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1 Introduction

Let A and G be finite groups of coprime order. If A acts on G, we write
IrrA(G) to denote the set of A-invariant irreducible characters of G. This
set of characters has been widely studied. Also, the A-version of several
usual character theoretic concepts has been defined. For instance, recall
that an A-invariant character χ ∈ Irr(G) is A-primitive if it is not induced
from any A-invariant character of any A-invariant proper subgroup. We say
that χ is A-monomial if it is induced from an A-invariant linear character
of an A-invariant subgroup. I. M. Isaacs, M. L. Lewis and G. Navarro have
recently proved the following result (Theorem B of [4]), which we state for
the ease of reference.

Theorem 1.1. Let A act coprimely on a finite nilpotent group G and χ ∈
IrrA(G). Then the degrees of any two A-primitive characters of A-invariant
subgroups inducing χ coincide.

Navarro has asked to what extent it is possible to weaken the nilpo-
tency hypothesis and, in particular, whether the result holds when G is
supersolvable. In this note we show that Theorem 1.1 cannot be extended
to supersolvable groups, but that it is possible to generalize it along other
directions.

Theorem A. There exists a supersolvable group G acted on by a cyclic
group A with an A-monomial irreducible character χ which is also induced
from some non-linear A-primitive character.

The degree of the irreducible character χ of the group constructed in
Theorem A is not a prime power. As in a number of situations when dealing
with induction of characters, characters of prime power degree also have a
different behaviour in this problem (examples of this different behaviour are,
for instance, Theorem A of [4], [1] and [6]). In fact, for characteres of prime
power degree it is possible to replace the supersolvability assumption by a
much weaker one, namely that the group G is metanilpotent, in order to
obtain the desired equal-degrees conclusion.

Theorem B. Let A act coprimely on a supersolvable group G and assume
that χ ∈ IrrA(G) is such that χ(1) is a prime power. Then the degrees of
any two A-primitive characters inducing χ coincide.

Theorem A shows that it is not possible to extend Theorem 1.1 to
nilpotent-by-abelianM -groups. However, we are able to extend it to abelian-
by-nilpotent groups. In fact, we prove more.
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Theorem C. Let A act coprimely on a solvable group G and let χ ∈
IrrA(G). Assume that there exists a normal subgroup N of G such that
G/N is nilpotent and N has abelian Sylow subgroups. Then the degrees of
any two A-primitive irreducible characters inducing χ coincide.

We are very much indebted to M. Isaacs and G. Navarro for many fruitful
discussions. The work of the first author was done while he was visiting the
University of Valencia and part of that of the second one while she was
visiting the University of Wisconsin-Madison. We would like to take this
opportunity to thank both Mathematics Departments for their hospitality.

2 Proof of Theorem A

We begin with the proof of Theorem A.

Theorem 2.1. There exists a supersolvable group G acted on by a cyclic
group A with an A-monomial character which is induced from an A-primitive
irreducible character of degree 25.

Proof. Let G = PQ be the group of order 2355 where P is the extraspecial
5-group of order 55 and exponent 5,

P = 〈x, y, u, v, z | x5 = y5 = u5 = v5 = z5 = 1, [x, y] = [u, v] = z〉

and the dihedral group

Q = 〈g, h | g2 = 1 = h4, hg = h−1〉

acts on P with the following nontrivial relations:

ug = u−1, vg = v−1, xh = x−1, yh = y−1, uh = u−1, vh = v−1.

We have that G is supersolvable and Z(G) = 〈z, h2〉. Now, let A = 〈a〉
be the cyclic group of order 3 acting trivially on Q and with the following
nontrivial relations on P :

xa = y, ya = x−1y−1, ua = v, va = u−1v−1.

It is a routine to check that the action of A on G is well-defined. Now,
consider X = 〈xu2, yv2, z〉 ≤ P and put Y = 〈xu2, yv2〉. Since P has
nilpotency class 2,

[xu2, yv2] = [x, y][u2, v2] = zz4 = 1.
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Hence X is abelian. Write H = 〈h〉. We have that X is an AH-invariant
normal subgroup of P . Since X is H-invariant, V = XH is a subgroup of
G of index 50. Let δ be a non-trivial irreducible character of Z(P ). Let
λ = δ × 1Y ∈ IrrA(X) which is also H-invariant. Let λ̂ be the canonical
extension of λ to V A (see Lemma 13.3 of [3] ) and λ̃ = λ̂V ∈ IrrA(V ), which
is the canonical extension of λ to V . Now, consider a linear character µ
of H such that µZ(Q) 6= 1Z(Q). Let µ̂ be the extension of µ to PH such
that P ≤ Ker µ̂ and µ̃ = µ̂V , which is the extension of µ to V such that
X ≤ Ker µ̃. Define β = λ̃µ̃ ∈ IrrA(V ).

