobenius map on G such that GF is an exceptional finite group of Lie
type. Let p 6= ` be a prime such that either p ≥ 11 or p > rank(G) + 1. Let s ∈ GF

be any nontrivial p-element. Then C := CG(s) is connected and p divides |(Z(C)◦)F |;
in particular, C cannot be semisimple.

Proof. By [?, Cor. E-II.4.6], the condition p > 3 implies that C is connected. Now
we can write C = MS, where M := [C, C] is semisimple and S := Z(C)◦. It remains
to prove that p divides |SF |. First we observe that (p, |Z(M)|) = 1. (Assume the
contrary and write M = M1∗. . .∗Mn as a central product of simple algebraic groups
M1, . . . ,Mn. Then Z(M) = Z(M1) ∗ . . . ∗ Z(Mn) and so we may assume that p
divides |Z(M1)|. But this is a contradiction, since M1 is a simple algebraic group of
rank at most rank(G) ≤ 8 and so its centre has order at most rank(G) + 1 ≤ 9.) In
particular, (p, |MF ∩ SF |) = 1, as MF ∩ SF ≤ Z(M). Clearly, s ∈ Z(C)F . Assume
that (p, |SF |) = 1. It is well known (cf. [?] for instance) that |CF | = |MF | · |SF |.
Since p is coprime to |MF ∩SF | = |CF/(MF ∗ SF )|, s ∈MF ∗ SF . But p is coprime
to |SF | by our assumption, hence s ∈ MF . Thus s ∈ M ∩ Z(C) = Z(M) and so p
divides |Z(M)|, a contradiction. �
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In what follows we use primitive prime divisors (p.p.d.) as defined in [?]. Also,
Φn(x) denotes the nth cyclotomic polynomial.

Lemma 2.3. Let G be a simple algebraic group defined over a field of characteristic
` > 0 and F a Frobenius map on G such that G := GF is an exceptional finite group
of Lie type. Then G contains semisimple elements s1 and s2 such that p1 := |s1| and
p2 := |s2| are different primes, and one of the following statements holds.

(i) Assume G = 2B2(r) with r = `f ≥ 8. Then p1 is a p.p.d. of `4f − 1 and
|CG(s1)| = r ±

√
2r + 1. Furthermore, p2 is a p.p.d. of `f − 1 and |CG(s2)| = r − 1.

(ii) Assume G = 2G2(r) with r = `f ≥ 27. Then p1 is a p.p.d. of `6f − 1 and
|CG(s1)| = r ±

√
3r + 1. Furthermore, p2 is a p.p.d. of `f − 1 and |CG(s2)| = r − 1.

(iii) Assume G = 2F4(r) with r = `f > 2. Then p1 is a p.p.d. of `12f − 1 and

|CG(s1)| = r2 + r + 1 ± (
√

2r3 +
√

2r). Furthermore, p2 is a p.p.d. of `6f − 1 and
|CG(s2)| = r2 − r + 1.

(iv) Assume G = 3D4(r) with r = `f > 2. Then p1 is a p.p.d. of `12f − 1 and
|CG(s1)| = r4 − r2 + 1. Furthermore, p2 is a p.p.d. of `6f − 1 and |CG(s2)| is coprime
to |CG(s1)|.

(v) Assume G = G2(r), resp. F4(r), E8(r), with r = `f > 2. Then pi is a p.p.d.
of `mif − 1 and |CG(si)| = Φmi

(r), with i = 1, 2. Furthermore, (m1,m2) = (6, 3),
(12, 8), (30, 24), resp.

(vi) Assume G = E6(r) with r = `f . Then p1 is a p.p.d. of `9f − 1 and |CG(s1)| =
Φ9(r). Furthermore, p2 is a p.p.d. of `12f − 1 and |CG(s2)| = Φ12(r)Φ3(r).

(vii) Assume G = 2E6(r) with r = `f . Then p1 is a p.p.d. of `18f − 1 and
|CG(s1)| = Φ18(r). Furthermore, p2 is a p.p.d. of `12f−1 and |CG(s2)| = Φ12(r)Φ6(r).

(viii) Assume G = E7(r) with r = `f . Then pi is a p.p.d. of `mif − 1 and
|CG(s1)| = Φmi

(r)Φ2(r), with i = 1, 2 and (m1,m2) = (18, 14).

Proof. The conjugacy classes of 2B2(r) are completely known, see e.g. [?]. Using this
information one readily gets (i). Consider the case of (iii). Using the information
given in [?] about |CG(s)| and |s|, one arrives at (iii). The case of (ii) is handled
similarly using [?].