We claim that there exists an A-invariant linear character of V which
induces irreducibly to G. Since λ induces irreducibly to P , λ̃PH ∈ Irr(PH).
We may assume that λ̃PH is G-invariant (otherwise, λ̃G would be irreducible
and the claim would follow). We have that

βPH = (λ̃µ̃)PH = λ̃PH µ̂ ∈ Irr(PH),

by Problem 5.3 of [3]. Since µ is not Q-invariant (because Z(Q) 6≤ Kerµ),
µ̂ is not G-invariant, and thus βPH is not G-invariant. Consequently, βG ∈
IrrA(G) and the claim holds.

Let χ ∈ IrrA(G) be induced from an A-invariant linear character of V .
Set U = 〈g, h2〉[P ]. We claim that 50 6∈ cd(U). Otherwise, let ψ ∈ Irr(U)
such that ψ(1) = 50. By Corollary 11.29 of [3], ψ lies over an irreducible
character φ of P such that φ(1) = 25. Now, φ is fully ramified with respect
to Z(P ). Since Z(P ) is central in G, φ is Q-invariant. By Problem 6.18 of
[3], there exists φ̃ extension of φ to U and, by Gallagher’s theorem (Corollary
6.17 of [3]), the irreducible characters of U lying over φ are φ̃τ where τ ∈
Irr(U/P ). Now the contradiction follows from the fact that U/P is abelian.
We deduce that there exists ψ ∈ IrrA(U) lying under χ such that ψ(1) = 25
(we are using Theorem 13.27 of [3]).

It is clear that ψG = χ and to conclude the proof it is enough to show
that ψ is A-primitive. We argue by the way of contradiction. Let K be a
proper A-invariant subgroup of U with an A-invariant irreducible character
ϕ inducing ψ. Now, ϕK∩P ∈ IrrA〈g〉(K ∩P ) induces φ. The subgroup K ∩P
is A〈g〉-invariant and contains Z(P ). However, it is not hard to show that
the unique non-trivial A〈g〉-invariant subgroups of P containing Z(P ) are
〈x, y, Z(P )〉 and 〈u, v, Z(P )〉. Now, since φ(1) = 25 and P is extraspecial,
φZ(P ) 6= 1Z(P ) and this implies that φ is induced from a character of degree
5 of K ∩ P . This is a contradiction.
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3 Characters of prime power degree

Our next aim is to prove Theorem B. In the proof we shall use Isaacs fac-
torization theory. (See, for instance, Section 21 of [7] for an introduction
to this subject.) We are going to prove a more general result, from which
Theorem B is an immediate consequence.

Theorem 3.1. Let A act coprimely on a metanilpotent group G. Let χ ∈
IrrA(G). Suppose that G has a nilpotent Hall π-subgroup, where π is the set
of primes dividing χ(1). Then the degrees of any two A-primitive characters
inducing χ coincide.

Proof. We argue by induction on |G|. Let U, V ≤ G be A-invariant sub-
groups of G and α ∈ Irr(U), β ∈ Irr(V ) A-primitive characters such that
αG = χ = βG. We want to prove that α(1) = β(1). Write G = KH
where H is an A-invariant π-complement of G and K is an A-invariant Hall
π-subgroup.

By Glauberman’s lemma (Lemma 13.8 and Corollary 13.9 of [3]) we may
assume that H is contained in U and, replacing the pair (V, β) by (V c, βc)
for some c ∈ CG(A) if necessary, we may assume that H is also contained
in V .

Since α and β are A-primitive characters we know that α and β are π-
factorable, that is, α = απαπ′ and β = βπβπ′ where απ and βπ are π-special
characters and απ′ and βπ′ are π′-special (by Lemma 2.6 of [5]). Note that,
since χ(1) is a π-number, απ′ and βπ′ are linear. Hence, we want to prove
that απ(1) = βπ(1).