In all the remaining cases, let Gsc denote the algebraic group of simply connected
type corresponding to G. Then F lifts to a Frobenius map on Gsc which we also
denote by F . Let π : Gsc → G denote the natural projection. Since pi is coprime to
|Z(Gsc)|, g ∈ G is of order pi if and only if π−1(g) ⊂ Gsc contains a (unique) element
g∗ of order pi; and moreover g, g′ ∈ G of order pi are conjugate in G if and only if the
corresponding elements g∗, g

′
∗ of order pi in π−1(g) and π−1(g′) are conjugate in Gsc.

As their centralizers are connected by Lemma ??, the conjugacy of these elements in
the finite group GF (resp. GF

sc) is equivalent to their conjugacy in the algebraic group
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G (resp. Gsc). Thus |gGF | = |gG
F
sc

∗ |. Finally, observe that |GF | = |GF
sc|. It follows that

|CGF (g)| = |CGF
sc

(g∗)|. We have shown that the isogeny class of G does not matter for
the conclusions of Lemma ??.

Now we consider the case of (iv). Clearly, pi as chosen in (iv) is ≥ 7 > rank(G)+1
and so we can apply Lemma ??. The order of (Z(C)◦)F is listed explicitly in [?] for all
semisimple conjugacy classes. In particular, we see that the divisibility of |(Z(C)◦)F |
by p1 implies that |CG(s1)| = Φ12(r). Furthermore, the divisibility of |(Z(C)◦)F |
by p2 implies that |CG(s2)| is one of the following: (r3 + 1)(r ± 1), (r2 − r + 1)2,
(r3 + 1)r(r2 − 1), (r3 + 1)r(r2 − 1)(r2 − r + 1), r3(r6 − 1)(r ± 1), r4(r6 − 1)(r2 − 1);
and all these possible orders are coprime to Φ12(r). Next we consider the case of (vi).
Then pi ≥ 11. Using [?], we see that the divisibility of |(Z(C)◦)F | by pi implies that
|CG(s1)| = Φ9(r) and |CG(s2)| = Φ12(r)Φ3(r). The cases of 2E6(r), F4(r), and G2(r)
are dealt with in an entirely similar manner. Now assume that we are in the case
of (viii). Then pi ≥ 19. If the semisimple element si is not regular, then one can
check that |(Z(C)◦)F | as listed in [?] is not divisible by pi, a contradiction. Hence si

is regular. In this case CG(si) is a maximal torus, and its order is given in [?]. In
particular, s1 corresponds to type E7 and s2 corresponds to type E7(a1) in [?], and
we arrive at (viii). Similarly, if G = E8(r), then s1 corresponds to type E8 and s2

corresponds to type E8(a1) in [?], and we arrive at (v). �

Next we prove an analogue of Lemma ?? for classical groups.

Lemma 2.4. Let G be a simple algebraic group defined over a field of characteristic `
and F a Frobenius map on G such that G := GF is a classical finite group of Lie type.
Then G contains semisimple elements s1 and s2 such that p1 := |s1| and p2 := |s2| are
different primes. Moreover, if S denotes the finite Lie-type group of simply connected
type corresponding to G, then one of the following statements holds.

(i) Assume S = SLn(r) with n ≥ 2, r = `f ≥ `5, (n, r) 6= (2, 26). Then p1 is a
p.p.d. of `nf − 1 and |CG(s1)| = (rn − 1)/(r − 1). Furthermore, p2 is a p.p.d. of
`(n−1)f − 1 and |CG(s2)| = rn−1 − 1.

(ii) Assume S = SUn(r) with n ≥ 3, n odd, r = `f ≥ `5. Then p1 is a p.p.d. of
`2nf − 1 and |CG(s1)| = (rn + 1)/(r + 1). Furthermore, p2 is a p.p.d. of `2(n−2)f − 1,
|CG(s2)| = r(rn−2 + 1)(r2 − 1) if n ≥ 5 and |CG(s2)| = (r + 1)2 if n = 3.

(iii) Assume S = SUn(r) with n ≥ 4, n even, r = `f ≥ `5. Then p1 is a p.p.d.
of `2(n−1)f − 1 and |CG(s1)| = rn−1 + 1. Furthermore, p2 is a p.p.d. of `2(n−3)f − 1,
|CG(s2)| = r3(rn−3 + 1)(r3 + 1)(r2 − 1) if n ≥ 6 and |CG(s2)| = (r + 1)3 if n = 4.

(iv) Assume S = Sp2n(r) or Spin2n+1(r) with n ≥ 2, r = `f ≥ `5. Then p1 is a

p.p.d. of `2nf − 1 and |CG(s1)| = rn + 1. Furthermore, p2 is a p.p.d. of `2(n−1)f − 1
and |CG(s2)| = r(rn−1 + 1)(r2 − 1).



PALFY’S THEOREM 5

(v) Assume S = Spin−2n(r) with n ≥ 4, r = `f ≥ `5. Then p1 is a p.p.d. of
`2nf − 1 and |CG(s1)| = rn + 1. Furthermore, p2 is a p.p.d. of `2(n−1)f − 1 and
|CG(s2)| = (rn−1 + 1)(r − 1).

(vi) Assume S = Spin+
2n(r) with n ≥ 4, r = `f ≥ `5. Then p1 is a p.p.d. of

`2(n−1)f − 1 and |CG(s1)| = (rn−1 + 1)(r + 1). Furthermore, p2 is a p.p.d. of `nf − 1
and |CG(s2)| = rn − 1 if n is odd, and p2 is a p.p.d. of `(n−1)f − 1 and |CG(s2)| =
(rn−1 − 1)(r − 1) if n is even.

Proof. In all cases, pi is chosen to be larger than |Z(G)|. So arguing as in the proof
of Lemmas ?? and ??, we see that the conclusions of Lemma ?? do not depend on
the choice of the isogeny class of G. Thus in the proof of the lemma we can choose
the isogeny class that is most convenient for our arguments. We also denote by F an
algebraically closed field of characteristic ` and choose α, β ∈ F× such that |α| = p1,
|β| = p2. In all the following cases, it is straightforward to find the order of the
centralizers in question.

AssumeG = SLn(r). Then we choose s1 to be G-conjugate to diag(α, αr, . . . , αrn−1
),

and s2 to be G-conjugate to diag(1, β, βr, . . . , βrn−2
).

Assume G = SUn(r) with n odd. Then we choose s1 to be G-conjugate to

diag(α, α−r, . . . , α(−r)n−1

).

Furthermore, we choose s2 to be G-conjugate to

diag(1, 1, β, β−r, . . . , β(−r)n−3

)

if n ≥ 5, and to diag(1, β, β−1) if n = 3.

Assume G = SUn(r) with n even. Then we choose s1 to be G-conjugate to

diag(1, α, α−r, . . . , α(−r)n−2

).

Furthermore, we choose s2 to be G-conjugate to

diag(1, 1, 1, β, β−r, . . . , β(−r)n−4

)

if n ≥ 6, and to diag(1, β, β2, β−3) if n = 4.

Assume G = Sp2n(r) or SO−
2n(r). Then we choose s1 to be G-conjugate to

diag(α, αr, . . . , αr2n−1

),

and s2 to be G-conjugate to diag(1, 1, β, βr, . . . , βr2n−3
) (in particular, the fixed point

subspace of s2 is a 2-subspace of type + in the case of SO−
2n(r)). Observe that

SO±
2n(r) = Spin±2n(r) when r is even.

Assume G = SO2n+1(r). Then we choose s1 to be G-conjugate to

diag(1, α, αr, . . . , αr2n−1

),
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and s2 to be G-conjugate to

diag(1, 1, 1, β, βr, . . . , βr2n−3

).

Assume G = SO+
2n(r). Then we choose s1 to be G-conjugate to

diag(1, 1, α, αr, . . . , αr2n−3

)

(in particular, the fixed point subspace of s1 is a 2-subspace of type −). Furthermore,
if n is odd we choose s2 to be G-conjugate to

diag(β, βr, . . . , βrn−1

, β−1, β−r, . . . , β−rn−1

).

If n is even we choose s2 to be G-conjugate to

diag(1, 1, β, βr, . . . , βrn−2

, β−1, β−r, . . . , β−rn−2

),

in particular, the fixed point subspace of s1 is a 2-subspace of type +. �

The first statement in the following proposition is known, see e.g. Lemma 6(a) of
[?].

Proposition 2.5. Assume that a finite group A acts coprimely and faithfully on a
finite simple group S. Then A has a regular orbit on the conjugacy classes of S. In
fact, if S is nonabelian in addition, then A has at least two regular orbits on the
conjugacy classes of S or, equivalently, on the irreducible characters of S.