Write X = KF (G) = KFπ′ where Fπ′ is the Hall π′-subgroup of F (G).
Of course, since |G : U | and |G : V | are π-numbers, Fπ′ is contained in
U ∩ V . Since G/F (G) is nilpotent, X is normal in G. Put U1 = U ∩ X
and V1 = V ∩ X. By the uniqueness of Gajendragadkar’s factorization
(Theorem 21.6 of [7]), απ′ and βπ′ are A-invariant. Thus, we have that
(απ′)Fπ′ and (βπ′)Fπ′ are A-invariant irreducible constituents of χFπ′ . Then
by Glauberman’s lemma we know that they are conjugate by an element
c ∈ CG(A). Hence, replacing (V, β) by (V c, βc), we may assume that λ =
(απ′)Fπ′ = (βπ′)Fπ′ . Let T = IG(λ) be the inertia group of λ in G. Note
that U and V are subgroups of T . Suppose that T < G. We have that αT

and βT are Clifford correspondents of χ. Since the Clifford correspondence
is a bijection (Theorem 6.11 of [3]), αT = βT . By the inductive hypothesis
it follows that α(1) = β(1), as desired. Therefore we may assume that λ is
G-invariant. Let λ̂ be the canonical extension of λ to X. By Glauberman’s
lemma, we may assume that H is contained in U ∩ V . We have that χX ∈
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Irr(X) (because (χ(1), |G : X|) = 1). Then

(αG)X = (αU1)
X = ((απ)U1(λ̂)U1)

X

and similarly (βG)X = ((βπ)V1(λ̂)V1)
X . Hence,

((απ)U1)
X λ̂ = ((βπ)V1)

X λ̂.

We deduce that ((απ)U1)
X = ((βπ)V1)

X . Since Fπ′ is contained in the kernel
of this character (see Corollary 5.3 of [2]) we may view it as a character of
the nilpotent group X/Fπ′ . Now, (απ)U1 and (βπ)V1 are AH/Fπ′-primitive
(because απ and βπ are A-primitive) and induce the same AH/Fπ′-invariant
irreducible character of X/Fπ′ . By Theorem 1.1, απ(1) = βπ(1), as desired.

4 Proof of Theorem C

Theorem 3.1 is a generalization of the theorem of Isaacs, Lewis and Navarro.
In this section we prove Theorem C, which is another generalization. As in
the nilpotent case, the key of the proof of Theorem C is the following lemma.

Lemma 4.1. Let A act coprimely on a solvable group G and let χ ∈ IrrA(G)
be A-primitive. Assume that there exists a normal subgroup N of G such
that G/N is nilpotent and N has abelian Sylow subgroups. Then χH is
homogeneous for every A-invariant subgroup H of G.

Proof. We may take N to be the nilpotent residual, and thus N is A-
invariant. We argue by induction on |G|. If χ is not faithful, working on
G/Kerχ and applying the inductive hypothesis, we have that the restriction
of χ to H Kerχ is homogeneous and we deduce that χH is homogeneous.
Hence, we may assume that χ is faithful.

Since G has an A-primitive faithful irreducible character, we deduce that
every A-invariant normal abelian subgroup of G is central (by Corollary 6.13
of [3]). Since N has abelian Sylow subgroups, F (N) is central in G. Hence
F (N) = N and G is nilpotent. Now we are done by Corollary 2.2 of [4].

Lemma 4.2. Suppose that A acts coprimely on a group G and that whenever
D ≤ U ≤ G are A-invariant subgroups and α is an A-primitive irreducible
character of U then αU is homogeneus. In this situation, if α and β are
any two A-primitive characters of A-invariant subgroups of G, and α and β
induce the same irreducible character of G, then α(1) = β(1).

Proof. It is exactly the same as in Theorem 2.5 of [4].
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Now we are ready to prove Theorem C, which we restate.

Theorem 4.3. Let A act coprimely on a solvable group G and let χ ∈
IrrA(G). Assume that there exists a normal subgroup N of G such that
G/N is nilpotent and N has abelian Sylow subgroups. Then the degrees of
any two A-primitive irreducible characters inducing χ coincide.

Proof. It is enough to apply the previous lemma. The hypothesis about the
existence and properties of the subgroup N are inherited by all subgroups
of G, and thus by Lemma 4.1, we see that the hypotheses of Lemma 4.2
hold.

References

[1] E.C. Dade, Monomial characters and normal subgroups, Math. Z. 178
(1981), 401–420.

[2] I.M. Isaacs, Characters of π-separable groups, J. Algebra, 86 (1984),
98–128.

[3] I.M. Isaacs, “Character Theory of Finite Groups”, New York, Dover,
1994.

[4] I.M. Isaacs, M.L. Lewis, G. Navarro, Invariant characters and
coprime action on finite nilpotent groups, Arch. Math. 74 (2000), 401–
409.

[5] I.M. Isaacs, G. Navarro, Character correspondences and irreducible
induction and restriction, J. Algebra, 140 (1991), 131–140.

[6] M.L. Lewis, Inducing characters of prime power degree, to appear in
Osaka J. Math.

[7] O. Manz, T.R. Wolf, “Representations of Solvable Groups”, LMS
Lecture Notes Series 185, Cambridge University Press, 1993.

7