Proof. The case of abelian S is obvious, so we will assume that S is nonabelian and
moreover A is nontrivial. Using the description of Out(S) (cf. [?]), we see that S
is a finite group of Lie type defined over a field Fr with r = `f for some prime `.
Since Out(S) is solvable, all Hall subgroups of Out(S) (of given order) are conjugate,
and so we may assume that A is a subgroup of field automorphisms of S. By the
Schur-Zassenhaus theorem applied to the semidirect product S : A, we may assume
that A is generated by a fixed field automorphism σ of order d (induced by the map
that raises any element of Fr to its `f/d-power). It is well known (cf. for instance [?])
that the permutation actions of A on the set cl(S) of conjugacy classes of S and on
Irr(S) have the same character. Hence by Lemma ?? it suffices to show that A has
two regular orbits on cl(S). Thus we aim to show that there are at least two classes
sS each of which is not fixed by any element τ of prime order say p of A. Observe
that, since (p, |S|) = 1, p is coprime to |gS| for any g ∈ S. Assuming gS is τ -invariant,
we then see that τ fixes some representative h ∈ gS and so h ∈ CS(τ); in particular,
|g| = |h| divides |CS(τ)|. Thus it suffices to find two non-conjugate elements s ∈ S
such that |s| is coprime to |CS(τ)| for any such a τ .

We can find a simple simply connected algebraic group G defined over a field of
characteristic ` and a Frobenius map F on G such that S = GF/Z for Z := Z(GF ).
One can extend τ to an automorphism of GF (that clearly stabilizes Z) which we also
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denote by τ . Let D denote the complete inverse image of CS(τ) in GF . Then the map
d 7→ d−1τ(d) yields a homomorphism D → Z with kernel equal to CGF (τ). It follows
that |CS(τ)| divides |CGF (τ)|. Now we apply Lemmas ?? and ?? to GF , and consider
the elements s1, s2 constructed in these two lemmas. Notice that CGF (τ) is a finite
Lie-type group of the same type as of GF , but defined over Fr1/p . Moreover, either
(GF , p) = ( 2B2(r), 3) and f ≥ 3, or p ≥ 5 and f ≥ 5. Hence it is straightforward
to check that both p1 and p2 (as defined in Lemmas ?? and ??) are coprime to
|CGF (τ)| · |Z|, and so they are coprime to |CS(τ)|. We will need this conclusion in
the proof of Theorem ??. Now we can choose s to be the image in S of the element
si, i = 1, 2. �

In order to prove Main Theorem we also need the following two results.

Theorem 2.6. Let p and q be two different primes and put π = {p, q}. Let S be a
finite simple nonabelian group and assume that S �G ≤ Aut(S), where |G/S| = p,
p does not divide |S| and q divides |S|. Assume pq does not divide χ(1) for every
χ ∈ Irr(G). Then S is a finite simple group of Lie type in characteristic q, and G
does not have any abelian subgroup H with |H|π = |G|π.

Proof. 1) The assumption on p again implies that S is a finite simple group of Lie type
defined over a field Fr for some r = `f with f ≥ 5, or f = 3 and S = 2B2(r). So we can
find a simple simply connected algebraic group G defined over a field of characteristic
` and a Frobenius map F on G such that S = GF/Z for Z := Z(GF ). Let the
pair (G∗, F ∗) be dual to (G, F ), and set H := G∗F ∗

. According to the Deligne-Lusztig
theory (cf. [?], [?]), the irreducible characters of GF are partitioned into rational series
E(GF , (s)) which are indexed by G∗F ∗

-conjugacy classes (s) of semisimple elements
s ∈ G∗F ∗

. As in the proof of Theorem ??, we may assume that G = 〈S, σ〉, where σ
is a field automorphism of order p of S. One can then extend σ to automorphisms of
GF and G∗F ∗

which we also denote by σ.

2) Let s ∈ G∗F ∗
be a semisimple element such that |s| is coprime to |CG∗F∗ (σ)|.

Then arguing as in the proof of Proposition ??, we see that the G∗F ∗
-conjugacy class

(s) of s in G∗F ∗
is not σ-invariant, whence σ(s) and s are not G∗F ∗

-conjugate. By [?],
if ψ ∈ E(GF , (s)), then ψσ ∈ E(GF , (σ(s))). It follows that every ψ ∈ E(GF , (s)) is
not σ-invariant.

Assume furthermore that (|s|, |Z|) = 1. Claim that every ψ ∈ E(GF , (s)) is trivial
at Z. Indeed, consider any generalized Deligne-Lusztig character RG

T ,θ belonging

to E(GF , (s)). Here T is an F -stable maximal torus of G, and θ is an irreducible
character of T F . As shown in [?], |θ| = |s| and so θ is coprime to |Z|. In particular,
θ is trivial at T F ∩ Z. According to [?, Prop. 3.6.8], Z = Z(G)F (and so Z ≤ T F as
Z ≤ CG(T ) = T ). Now using the formula for the values of RG

T ,θ at any semisimple

element [?, Prop. 7.5.3], we see that RG
T ,θ(z) = RG

T ,θ(1) for all z ∈ Z. As recorded in
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[?], any ψ ∈ E(GF , (s)) is a linear combination (with rational coefficients) of the RG
T ,θ

belonging to E(GF (s)) and a class function that vanishes at semisimple elements of
GF . It follows that ψ(z) = ψ(1) for all z ∈ Z, as stated.

3) Now we can apply Lemmas ?? and ?? to G∗F ∗
and find semisimple elements si of

order pi, i = 1, 2. As shown in the proof of Theorem ??, pi is coprime to |CS(σ)| · |Z|,
and so it is coprime to |CG∗F∗ (σ)| · |Z| (as S is a normal subgroup of index |Z| in
G∗F ∗

). Consider any ψi ∈ E(GF , (si)). By 2), ψi is in fact an irreducible character of
S which is not σ-invariant. Since G/S = 〈σ〉 is cyclic of order p, χi := IndG

S (ψi) is an
irreducible character of G of degree divisible by p. By the assumptions, q does not
divide χi for i = 1, 2. Since ψi(1) is divisible by |G∗F ∗

: CG∗F∗ (si)|`′ , it follows that q
is coprime to |G∗F ∗

: CG∗F∗ (si)|`′ for i = 1, 2. (We use the notation N`′ to denote the
`′-part of an integer N .)

4) Here we consider the case q 6= `. Since q divides |G∗F ∗|`′ , the conclusion of 3)
implies that q divides |CG∗F∗ (si)|`′ but not |G∗F ∗

: CG∗F∗ (si)|`′ , for i = 1, 2. In the
cases (i) – (v) of Lemma ??, |CG∗F∗ (s1)| and |CG∗F∗ (s2)| are coprime, a contradiction.
If S = PSL2(r), then q divides (2, r− 1) and so q divides |G∗F ∗

: CG∗F∗ (s1)|`′ , again a
contradiction. If S = PSUn(r) with n ≥ 6 even, then q divides (r3 + 1)(r2 − 1) and
so q divides |G∗F ∗

: CG∗F∗ (s1)|`′ , a contradiction. In all other cases, q divides r2 − 1
and so q divides |G∗F ∗

: CG∗F∗ (s1)|`′ , again a contradiction.

5) We have shown that q = `. Notice that the Sylow `-subgroups of S can be
abelian only when S = PSL2(r). Assume S = PSL2(r). In this case, it is easy to
check that no Sylow `-subgroup of S can be centralized by σ. Now assume that H is
any subgroup of G with |H|π = |G|π. Then we may assume that σ ∈ H, whence H
is not abelian. �

Lemma 2.7. Let S be a finite simple nonabelian group. Let p and q be different
prime divisors of |S| and π := {p, q}. If pq does not divide χ(1) for every χ ∈ Irr(S),
then for any H ≤ S such that |H|π = |S|π, H is not abelian.

Proof. By Corollary 1.2 of [?], we know that the hypothesis holds for some pair of
primes p and q only if S is M11, M23, J1, PSL2(r) where r ≥ 4, PSL3(r) where r = 4
or some prime bigger than 3 divides r− 1, PSU3(r) where some prime bigger than 3
divides r + 1, A8, or a Suzuki simple group.

Assume S is one of the aforementioned simple groups that satisfies the assumptions,
but not the conclusion of the lemma. Then the abelian subgroup H contains a Sylow
p-subgroup P of S. Clearly,

(i) P is abelian,

(ii) CS(x) cannot be a p-subgroup; and moreover,

(iii) pq divides |CS(x)|π
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for any nontrivial x ∈ P .

First consider the case S = PSL2(r). We may assume that r ≥ 4 and r 6= 5. The
condition (ii) implies that (pq, r) = 1. Interchanging p and q if necessary, we may
assume that p 6= 2 and p|(r − ε) for some ε = ±1. By (iii), pq divides (r − ε)/2. But
this yields a contradiction, since S has an irreducible character of degree r − ε (as
r 6= 5).

Next assume that S = PSU3(r). The condition (i) implies that (pq, r) = 1. In-
terchanging p and q if necessary, we may assume that p 6= d := (3, r + 1). By (iii),
pq divides (r2 − 1)(r + 1)/d, (r + 1)2/d, (r2 − 1)/d, or (r2 − r + 1)/d. But this
yields a contradiction, since S has irreducible characters of degrees (r2 − 1)(r + 1)
and r2 − r + 1 (cf. [?]) for instance). The cases S = PSL3(r) or S = 2B2(r) can be
treated similarly.

Assume S = M23. The condition (i) implies that p, q > 2, whereas the condition
(ii) implies that p, q 6= 11, 23. Thus π ⊂ {3, 5, 7}. So we arrive at a contradiction,
as S has irreducible characters of degrees 45, 231, and 770, cf. [?]. The cases
S ∈ {A8,M11, J1} can be dealt with similarly. �

Next, we prove Main Theorem for simple groups and we determine the simple
counterexamples to the analog of Palfy’s theorem.

Lemma 2.8. Let S be a finite simple group and π a set of four prime divisors of
irreducible character degrees of S. Then there are primes p and q in π such that pq
divides the degree of some irreducible character of S. The same result holds when
|π| = 3 except if S = PSL2(l) for some prime power l.

Proof. Again using Corollary 1.2 of [?], we see that it suffices to check the result for
a short list of simple groups. There are explicit formulas for the character degrees of
these groups, so it is a routine to complete the proof of the lemma. �

In the proof of Main Theorem, we will also use the following known result.

Lemma 2.9. The set of coprime automorphisms of a finite simple group S is a cyclic
central subgroup of Out(S).

Proof. This follows from, for instance, Lemma 1.3 of [?]. �

3. Proof of Main Theorem

We will use the following result on permutation groups.

Lemma 3.1. Let G be a permutation group on a finite set Ω. Let p and q be distinct
primes. Then there exist Γ1,Γ2 ⊆ Ω with Γ1 ∩ Γ2 = ∅ and

{p, q} ∩ π(|G|) ⊆ π(|G : GΓ1 ∩GΓ2 |),
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where GΓi
is the stabilizer of Γi and given an integer n, π(n) is the set of prime

divisors of n.

Proof. This is Lemma 8 of [?]. �

As an immediate consequence, we have the following.

Corollary 3.2. Assume that a group G acts on a finite set Ω. Let p and q be distinct
primes. Then there exist Γ1,Γ2 ⊆ Ω with Γ1 ∩ Γ2 = ∅ and

{p, q} ∩ π(|G/KerG(Ω)|) ⊆ π(|G : GΓ1 ∩GΓ2|).

Finally, we need the following elementary result.

Lemma 3.3. Let G be a nonabelian solvable group with G = Or′(G), where r is a
prime. Then there exists χ ∈ Irr(G) nonlinear of r-power degree and r-power order.

Proof. Since |G/G′| is a power of r, all irreducible characters of G have r-power order.
It suffices to show that G has a nonlinear irreducible character of r-power degree.
Write X = Or(G). We may assume that G/X is abelian. Let X/Y be a chief factor
of G. Observe that X/Y is an elementary abelian r′-group. Since G = Or′(G), we
deduce that CG/Y (X/Y ) < G/Y . It follows that there exists λ ∈ Irr(X/Y ) that is
not G-invariant. Hence the degree of any irreducible character of G lying over λ is a
power of r, as desired. �

Now we are ready to complete the proof of Main Theorem, which we restate. We
will use the Ito-Michler theorem, which asserts that all the character degrees of a finite
group G are coprime to p if and only if G has a normal abelian Sylow p-subgroup
(see Theorem 12.33 of [?] and [?]).

Theorem 3.4. Let G be a finite group and π a set of four prime divisors of irreducible
character degrees of G. Then there are primes p and q in π such that pq divides the
degree of some irreducible character of G.

Proof. Write π = {p, q, r, s}. Let A be the product of the normal abelian Sylow
subgroups of G and R the largest normal solvable subgroup of G. Of course A ≤ R
and, by the Ito-Michler theorem, all the primes in π divide |G/A|. Also, by Palfy’s
theorem, we may assume that |R/A| is a multiple of at most 2 of the primes in π. In
particular, we may assume that

(1) at least two of the four primes in π divide |G/R|.

Now, we define a few other normal subgroups of G. First, we define S to be the
subgroup of G such that S/R is the socle of G/R. Of course, S/R is a direct product
of nonabelian simple groups. It is also clear that CG/R(S/R) = 1, so that G/R
is isomorphic to a subgroup of Aut(S/R) and G/S is isomorphic to a subgroup of



PALFY’S THEOREM 11

Out(S/R). If S/R = Sa1
1 × · · · × Sat

t for some nonabelian simple groups Si such that
Sj is not isomorphic to Sk if j 6= k, then it is well-known that Out(S/R) is isomorphic
to

Γ = Out(S1) o Σa1 × · · · ×Out(St) o Σat .

In particular, G/S is isomorphic to a subgroup of Γ. We have that ∆ = Out(S1)
a1 ×

· · · ×Out(St)
at is a normal subgroup of Γ, so T/S = ∆ ∩G/S is a normal subgroup

of G/S. It is well-known that the outer automorphisms of a nonabelian simple group
S of order coprime to |S| form a cyclic central subgroup of Out(S) (see Lemma ??).
Write COut(S) to denote this subgroup and Λ = COut(S1)

a1 × · · · × COut(St)
at .

Then U/S = Λ∩G/S is a normal subgroup of G/S and U ≤ T . Observe that all the
prime divisors of |T/U | divide |S/R|.

Also, G/T is a permutation group on the simple groups that appear in the decom-
position S/R = Sa1

1 × · · · × Sat
t . We will write this group as S/R = D1 ×D2 × · · · ×

Da1+···+at , where D1, . . . , Da1 are isomorphic to S1, Da1+1, . . . , Da1+a2 are isomorphic
to S2 and so on. In order to simplify the notation, we will look at the group G/T as
a permutation group on the set Ω = {1, 2, . . . , a1 + · · ·+ at}. In fact, we will look at
G as a group that is acting on Ω, where KerG(Ω) = T .

We may also assume that

(2) if p, q divide |S/R| then pq divides some |Di|.

(Indeed, assume p||Di| and q||Dj| for some i 6= j. Then we can find χi ∈ Irr(Di) and
χj ∈ Irr(Dj) such that p|χi(1) and q|χj(1). In this case, an irreducible character of
G/R lying above χi ⊗ χj ∈ Irr(S/R) has degree divisible by pq.)

Now, we split the proof of the theorem into several steps.

Step 1. We may assume that at most one of the primes in π divides |G/T |.
Assume that, for instance, pq divides |G/T |. By Corollary ??, we know that there

exist disjoint subsets Γ1 and Γ2 of Ω such that pq divides |G : GΓ1 ∩GΓ2|. Of course,
Γi corresponds to the normal subgroup Ni = ×j∈Γi

Dj of S/R and N1 ∩ N2 = R/R.
For each of the simple groups Si that are direct factors of S/R choose nonprincipal
characters ϕi1, ϕi2 ∈ Irr(Si) such that ϕi1 6= ϕi2. Let ϕ1 ∈ Irr(N1) be the product of
|Γ1| characters of the form ϕi1, one for each of the direct factors Dj that appear in
N1. Similarly, let ϕ2 ∈ Irr(N2) be the product of |Γ2| characters of the form ϕi2, one
for each of the direct factors Dj that appear in N2. Then we may view ϕ = ϕ1 ⊗ ϕ2

as an irreducible character of S/R (similar idenfications will be made later in this
proof). It is easy to see that the size of the G-orbit of this character is a multiple of
pq. It follows from Clifford’s theorem that pq divides the degree of some irreducible
character of G. Hence, we may assume that at most one of the primes in π divides
|G/T |, as desired.

Step 2. We may assume that G = T .
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Assume now that, for instance, p divides |G/T |. As before, we consider disjoint
subsets Γ1 and Γ2 of Ω such that p divides |G : GΓ1 ∩GΓ2|. We also define the normal
subgroups N1 and N2 of S/R as before. By (??) and Step 1, there is some prime not
equal to p in π, say q, such that q divides |T/R|.

Assume first that q divides |S/R|. If q divides |Sj| for some Sj inNk (for k = 1 or 2),
then it suffices to argue as before choosing ϕjk of degree a multiple of q. If q does not
divide |N1N2|, then we argue as before but now we take ϕ = ϕ1⊗ϕ2⊗µ ∈ Irr(S/R),
where µ ∈ Irr(Sl) for some l is a character whose degree is a multiple of q. As before,
the degree of the characters of G lying over ϕ is a multiple of pq.

Hence, we may assume that q divides |U/S| but q does not divide |S/R|. Then
there exists uS = u1 . . . ua1+···+atS ∈ U/S of order q, with ui ∈ COut(Di). Assume
that, for instance, the order of u1S is q, i.e., u1S is an automorphism of D1 of order
q. If 1 ∈ Γ1, then it suffices to consider ϕi1, ϕi2 as in Step 1 in such a way that the
characters ϕi1 lie in a regular orbit under the action of COut(Si) (this is possible by
Proposition ??). The degree of the irreducible characters of G lying over the character
ϕ defined in Step 1 is a multiple of pq. Similarly, if 1 ∈ Γ2, then it suffices to consider
ϕi1, ϕi2 as in Step 1 in such a way that the characters ϕi2 lie in a regular orbit under
the action of COut(Si). Finally, if 1 6∈ Γ1 ∪ Γ2, then we define ϕi3 ∈ Irr(Si) lying
in a regular orbit under the action of COut(Si) and such that ϕi3 6∈ {ϕi1, ϕi2} (this
is possible as | Irr(Si)| ≥ 4 and we can take the characters ϕi1, for instance, lying
in nonregular orbits under the action of COut(Si), if necessary). We now define the
characters

ϕ3 =
⊗

i∈Ω\(Γ1∪Γ2)

ϕi3 ∈ Irr(S/R)

and

ϕ = ϕ1 ⊗ ϕ2 ⊗ ϕ3 ∈ Irr(S/R).

One can easily see that both p and q divide the degree of any irreducible character
of G lying over ϕ. Step 2 follows.

Step 3. We may assume that G = U .

It suffices to note that all the prime divisors of |T/U | divide |S/R|.
Step 4. There is at most one prime in π that divides |U/S|.
Assume that at least two of the primes in π, say p and q, divide |U/S|. We claim

that pq divides the degree of some irreducible character of U . The group U/S is
abelian, so we may assume that it is a cyclic group of order pq. Let x = x1 . . . xa1+···+at

be a generator of U/S, where each xi is an outer automorphism of Di of order some
divisor of pq. If some of the xi’s has order pq, then the result follows from Proposition
??. Otherwise, we can find some i such that |xi| = p and some j such that |xj| = q.
If τ1 ∈ Irr(Di) is not xi-invariant and τ2 ∈ Irr(Dj) is not xj-invariant (and they exist
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by Proposition ??), then τ1 ⊗ τ2 ∈ Irr(S/R) induces irreducibly to G and its degree
is a multiple of pq.

Step 5. We may assume that G = S.

Arguing as before, we may assume that U/S = 〈x〉 is cyclic of order p. Replacing
G by S if necessary, we may assume that p does not divide |S/A|. We know by (??)
that some of the primes in π, say q, divides |S/R|. If q divides |Di| then, as one can
easily see, we may assume that x does not act trivially on Di. (Otherwise x acts
nontrivially on some Dj with j 6= i. Take χj ∈ Irr(Dj) which is not x-invariant,
χi ∈ Irr(Di) of degree divisible by q. Then some irreducible character of G/R lying
above χi ⊗ χj ∈ Irr(S/R) has degree divisible by pq.) But we may assume that x
fixes all the irreducible characters of Di whose degree is a multiple of q. By Theorem
??,

(3) U/R does not have any abelian subgroup Y with |Y |σ = |U/R|σ

for σ = {p, q}.
Assume first that all 4 primes in π divide |U/R|. Then by (??) we may assume

that qrs divides |Di| for some i. By our assumption, p does not divide |Di|. By
Lemma ??, Di is isomorphic to PSL2(l) for some prime power l and we may assume
that q divides l + 1, r divides l and s divides l − 1. We also have that x does not
act trivially on Di. It is easy to see (say by using Theorem ??) that pw, for some
w ∈ {q, r, s}, divides the degree of some irreducible character of U/R.

Hence, we may assume that some of the primes in π does not divide |U/R|. Thus
r, for instance, divides |R/A| and does not divide |U/R|. Put X = Or′(R). By
Lemma ??, X has some nonlinear irreducible character γ of r-power degree and r-
power order. Since |U/X| is coprime to r, γ extends to its inertia subgroup I in U
(by Corollary 8.16 of [?]). Let γ̂ be such an extension. If p or q divides |U : I|,
then by Clifford’s theorem (γ̂)U ∈ Irr(U) has degree divisible by pr or qr. Hence we
may assume that |I|σ = |U |σ. Now (??) implies that I/X cannot have an abelian
Hall {p, q}-subgroup. By the Ito-Michler theorem it follows that either p or q divides
the degree of some irreducible character β of I/X. Now, by Gallagher’s theorem
(Corollary 6.17 of [?]) and Clifford’s theorem (γ̂β)U ∈ Irr(U) is a character whose
degree is a multiple of pr or qr.

Consequently, we may assume that none of the primes in π divides |U/S| and so
we may replace G by S, whence Step 5 follows.

Step 6. Completion of the proof.

Recall that now we have G = S. Again by (??) and (??) we may assume that pq
divides |Di| for some i. Now if r and s both divide |S/R|, then we may assume pqrs
divides |Di| by (??), and so we are done by Lemma ??. Thus we may assume that r
divides |R/A| but does not divide |S/R|. Set X = Or′(R) and consider γ ∈ Irr(X) of
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r-power degree and r-power order as in Step 5. Arguing as in Step 5, we see that γ
extends to (an irreducible character γ̂ of) its inertia group I in G, and that |I|σ = |G|σ
for σ = {p, q}. Applying Lemma ?? to Di, we may assume that Di has no abelian
subgroup Y with |Y |σ = |Di|σ. It follows that none of G/R, I/R, and I/X can have
an abelian Hall {p, q}-subgroup. By the Ito-Michler theorem, either p or q divides
the degree of some irreducible character β of I/X. Consequently, (γ̂β)G ∈ Irr(G) has
degree divisible by pr or qr. �
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